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MONODROMY AND
THE LEFSCHETZ FIXED POINT FORMULA

 E HRUSHOVSKI  F LOESER

To Jan Denef as a token of admiration and friendship
on the occasion of his 60th birthday

A. – We give a new proof—not using resolution of singularities—of a formula of Denef
and the second author expressing the Lefschetz number of iterates of the monodromy of a function on
a smooth complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs.
Our proof uses `-adic cohomology of non-archimedean spaces, motivic integration and the Lefschetz
fixed point formula for finite order automorphisms. We also consider a generalization due to Nicaise
and Sebag and at the end of the paper we discuss connections with the motivic Serre invariant and the
motivic Milnor fiber.

R. – Nous donnons une nouvelle preuve — n’utilisant pas la résolution des singularités
— d’une formule de Denef et du second auteur exprimant le nombre de Lefschetz des itérés de la
monodromie d’une fonction sur une variété algébrique complexe en fonction de la caractéristique
d’Euler d’un espace d’arcs tronqués. Notre preuve utilise la cohomologie `-adique des espaces non-
archimédiens, l’intégration motivique, ainsi que la formule des points fixes de Lefschetz pour les
automorphismes d’ordre fini. Nous considérons également une généralisation due à Nicaise et Sebag
et la fin de l’article est consacrée aux relations avec l’invariant de Serre motivique et la fibre de Milnor
motivique.

1. Introduction

1.1. – Let X be a smooth complex algebraic variety of dimension d and let f : X → A1
C be

a non-constant morphism to the affine line. Let x be a singular point of f−1(0), that is, such
that df(x) = 0.

Fix a distance function δ on an open neighborhood of x induced from a local embedding
of this neighborhood in some complex affine space. For ε > 0 small enough, one may
consider the corresponding closed ball B(x, ε) of radius ε around x. For η > 0 we denote
by Dη the closed disk of radius η around the origin in C.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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314 E. HRUSHOVSKI AND F. LOESER

By Milnor’s local fibration Theorem (see [30], [14]), there exists ε0 > 0 such that, for every
0 < ε < ε0, there exists 0 < η < ε such that the morphism f restricts to a fibration, called
the Milnor fibration,

(1.1.1) B(x, ε) ∩ f−1(Dη \ {0}) −→ Dη \ {0}.

The Milnor fiber at x,

(1.1.2) Fx = f−1(η) ∩B(x, ε),

has a diffeomorphism type that does not depend on δ, η and ε. The characteristic mapping
of the fibration induces on Fx an automorphism which is defined up to homotopy, the
monodromyMx. In particular the singular cohomology groupsHi(Fx,Q) are endowed with
an automorphism Mx, and for any integer m one can consider the Lefschetz numbers

(1.1.3) Λ(Mm
x ) = tr(Mm

x ;H•(Fx,Q)) =
∑
i≥0

(−1)itr(Mm
x ;Hi(Fx,Q)).

In [1], A’Campo proved that if x is a singular point of f−1(0), then Λ(M1
x) = 0 and this

was later generalized by Deligne to the statement that Λ(Mm
x ) = 0 for 0 < m < µ, with µ

the multiplicity of f at x, cf. [2].

In [13], Denef and Loeser proved that Λ(Mm
x ) can be expressed in terms of Euler charac-

teristics of arc spaces as follows. For any integer m ≥ 0, let Lm(X) denote the space of arcs
modulo tm+1 onX: a C-rational point of Lm(X) corresponds to a C[t]/tm+1-rational point
of X, cf. [10]. Consider the locally closed subset Xm,x of Lm(X)

(1.1.4) Xm,x = {ϕ ∈ Lm(X); f(ϕ) = tm mod tm+1, ϕ(0) = x}.

Note that Xm,x can be viewed in a natural way as the set of closed points of a complex
algebraic variety.

T 1.1.1 ([13]). – For every m ≥ 1,

(1.1.5) χc( Xm,x) = Λ(Mm
x ).

Here χc denotes the usual Euler characteristic with compact supports. Note that one
recovers Deligne’s statement as a corollary since Xm,x is empty for 0 < m < µ. The
original proof in [13] proceeds as follows. One computes explicitly both sides of (1.1.5) on an
embedded resolution of the hypersurface defined by f = 0 and checks that both quantities
are equal. The computation of the left-hand side relies on the change of variable formula
for motivic integration in [10] and the one on the right-hand side on A’Campo’s formula
in [2]. The problem of finding a geometric proof of Theorem 1.1.1 not using resolution of
singularities is raised in [27]. The aim of this paper is to present such a proof.
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MONODROMY AND THE LEFSCHETZ FIXED POINT FORMULA 315

1.2. – Our approach uses étale cohomology of non-archimedean spaces and motivic
integration. Nicaise and Sebag introduced in [33] the analytic Milnor fiber F x of the
function f at a point x which is a rigid analytic space over C((t)). Let F an

x denote its
analytification in the sense of Berkovich. Using a comparison theorem of Berkovich, they

show that, for every i ≥ 0, the étale `-adic cohomology group Hi( F an
x ⊗̂ Ĉ((t))

alg
,Q`) is

isomorphic to Hi(Fx,Q) ⊗Q Q`. Furthermore, these étale `-adic cohomology groups
are naturally endowed with an action of the Galois group Gal(C((t))

alg
/C((t))) of the

algebraic closure of C((t)), and under this isomorphism the action of the topological
generator (t1/n 7→ exp(2iπ/n)t1/n)n≥1 of µ̂(C) = Gal(C((t))

alg
/C((t))) corresponds to the

monodromy Mx.

