Nous donnons une nouvelle preuve — n'utilisant pas la résolution des singularités — d'une formule de Denef et du second auteur exprimant le nombre de Lefschetz des itérés de la monodromie d'une fonction sur une variété algébrique complexe en fonction de la caractéristique d'Euler d'un espace d'arcs tronqués. Notre preuve utilise la cohomologie -adique des espaces non-archimédiens, l'intégration motivique, ainsi que la formule des points fixes de Lefschetz pour les automorphismes d'ordre fini. Nous considérons également une généralisation due à Nicaise et Sebag et la fin de l'article est consacrée aux relations avec l'invariant de Serre motivique et la fibre de Milnor motivique.
We give a new proof—not using resolution of singularities—of a formula of Denef and the second author expressing the Lefschetz number of iterates of the monodromy of a function on a smooth complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs. Our proof uses -adic cohomology of non-archimedean spaces, motivic integration and the Lefschetz fixed point formula for finite order automorphisms. We also consider a generalization due to Nicaise and Sebag and at the end of the paper we discuss connections with the motivic Serre invariant and the motivic Milnor fiber.
DOI : 10.24033/asens.2246
Keywords: Motivic integration, non-archimedean geometry, monodromy, Milnor fiber.
Mot clés : Intégration motivique, géométrie non-archimédienne, monodromie, fibre de Milnor.
@article{ASENS_2015__48_2_313_0, author = {Hrushovski, Ehud and Loeser, Fran\c{c}ois}, title = {Monodromy and the {Lefschetz} fixed point formula}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {313--349}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {2}, year = {2015}, doi = {10.24033/asens.2246}, mrnumber = {3346173}, zbl = {1400.14015}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2246/} }
TY - JOUR AU - Hrushovski, Ehud AU - Loeser, François TI - Monodromy and the Lefschetz fixed point formula JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 313 EP - 349 VL - 48 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2246/ DO - 10.24033/asens.2246 LA - en ID - ASENS_2015__48_2_313_0 ER -
%0 Journal Article %A Hrushovski, Ehud %A Loeser, François %T Monodromy and the Lefschetz fixed point formula %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 313-349 %V 48 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2246/ %R 10.24033/asens.2246 %G en %F ASENS_2015__48_2_313_0
Hrushovski, Ehud; Loeser, François. Monodromy and the Lefschetz fixed point formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 313-349. doi : 10.24033/asens.2246. http://www.numdam.org/articles/10.24033/asens.2246/
Le nombre de Lefschetz d'une monodromie, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math., Volume 35 (1973), pp. 113-118 | DOI | MR | Zbl
La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248 (ISSN: 0010-2571) | DOI | MR | Zbl
Finiteness theorems for vanishing cycles of formal schemes (2013) (preprint http://www.wisdom.weizmann.ac.il/~vova/FormIII_2013.pdf ) | MR
Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS, Volume 78 (1993), pp. 5-161 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994), pp. 539-571 (ISSN: 0020-9910) | DOI | MR | Zbl
Vanishing cycles for formal schemes. II, Invent. Math., Volume 125 (1996), pp. 367-390 (ISSN: 0020-9910) | DOI | MR | Zbl
Polyèdres et réseaux, Enseign. Math., Volume 38 (1992), pp. 71-88 (ISSN: 0013-8584) | MR | Zbl
, Universitext, Springer, New York, 1992, 263 pages (ISBN: 0-387-97709-0) | DOI | MR | Zbl
, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, 2001, pp. 327-348 | MR | Zbl
Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology, Volume 41 (2002), pp. 1031-1040 (ISSN: 0040-9383) | DOI | MR | Zbl
Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 (ISSN: 0003-486X) | DOI | MR | Zbl
Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537 (ISSN: 1056-3911) | MR | Zbl
Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232 (ISSN: 0020-9910) | DOI | MR | Zbl
Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J., Volume 99 (1999), pp. 285-309 (ISSN: 0012-7094) | DOI | MR | Zbl
Parties semi-algébriques d'une variété algébrique -adique, Manuscripta Math., Volume 111 (2003), pp. 513-528 (ISSN: 0025-2611) | DOI | MR | Zbl
The trace formula and Drinfelʼd's upper halfplane, Duke Math. J., Volume 76 (1994), pp. 467-481 (ISSN: 0012-7094) | DOI | MR | Zbl
Definable sets in algebraically closed valued fields: elimination of imaginaries, J. reine angew. Math., Volume 597 (2006), pp. 175-236 (ISSN: 0075-4102) | DOI | MR | Zbl
, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 261-405 | DOI | MR | Zbl
The value ring of geometric motivic integration, and the Iwahori Hecke algebra of , Geom. Funct. Anal., Volume 17 (2008), pp. 1924-1967 (ISSN: 1016-443X) | DOI | MR | Zbl
Motivic Poisson summation, Mosc. Math. J., Volume 9 (2009), pp. 569-623 (ISSN: 1609-3321) | DOI | MR | Zbl
Valued fields, metastable groups (2004) (preprint http://www.math.jussieu.fr/~loeser/mst.pdf )
Polyhedral Laurent series and Brion's equalities, Internat. J. Math., Volume 1 (1990), pp. 251-265 (ISSN: 0129-167X) | DOI | MR | Zbl
Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (preprint arXiv:0811.2435 )
Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015), pp. 157-194 (ISSN: 0012-7094) | DOI | MR | Zbl
Rigid subanalytic sets, Amer. J. Math., Volume 115 (1993), pp. 77-108 (ISSN: 0002-9327) | DOI | MR | Zbl
, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 745-784 | DOI | MR | Zbl
Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J., Volume 119 (2003), pp. 315-344 (ISSN: 0012-7094) | DOI | MR | Zbl
Cohomology of locally closed semi-algebraic subsets, Manuscripta Math., Volume 144 (2014), pp. 373-400 (ISSN: 0025-2611) | DOI | MR | Zbl
, Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl
A trace formula for rigid varieties, and motivic Weil generating series for formal schemes, Math. Ann., Volume 343 (2009), pp. 285-349 (ISSN: 0025-5831) | DOI | MR | Zbl
A trace formula for varieties over a discretely valued field, J. reine angew. Math., Volume 650 (2011), pp. 193-238 (ISSN: 0075-4102) | DOI | MR | Zbl
Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007), pp. 133-173 (ISSN: 0020-9910) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 248, Cambridge Univ. Press, Cambridge, 1998, 180 pages (ISBN: 0-521-59838-9) | DOI | MR | Zbl
Cité par Sources :