Another fundamental tool in our approach is provided by the theory of motivic integra-
tion developed in [20] by Hrushovski and Kazhdan. Their logical setting is that of the theory
ACVF(0, 0) of algebraically closed valued fields of equal characteristic zero, with two sorts
VF and RV. If L is a field endowed with a valuation v : L → Γ(L), with valuation ring OL
and maximal ideal ML, VF(L) = L and RV(L) = L×/(1+ ML). Thus RV(L) can be inserted
in an exact sequence

(1.2.1) 1→ k×(L)→ RV(L)→ Γ(L)→ 0

with k(L) the residue field ofL. Let us work with C((t)) as a base field. One of the main result
of [20] is the construction of an isomorphism

(1.2.2)
∮

: K(VF) −→ K(RV[∗])/Isp

between the Grothendieck ring K(VF) of definable sets in the VF-sort and the quotient
of a graded version K(RV[∗]) of the Grothendieck ring of definable sets in the RV-sort by
an explicit ideal Isp. At the Grothendieck rings level, the extension (1.2.1) is reflected by
the fact that K(RV[∗]) may be expressed as a tensor product of the graded Grothendieck
ringsK(Γ[∗]) andK(RES[∗]) for a certain sort RES. A precise definition of RES will be given
in 2.2, but let us say that variables in the RES sort range not only over the residue field but
also over certain torsors over the residue field so that definable sets in the RES sort are twisted
versions of constructible sets over the residue field. This reflects the fact that the extension
(1.2.1) has no canonical splitting. Furthermore, there is a canonical isomorphism between a
quotient !K(RES) of the Grothendieck ringK(RES) andKµ̂(VarC), the Grothendieck ring
of complex algebraic varieties with µ̂-action, as considered in [12] and [27]. Let [A1] denote
the class of the affine line. In [20] a canonical morphism

(1.2.3) EUΓ : K(VF) −→ !K(RES)/([A1]− 1)

is constructed. We shall make essential use of that construction, which is recalled in detail
in 2.5. It roughly corresponds to applying the o-minimal Euler characteristic to the Γ-part
of the product decomposition of the right-hand side of (1.2.2). Denote by K(µ̂-Mod) the
Grothendieck ring of the category of finite dimensional Q`-vector spaces with µ̂-action.
There is a canonical morphism Kµ̂(VarC) → K(µ̂-Mod) induced by taking the alternating
sum of cohomology with compact supports from which one derives a morphism

(1.2.4) euét : !K(RES)/([A1]− 1) −→ K(µ̂-Mod).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



316 E. HRUSHOVSKI AND F. LOESER

Our strategy is the following. Instead of trying to prove directly a Lefschetz fixed point
formula for objects of VF, that are infinite dimensional in nature when considered as objects
over C, we take advantage of the morphism EUΓ for reducing to finite dimensional spaces.
To this aim, using étale cohomology of Berkovich spaces, developed by Berkovich in [3], we
construct a natural ring morphism

(1.2.5) EUét : K(VF) −→ K(µ̂-Mod)

and we prove a key result, Theorem 5.4.1, which states that the diagram

(1.2.6) K(VF)
EUΓ //

EUét &&

!K(RES)/([A1]− 1)

euétvv
K(µ̂-Mod)

is commutative. Using this result, we are able to reduce the proof of Theorem 1.1.1 to a
classical statement, the Lefschetz fixed point theorem for finite order automorphisms acting
on complex algebraic varieties (Proposition 5.5.1).

Since our approach makes no use of resolution of singularities, it would be tempting
to try extending it to situations in positive residue characteristic. In order to do that, a
necessary prerequisite would be to find the right extension of the results of [20] beyond
equicharacteristic 0.

1.3. – Using the same circle of ideas, we also obtain several new results and constructions
dealing with the motivic Serre invariant and the motivic Milnor fiber.

More precisely, in Section 7, we explain the connexion between the morphism EUΓ and
the motivic Serre invariant of [28]. We show in Proposition 7.2.1 that ifX is a smooth proper
algebraic variety over F ((t)) with F a field of characteristic zero, with base change X(m)

over F ((tm
−1

)), then the motivic Serre invariant S(X(m)) can be expressed in terms of the
part of EUΓ(X) fixed by the m-th power of a topological generator of µ̂. This allows in
particular to provide a proof of a fixed point theorem originally proved by Nicaise and Sebag
in [33] that circumvents the use of resolution of singularities.

In Section 8 we show how one can recover the motivic zeta function and the motivic
Milnor fiber of [9] and [12], after inverting the elements 1 − [A1]i, i ≥ 1, from a single
class in the measured Grothendieck ring of definable objects over VF, namely the class of
the set Xx of points y in X(C[[t]]) such that rvf(y) = rv(t) and y(0) = x. This provides
a new construction of the motivic Milnor fiber that seems quite useful. It has already been
used by Lê Quy Thuong [25] to prove an integral identity conjectured by Kontsevich and
Soibelman in their work on motivic Donaldson-Thomas invariants [24].

We are grateful to Antoine Chambert-Loir, Georges Comte, Antoine Ducros, Johannes
Nicaise, Michel Raibaut and Yimu Yin for very useful comments and exchanges.

During the preparation of this paper, the research of the authors has been partially sup-
ported by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement no. 291111 and ERC Grant agreement
no. 246903/NMNAG.
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2. Preliminaries on Grothendieck rings of definable sets, after [20]

2.1. – We shall consider the theory ACVF(0, 0) of algebraically closed valued fields of equal
characteristic zero, with two sorts VF and RV. This will be more suitable here than the more
classical signature with three sorts (VF,Γ,k). The language on VF is the ring language, and
the language on RV consists of abelian group operations · and (·)−1, a unary predicate k×

for a subgroup, an operation +: k2 → k, where k is k× augmented by a symbol zero, and a
function symbol rv for a function VF× → RV. Here, VF× stands for VF \ {0}.

LetL be a valued field, with valuation ring OL and maximal ideal ML. We set VF(L) = L,
RV(L) = L×/(1 + ML), Γ(L) = L×/ O×L and k(L) = OL/ML. We have an exact sequence

(2.1.1) 1→ k× → RV→ Γ→ 0,

where we view Γ as an imaginary sort. We denote by rv : VF× → RV, val : VF× → Γ and
valrv : RV→ Γ the natural maps.

2.2. – Fix a base structure L0 which is a nontrivially valued field. We shall view L0-definable
sets as functors from the category of valued field extensions of L0 with no morphisms except
the identity to the category of sets. For each γ ∈ Q⊗Γ(L0), we consider the definable set Vγ

(2.2.1) L 7−→ Vγ(L) = {0} ∪ {x ∈ L×; val(x) = γ}/(1 + ML)

on valued field extensions L of L0. Note that when γ − γ′ ∈ Γ(L0), Vγ(L) and Vγ′(L) are
definably isomorphic. For γ̄ = (γ1, . . . , γn) ∈ (Q ⊗ Γ(L0))n we set Vγ̄ =

∏
i Vγi . By a

γ̄-weighted monomial, we mean an expression aνXν = aν
∏
iX

νi
i with ν = (ν1, . . . , νn) ∈ Nn

a multi-index, such that aν is an L0-definable element of RV with valrv(aν) +
∑
i νiγi = 0.

A γ̄-polynomial is a finite sum of γ̄-weighted monomials. Such a γ̄-polynomial H gives
rise to a function H : Vγ̄ → k so we can consider its zero set Z(H). The intersection of
finitely many such sets is called a generalized algebraic variety over the residue field. The
generalized residue structure RES consists of the residue field, together with the collection
of the definable sets Vγ , for γ ∈ Q ⊗ Γ(L0), and the functions H : Vγ̄ → k associated with
each γ̄-polynomial.

2.3. – If S is a sort, we write S∗ to mean Sm, for some m. We shall view varieties over L0 as
definable sets overL0. We denote by VF[n] the category of definable subsets ofn-dimensional
varieties over L0. By Lemma 8.1 of [20] this category is equivalent to the category whose
objects are the definable subsets X of VF∗ × RV∗ such that there exists a definable map
X → VFn with finite fibers. By abuse of notation we shall sometimes also denote by VF[n]

that category.
We denote by RV[n] the category of definable pairs (X, f) with X ⊂ RV∗ and

f : X → RVn a definable map with finite fibers and by RES[n] the full subcategory
consisting of objects withX such that valrv(X) is finite (which is equivalent to the condition
that X is isomorphic to a definable subset of RES∗). By Remark 3.67 of [20], the forgetful
map (X, f) 7→ X induces an equivalence of categories between RV[n] and the category of
all definable subsets of RV∗ of RV-dimension ≤ n, that is, such that there exists a definable
map with finite fibers to RVn. Nonetheless, the morphism f will be useful for defining L
in 2.4.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



318 E. HRUSHOVSKI AND F. LOESER

Let A = Γ(L0) or more generally any ordered abelian group in Γ. One defines Γ[n] as the
category whose objects are finite disjoint union of subsets of Γn defined by linear equalities
and inequalities with Z-coefficients and parameters in A. Given objects X and Y in Γ[n], a
morphism f betweenX and Y is a bijection such that there exists a finite partition ofX into
objects Xi of Γ[n], such that the restriction of f to Xi is of the form x 7→ Mix + ai with
Mi ∈ GLn(Z) and ai ∈ An. We define Γfin[n] as the full subcategory of Γ[n] consisting of
finite sets.

We shall consider the categories

(2.3.1) RV[≤ n] =
⊕

0≤k≤n

RV[k],

(2.3.2) RV[∗] =
⊕
n≥0

RV[n],

(2.3.3) RES[∗] =
⊕
n≥0

RES[n],

(2.3.4) Γ[∗] =
⊕
n≥0

Γ[n]

and

(2.3.5) Γfin[∗] =
⊕
n≥0

Γfin[n].

Let C be any of the symbols RV, RES, Γ and Γfin. We shall denote by K+(C[n]),
K+(C[∗]), resp. K(C[n]), K(C[∗]), the Grothendieck monoid, resp. the Grothendieck
group, of the corresponding categories as defined in [20]. The Grothendieck monoid
K+(C[∗]) decomposes as a direct sum K+(C[∗]) =

⊕
0≤nK+(C[n]) and admits a natural

structure of graded semi-ring with K+(C[n]) as degree n part. Similarly, K(C[∗]) admits a
natural structure of graded ring with K(C[n]) as degree n part. The Grothendieck monoid
K+(RV[n]) is isomorphic to the Grothendieck monoid of definable subsets X of RV∗

of RV-dimension ≤ n.
One also considers K+(VF), resp. K(VF), the Grothendieck semi-ring, resp. the

Grothendieck ring, of the category of definable subsets of L0-varieties of any dimension.
The product is induced by cartesian product and K+(VF) and K(VF) are filtered by
dimension. By Lemma 8.1 of [20], K+(VF), resp. K(VF), can be identified with the
Grothendieck semi-ring, resp. the Grothendieck ring, of the category of definable subsets X
of VF∗×RV∗ such that there exists, for some n, a definable mapX → VFn with finite fibers.
Similarly, one denotes by K+(RV), K(RV), K+(RES), and K(RES), the Grothendieck
semi-rings and rings of the categories of definable subsets of RV∗ and RES∗, respectively.

The mapping X 7→ val−1
rv (X) induces a functor Γ[n] → RV[n], hence a morphism

K+(Γ[n]) → K+(RV[n]) which restricts to a morphism K+(Γfin[n]) → K+(RES[n]).
We also have a morphism K+(RES[n]) → K+(RV[n]) induced by the inclusion functor
RES[n]→ RV[n]. There is a unique morphism of graded semi-rings

(2.3.6) Ψ: K+(RES[∗])⊗K+(Γfin[∗]) K+(Γ[∗]) −→ K+(RV[∗])

4 e SÉRIE – TOME 48 – 2015 – No 2



MONODROMY AND THE LEFSCHETZ FIXED POINT FORMULA 319

sending [X] × [Y ] to [X × val−1
rv (Y )], for X in RES[m] and Y in Γ[n] and it is proved in

Corollary 10.3 of [20] that Ψ is an isomorphism.

2.4. – One defines

(2.4.1) L : ObRV[n] −→ ObVF[n]

by sending a definable pair (X, f) with X ⊂ RV∗ and f : X → RVn a definable map with
finite fibers to

(2.4.2) L(X, f) = {(y1, . . . , yn, x) ∈ (VF×)n ×X; (rv(yi)) = f(x)}.

Note that by Proposition 6.1 of [20], the isomorphism class of L(X, f) does not depend on f ,
so we shall sometimes write L(X) instead of L(X, f). This mapping induces a morphism of
filtered semi-rings

(2.4.3) L : K+(RV[∗]) −→ K+(VF)

sending the class of an object X of RV[n] to the class of L(X).
If X is a definable subset of RVn, we denote by [X]n the class of (X, Id) in K+(RV[n])

or in K(RV[n]). Similarly, if X is a definable subset of RESn or Γn, we denote by [X]n the
class ofX inK+(RES[n]) andK+(Γ[n]), respectively, or in the corresponding Grothendieck
ring. In particular, we can assign to the point 1 ∈ k∗ ⊂ RV a class [1]1 inK+(RV[1]), and the
point of RV0 a class [1]0 in K+(RV[0]). Set RV>0 = {x ∈ RV; valrv(x) > 0}. Observe the
identity L([1]1) = L([1]0)+L([RV>0]1) inK+(VF); the left-hand side is the open ball 1+ M,
while the right-hand side is (0) + ( M \ (0)). Let Isp be the semi-ring congruence generated
by the relation [1]1 ∼ [1]0 + [RV>0]1. By Theorem 8.8 of [20], L is surjective with kernel Isp.
Thus, by inverting L, one gets a canonical isomorphism of filtered semi-rings

(2.4.4)
∮

: K+(VF) −→ K+(RV[∗])/Isp.

2.5. – Let I! be the ideal ofK(RES[∗]) generated by the differences [val−1
rv (a)]1− [val−1

rv (0)]1
where a runs over Γ(L0)⊗Q. We denote by !K(RES[∗]) the quotient ofK(RES[∗]) by I! and
by !K(RES[n]) its graded piece of degree n (note that passing to the quotient by I! preserves
the graduation). One defines similarly !K(RES).

Let us still denote by Isp the ideal in K(RV[∗]) generated by the similar object
of K+(RV[∗]). We shall now recall the construction of group morphisms

(2.5.1) En : K(RV[≤ n])/Isp −→ !K(RES[n])

and

(2.5.2) E′n : K(RV[≤ n])/Isp −→ !K(RES[n])

given in Theorem 10.5 of [20].
The morphism En is induced by the group morphism

(2.5.3) γ :
⊕
m≤n

K(RV[m]) −→ !K(RES[n])

given by

(2.5.4) γ =
∑
m

βm ◦ χ[m],

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



320 E. HRUSHOVSKI AND F. LOESER

with βm : !K(RES[m])→ !K(RES[n]) given by [X] 7→ [X×An−m] andχ[m] : K(RV[m])→
!K(RES[m]) defined as follows. The isomorphism (2.3.6) induces an isomorphism

(2.5.5) K(RV[m]) '
⊕

1≤`≤m

K(RES[m− `])⊗K(Γfin) K(Γ[`]),

and χ[m] is defined as
⊕

1≤`≤m χ` with χ` sending a⊗ b inK(RES[m− `])⊗K(Γfin)K(Γ[`])

to χ(b)·[Gm]` ·a, where χ : K(Γ[`])→ Z is the o-minimal Euler characteristic (cf. Lemma 9.5
of [20]). Here Gm denotes the multiplicative torus of the residue field, thus [Gm] = [A1]− 1.

The definition of E′n is similar, replacing βm by the map [X] 7→ [X] × [1]n−m1 and χ

by the “bounded” Euler characteristic χ′ : K(Γ[`]) → Z (cf. Lemma 9.6 of [20]) given by
χ′(Y ) = limr→∞ χ(Y ∩ [−r, r]n) for Y a definable subset of Γn.

We will now consider !K(RES[n]) modulo the ideal of multiples of the class of [Gm]1,
which we denote by !K(RES[n])/[Gm]1. By the formulas (1) and (3) in Theorem 10.5 of [20]
the morphisms En and E′n induce the same morphism

(2.5.6) En : K(RV[≤ n])/Isp −→ !K(RES[n])/[Gm]1.

These morphisms are compatible, thus passing to the limit one gets a morphism

(2.5.7) E : K(RV[∗])/Isp −→ !K(RES)/([A1]− 1).

In fact, the morphism E is induced from both the morphisms E and E′ from (2) and (4) in
Theorem 10.5 of [20].

The morphism E maps [RV>0]1 to 0, and [X]k to [X]k for X ∈ RES[k]. Composing E
with the morphism K(VF)→ K(RV[∗])/Isp obtained by groupification of the morphism

∮
in (2.4.4) one gets a ring morphism

(2.5.8) EUΓ : K(VF) −→ !K(RES)/([A1]− 1).

2.6. – The rest of this section is not really needed; it shows however that the introduction of
Euler characteristics for Γ can be bypassed in the construction of EUΓ.

Let val = valrv denote the canonical map RV → Γ. Let I ′Γ be the ideal of K(RV[∗])
generated by all classes [val−1(U)]m, for U a definable subset of Γm, m ≥ 1, and let I∗
be the ideal generated by I ′Γ along with Isp. Since [RV>0]1 ∈ I ′Γ, the canonical generator
[RV>0]1 + [1]0 − [1]1 reduces, modulo I ′Γ, to [1]0 − [1]1, i.e., the different dimensions are
identified. Thus K(RV[∗])/I∗ = K(RV)/IΓ, where on the right we have the ideal of K(RV)

generated by all classes [val−1(U)], for any definable U ⊂ Γm, m ≥ 1, or equivalently just
by val−1({0}).

L 2.6.1. – The inclusion functor RES→ RV induces an isomorphism

!K(RES)/([A1]− 1) −→ K(RV)/IΓ.

Proof. – This is already true even at the semi-ring level, as follows from Proposition 10.2
of [20]. The elements [val−1(U)] of K+(RV) are those of the form 1⊗b in the tensor product
description, with b ∈ K+(Γ[n]), n ≥ 1. Moding out the tensor productK+(RES)⊗K+(Γ[∗])
by these elements we obtain simply K+(RES)⊗K+(Γ[0]) ' K+(RES). Now taking
into account the relations of the tensor product amalgamated over K+(Γfin), namely
1⊗[γ]1 = [rv−1(γ)]⊗[1]0, as the left-hand side vanishes, we obtain the relation [rv−1(γ)] = 0.
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These are precisely the relations defining !K(RES) (namely [rv−1(γ)] = [rv−1(γ′)]) along
with the relation rv−1(0) = 0 (i.e., [A1]− 1 = 0).

R 2.6.2. – It is also easy to compute that the map

(2.6.1) E : K(RV[∗])/Isp −→ !K(RES)[[A1]−1]

from [20], Theorem 10.5, composed with the natural map from !K(RES)[[A1]−1] to
!K(RES)/([A1]− 1), induces the retraction K(RV)/IΓ → !K(RES)/([A1]− 1) above.

3. Invariant admissible transformations

In this section we introduce a notion of invariance for definable sets and functions. The
main result is Proposition 3.2.2 which provides a refinement of Proposition 4.5 of [20] within
the invariant context. This will be used in Proposition 4.2.2, in order to evaluate EUΓ,m

on invariant sets in terms of reductions. We continue to work in ACVF(0, 0) over a base
structure L0 which is a nontrivially valued field.

3.1. – For α ∈ Γ(L0), one sets Oα = {x : val(x) ≥ α}, and Mα = {x : val(x) > α}.
For x = (x′, x′′), y = (y′, y′′) ∈ VFn × RVm, write v(x − y) > α if x′ − y′ ∈ ( Mα)n.
If f is a definable function on a definable subset X of VFn × RVm, say f is α-invariant,
resp. α+-invariant, if f(x + y) = f(x) whenever x, x + y ∈ X and y ∈ ( Oα)n, resp.
y ∈ ( Mα)n. Say a definable set Y is α-invariant, resp. α+-invariant, if the characteristic
function 1Y : VFn × RVm → {0, 1} is α-invariant, resp. α+-invariant.

Call a definable set of imaginaries non-field if it admits no definable map onto a non-empty
open disk (over parameters). Any imaginary set of the form GLn/H, where H is a definable
subgroup of GLn containing a valuative neighborhood of 1, has this property. By [18], ACVF

admits elimination of imaginaries to the level of certain “geometric sorts"; these include the
valued fieldK itself and certain other sorts of the form GLn/H as above. We may thus restrict
our attention to such sorts in the lemma below. Note that for a separable topological field L,
GLn(L) is separable while H(L) is an open subgroup, so (GLn/H)(L) is countable.

L 3.1.1. – Let A be a set of imaginaries. Let X ⊂ VFn be an A-definable subset
bounded and closed in the valuation topology. Let f : X →W beA-definable, whereW is a non-
field set of imaginaries. Fix α in Γ(L0). Then there exists a β ≥ α, a β+-invariant A-definable
map g : X →W such that for any x ∈ X, for some y ∈ X, v(x− y) > α and g(x) = f(y).

Proof. – We use induction on dim(X). If dim(X) = 0, X is finite so we can take f = g,
and β the maximum of α and the maximal valuative distance between two distinct points
of X. So assume dim(X) > 0.

Let us start by proving that there exists a relatively Zariski closed definable subset Y ⊂ X
such that dim(Y ) < dim(X) and such that f is locally constant on X \ Y . To do this, we
work within the Zariski closure X̄ of X which has same dimension as X. We use both the
Zariski topology and the valuation topology on X̄; when referring to the latter we use the
prefix v. It follows from quantifier-elimination that any definable subset differs from a v-open
set by a set contained in a subvariety of X̄ of dimension< dim(X). In particular, a definable
subset of X̄ of dimension dim(X) must contain a non-empty v-open set. Now the locus Z
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where f is locally constant is definable. Set Y = X \Z. Assume by contradiction that Z does
not contain a Zariski dense open subset of X̄. Then its complement contains a non-empty
v-open set e. Note that on every non-empty v-open definable subset of e, f is non-constant,
since otherwise it would intersect Z. It follows that the following property holds:

(∗) the Zariski closure of e ∩ f−1(w) is of dimension < n for every w in W .

Thus, for any model of ACVF(0, 0), there existsX ′ ⊂ VFn definable bounded and closed
in the valuation topology, f ′ : X ′ → W ′ definable with W ′ a non-field set of imaginaries
and a non-empty v-open definable subset e′ such that (∗) holds for X ′, W ′, f ′ and e′. By
compactness, such X ′, W ′, f ′ and e′ can each be defined uniformly, i.e., they each belong to
a single definable family of definable sets. By compactness again, it follows that for p large
enough there exist such X ′, W ′, f ′ and e′ defined over the algebraic closure of Qp such that
(∗) holds. Take a finite extension L of Qp over which X ′, W ′, f ′ and e′ are defined. As was
observed above Lemma 3.1.1, W ′(L) is then a countable set. By (∗), f ′−1(w′) ∩ e′(L) is of
measure zero, for each w′ ∈W ′(L). It follows that e′(L) is of measure zero, a contradiction.

By the inductive hypothesis, there exist β′ ≥ α, a β′+-invariant function gY : Y → W

such that for any y ∈ Y , for some z ∈ Y , v(y − z) > α and gY (y) = f(z).

Let Y ′ = {x ∈ X : (∃y ∈ Y )(v(x − y) > β′)}. One extends gY to a function g′ on Y ′

by defining g′(x) = gY (y) where y is an element of Y such that v(x − y) > β′. By the
β′

+-invariance of gY , this is well-defined. Moreover, for any y ∈ Y ′, there exists z ∈ Y such
that v(y − z) > α and g′(y) = f(z).

For each x in X \ Y , we denote by δ(x) the valuative radius of the maximal open ball
around x contained inX \Y on which f is constant. SinceX \Y ′ is closed and bounded, δ is
bounded onX\Y ′ by Lemma 11.6 of [20]. Thus, there exists β ≥ β′ such that if x, x′ ∈ X\Y ′
and x − x′ ∈ Mβ, then f(x) = f(x′). We now define g on X by g(x) = g′(x) for x ∈ Y ′,
and g(x) = f(x) for x ∈ X \ Y ′. Note that if x, x′ ∈ X and v(x − x′) > β(≥ β′), then
either x, x′ ∈ Y ′ or x, x′ ∈ X \ Y ′; in both cases, g(x) = g(x′). We have already seen that
the last condition in the statement of the lemma holds on Y ′; it clearly holds for x ∈ X \Y ′,
with y = x.

We repeat here Corollary 2.29 of [19].

L 3.1.2. – LetD be aC-definable set in ACVF that may contain imaginary elements.
Then the following are equivalent:

(1) There exists a definable surjective map g : ( O/ Oβ)n → D.
(2) There is no definable function f : D → Γ with unbounded image.
(3) For some β0 ≤ 0 ≤ β1 ∈ Γ(C), for any e ∈ D, e ∈ dcl(C, Oβ0/Mβ1).

A definable set D (of imaginary elements) satisfying (1-3) will be called boundedly imagi-
nary. An infinite subset of the valued field can never be boundedly imaginary; a subset of the
value group, or of Γn, is boundedly imaginary iff it is bounded; a subset of RVn is bound-
edly imaginary iff its image in Γn under the valuation map is bounded (i.e., contained in a
box [−γ, γ]n). We shall say a subset of RVn is bounded below if its image in Γn under the
valuation map is bounded below (i.e., contained in a box [γ,∞)n).
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L 3.1.3. – Let T be a boundedly imaginary definable set. Let X ⊂ VFn × T , and,
for t ∈ T , set Xt = {x : (x, t) ∈ X}. Assume each Xt is bounded and closed in the valuation
topology. LetW be a non-field set of imaginaries and let f : X →W be a definable map. Fix α
in Γ(L0). Then there exist β ≥ α, a β+-invariant definable function g : X → W such that for
any t ∈ T and x ∈ Xt, there exists y ∈ Xt, v(x− y) > α and g(x, t) = f(y, t).

Proof. – For each t we obtain, from Lemma 3.1.1, an A(t)-definable element β(t) ≥ α,
and a β(t)+-invariant gt : Xt → W , with the stated property. As T is boundedly imaginary,
β(t) is bounded on T and β = supt β(t) ∈ Γ. For each t, the statement remains true with
β(t) replaced by β. By the usual compactness / glueing argument, as explained for instance
in Section 2.1.1 of [20], we may take gt to be uniformly definable, i.e., gt(x) = g(x, t).

3.2. – We now define an invariant analogue of the admissible transformations of [20], Defi-
nition 4.1.

Let n ≥ 1 an integer and let β = (β1, . . . , βn) ∈ Γn. Let VFn/ Oβ =
∏

1≤i≤n(VF/ Oβi),
and let π = πβ : VFn → VFn/ Oβ be the natural map. Also write π(x, y) = (π(x), y) if
x ∈ VFn and y ∈ RVm. Say X ⊆ VFn × RVm is β-invariant if it is a pullback via πβ ; and
that f : VFn×RV∗ → VF is (β, α)-covariant if it induces a map VFn/ Oβ×RV∗ → VF/ Oα,
via (πβ , πα).

D 3.2.1. – Let A be a base structure. Let n ≥ 1 be an integer and let
β = (β1, . . . , βn) ∈ Γn.

(1) An elementary β-invariant admissible transformation over A is a function of one of the
following types:

(i) a function VFn × RVm → VFn × RVm of the form

(x1, . . . , xn, y1, . . . , ym) 7−→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn, y1, . . . , ym)

with a = a(x1, . . . , xi−1, y1, . . . , yl) a (β, βi)-covariant A-definable function and
m ≥ 0 an integer.

(ii) a function VFn × RVm → VFn × RVm+1 of the form

(x1, . . . , xn, y1, . . . , yl) 7−→ (x1, . . . , xn, y1, . . . , yl, h(xi))

with h an A-definable βi-invariant function VF→ RV and m ≥ 0 an integer.
(2) Let m and m′ be non negative integers. A function VFn × RVm → VFn × RVm′ is

called β-invariant admissible transformation overA if it is the composition of elementary
β-invariant admissible transformations over A.

(3) Let C ′A(β) be the category whose objects are triples (m,W,X) with m ≥ 0 an integer,
W a boundedly imaginary definable set contained in RVm and X a definable subset
of VFn×W such thatXw is a bounded, β-invariant subset of VFn, for everyw ∈W . We
shall sometimes write X instead of (m,W,X). A morphism (m,W,X)→ (m′,W ′, X ′)

in C ′A(β) is a definable map X → X ′ which is the restriction of some β-invariant
admissible transformation VFn×RVm → VFn×RVm′ . We consider the full subcategory
CA(β) whose objects X satisfy the additional condition that the projection X → VFn

has finite fibers.
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(4) Let (m,W,X) be in C ′A(β). We say X is elementary if there exist an integer m′ ≥ 0,
a β-invariant admissible transformation T : VFn × RVm → VFn × RVm′ , a definable
subset H of RVm′ , and a map h : {1, . . . , n} → {1, . . . ,m′} such that

T (X) = {(a, b) ∈ VFn ×H; rv(ai) = bh(i), for 1 ≤ i ≤ n}.

If β = (β1, . . . , βn) and β′ = (β′1, . . . , β
′
n) are in Γn, we write β ≥ β′ if βi ≥ β′i for every

1 ≤ i ≤ n. If β ≥ β′, we have a natural embedding of C ′A(β) as a (non-full) subcategory
of C ′A(β′). We denote by C ′A, resp. CA, the direct limit over all β of the categories C ′A(β),
resp. CA(β).

The following proposition is an analogue of Proposition 4.5 of [20] in the category CA.

P 3.2.2. – Let F be a subset of a model of ACVF(0, 0), in any finite product
of sorts, such that for each γ ∈ Γ(F ), there exists f ∈ VF(F ) such that val(f) > γ. We work
in ACVFF . Letα ∈ Γn and let (`,W,X) be an object in CF (α). There existsβ ≥ α such thatX
is a Boolean combination of finitely many β-invariant definable subsets Z which are elementary
in the sense of Definition 3.2.1 (4). Furthermore, if the projection X → VFn has finite fibers,
one may assume that for each such Z, the projectionH → RVn given by b 7→ (bh(1), . . . , bh(n))

has finite fibers.

Proof. – Note that the hypothesis on the base set F is preserved if we move from F

to F (w), where w lies in a boundedly imaginary definable set. This permits the inductive
argument below to work.

We now explain how to adapt the proof of Proposition 4.5 of [20] to the present setting. We
add the hypothesis thatX is invariant and want to obtain the conclusion that Z is invariant.
The proof will be essentially the same except that we have to pay attention that certain sets
are boundedly imaginary. We first adapt Lemma 4.2 of [20]. In that lemma, ifX is α+-invari-
ant, the proof gives α+-invariant sets Zi and transformations Ti. As stated there, the RV sets
Hi ⊂ RV`i

∞ are bounded below, since the assumption made on X implies that
X ×W ⊂ B ×W , for some bounded B ⊂ VFn. However we need to modify the proof
there in order to obtain boundedly imaginary sets. This occurs where X is a ball around 0,
namely in cases 1 and 2 in the proof of Lemma 4.2 of [20]. In these cases choose a definable
f ∈ VF such that val(f) is bigger than the radius of X. Let Y be an open ball around 0 of
radius val(f). Then X \ Y is the pullback from RV of a boundedly imaginary set. As for Y
we may move it to f + Y , which is the pullback from RV of a single element. It is at this
point that we require Boolean combinations instead of unions.

Next, let us adapt the argument in the proof of Proposition 4.5 of [20]. Given a definable
map π : X → U , with U a definable subset of VFn−1 × V with V a boundedly imaginary
definable set contained in RV`, such that Uv is a bounded subset of VFn−1, for every v ∈ V ,
such that X, U and π are all α+-invariant, we obtain a partition and transformations
of X over U , such that each fiber becomes an RV-pullback, and each piece of each fiber is
α+-invariant. Note that the fiber above u depends only on u+ ( Mα)n−1. Note also that U ,
being α+-invariant, is clopen in the valuation topology. Using Lemma 3.1.3, we may modify
the partition and the admissible transformations so as to be β+-invariant, for some β ≥ α.
With this, the inductive proof of [20], Proposition 4.5 goes through to give the invariant
result.
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4. Working over F ((t))

4.1. – We now work over the base field L0 = F ((t)), with F a trivially valued algebraically
closed field of characteristic zero and val(t) positive and denoted by 1. Then the sorts of RES

are the k-vector spaces Vγ = {x ∈ RV : valrv(x) = γ} ∪ {0}, for γ ∈ Q. Let k ∈ Z and
let m be a positive integer. Since we have a definable bijection Vk/m → V(k+m)/m given by
multiplication by rv(t), it suffices to consider Vk/m with 0 ≤ k < m andm a positive integer.

The Galois group of F ((t))
alg
/F ((t)) may be identified with the group µ̂ = lim

←−
µn of roots

of unity and it acts on RES by automorphisms. On Vk/n, a primitive n-th root of 1, say ζ,
acts by multiplication by ζk. We have an induced action on K(RES). The classes [Vk/n] are
fixed by this action; and so an action is induced on !K(RES).

Given a positive integer m, let RESm−1Z denote the sorts of RES fixed by µ̂m, the kernel
of µ̂→ µm, namely, Vk/m for k ∈ Z.

Projection on RESm−1Z provides a canonical morphism

(4.1.1) ∆m : K+(RES) −→ K+(RESm−1Z)

inducing

(4.1.2) ∆m : !K(RES)/([A1]− 1) −→ !K(RESm−1Z)/([A1]− 1),

where !K(RESm−1Z) is defined similarly as was !K(RES) in 2.5. One denotes by EUΓ,m the
morphism

(4.1.3) EUΓ,m : K(VF) −→ !K(RESm−1Z)/([A1]− 1)

obtained by composing EUΓ in (2.5.8) and ∆m in (4.1.2).

The following statement is straightforward:

L 4.1.1. – Let r and n be integers, let X be a definable subset of VFr, let Y be a
definable subset of RESn. Assume that EUΓ([X]) = [Y ]. Then, for any positive integer m,
EUΓ,m([X]) is the class of the subset of Y fixed by µ̂m.

4.2. – Inside a given algebraic closure ofF ((t)), the fieldKm = F ((t1/m)) does not depend on
a particular choice of t1/m, and µm acts on it. Let β ∈ 1

mZn ⊂ Γn, and let X ⊂ VFn ×RV`

be a β-invariant K-definable set such that the projection X → VFn has finite fibers. We
assumeX is contained in VFn×W withW a boundedly imaginary definable subset of in RV`,
and that, for every w ∈ W , Xw is bounded. Thus, Xw is β-invariant for each w in RV`,
the projection of X to Γ` is contained in a cube [−α, α]`, and the projection of X to VFn is
contained in c On for some c. For notational simplicity, and since this is what we will use, we
shall assume X ⊂ On × RV`.

Then X(Km) is the pullback of some subset X[m;β] ⊆ Πn
i=1F [t1/m]/tβi ×RV`; and the

projection X[m;β]→ On has finite fibers.
We can identify F [t1/m]/tN with

⊕
0≤k<mN Vk/m

∼=
⊕

0≤k<m V
N
k/m. Also, if Y is defin-

able in RV and valrv(Y ) ⊂ [−α, α], then

(4.2.1) Y (F ((t1/m))) ⊂ ∪{Vγ : γ ∈ m−1Z ∩ [−α, α]}.

Thus X[m;β] can be viewed as a subset of the structure RESm−1Z (over F ). Here are three
ways to see it is definable. The first one is to say it is definable in (F ((t1/m)), t); the induced
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structure on the sorts Vk/m is the same as the structure induced from ACVF. The second
one is to remark that after finitely many invariant admissible transformations, X becomes a
set in standard form, a pullback from RV. These operations induce quantifier-free definable
maps on the sets X[m;β]; so it suffices to take X in standard form, and then the statement
is clear. Thirdly, in the structure F ((t))

alg with a distinguished predicate for F , it is clear that
F ((t1/m)) is definable and soX(F ((t1/m))) is definable; and here too (cf. [22], Lemma 6.3) the
induced structure on F is just the field structure, and the induced structure on the sorts Vk/m
is the same as the structure induced from ACVF.

L 4.2.1. – Let X be as above and let β′ in 1
mZn, with βi ≤ β′i, for every 1 ≤ i ≤ n.

Then [X[m;β′]] = [X[m;β]]× [Am
∑
i(β
′
i−βi)] in K(RESm−1Z).

Proof. – We shall assume β differs from β′ in one coordinate, say the first, and that
β′1 = β1 + 1

m . Consider the projection X[m,β′] → X[m,β]. Working over a parame-
ter t1/m, this is a morphism of ACF-constructible sets, whose fibers are A1(k)-torsors;
so by Hilbert 90, there exists a constructible section. Now this section may not be
µm-invariant, but after averaging the µm-conjugates one finds a µm-invariant section,
which is F ((t))-definable. It follows that X[m;β′] = X[m;β]× A1, as required.

Thus the class of [X[m;β]]/[Am(
∑
i βi)−n] in the localization K(RESm−1Z)[[A1]−1] does

not depend on β; let us denote it by X̃[m].

We also denote by X[m] the image of [X[m;β]] in !K(RESm−1Z)/([A1] − 1), or
in !K(RES)/([A1]− 1), which does not depend on β.

Let X be as before and let f : X → Y be a β-invariant admissible bijection in C(β).
Since f induces a bijection between X[m;β] and Y [m;β], it follows that X̃[m] = Ỹ [m]

and X[m] = Y [m].

P 4.2.2. – Let X be a β-invariant F ((t))-definable subset of On × RV`, for
some β. Assume the projection X → VFn has finite fibers. Then, for every m ≥ 1,
EUΓ,m(X) = X[m] as classes in !K(RESm−1Z)/([A1]− 1).

Proof. – Both sides being invariant under the transformations of Definition 3.2.1 and
Boolean combinations, we may assume by Proposition 3.2.2 that there exist a definable
boundedly imaginary subset H of RV`′ and a map h : {1, . . . , n} → {1, . . . , `′} such that

(4.2.2) X = {(a, b); b ∈ H, rv(ai) = bh(i), 1 ≤ i ≤ n}

and the map r : H → RVn given by b 7→ (bh(1), . . . , bh(n)) is finite to one. According to
(2.3.6) we may assume that the class [(H, r)] is equal to Ψ([W ]⊗ [∆]) with W in RES[`] and
∆ bounded in Γ[n− `]. By induction on dimension and considering products, it is enough to
prove the result when X is the lifting of an object of Γ or RES. Let us prove that the image
of the canonical lift from Γ vanishes for both invariants. In the case of EUΓ,m, the lift of any
Z ⊂ Γq, q ≥ 1, to K(RV) vanishes modulo [A1] − 1. In the case of X[m], finitely many
points of the value group of Km in the cube [0, N ]n lie in Z; again for each such point, the
class of !K(RES) lying above it is divisible by [A1] − 1. On the other hand on RES, both
EUΓ,m and X[m] correspond to intersection with RESm−1Z.
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C 4.2.3. – Let X be a smooth variety over F , f a regular function on X and x a
closed point of f−1(0). Set O = F [[t]] and let π denote the reduction map X( O)→ X(F ). Let

Xt,x = {y ∈ X( O); f(y) = t and π(y) = x}

and let

Xx = {y ∈ X( O); rvf(y) = rv(t) and π(y) = x}.

Then Xx is β-invariant for every β > 0, and, for every m ≥ 1, EUΓ,m(Xt,x) = Xx[m] as
classes in !K(RES)/([A1]− 1).

Proof. – The β-invariance of Xx is clear. Consider the canonical morphism∮
: K+(VF) −→ K+(RV[∗])/Isp

of (2.4.4). For any t′ with rv(t′) = rv(t), there is an automorphism over F fixing RV that
sends t to t′, thus ∮

[Xt′,x] =

∮
[Xt,x].

It follows that

(4.2.3)
∮

([ Xx]) =

∮ [⋃
t′

{Xt′,x : rv(t′) = rv(t)}
]

=
(∮

[Xt,x]
)
· e,

where e is the class of an open ball, i.e., e = [1]1. Applying EUΓ we find that
EUΓ( Xx) = EUΓ(Xt,x), and the statement follows from Proposition 4.2.2.

4.3. – We say a µ̂-action is good if it factorizes through some µn-action, for some n ≥ 1.
We denote by K[,µ̂

+ (VarF ) the quotient of the abelian monoid generated by isomorphism
classes of quasi-projective varieties over F with a good µ̂-action by the standard cut and
paste relations. We denote by Kµ̂

+(VarF ) the Grothendieck semi-ring of F -varieties with
µ̂-action as considered in [12] and [27]. It is the quotient of K[,µ̂

+ (VarF ) by the following
additional relations: for every quasi-projective F -variety X with good µ̂-action, for every
finite dimensional F -vector space V endowed with two good linear actions % and %′, the class
ofX× (V, %) is equal to the class ofX× (V, %′). We denote byKµ̂(VarF ) the corresponding
Grothendieck ring.

For any s ∈ Q>0, let ts ∈ F ((t))
alg such that t1 = t and tas = tas for any s and any a ≥ 1.

Set tk/m = rv(tk/m) ∈ Vk/m.

Let X be an F ((t))-definable set in the generalized residue structure RES. Thus, for some
n ≥ 0, X is an F ((t))-definable subset of RVn whose image in Γn under valrv is finite. When
the image is a single point, there exist a positive integer m and integers ki, 1 ≤ i ≤ n, such
that X is an F ((t))-definable subset of

∏
1≤i≤n Vki/m. The µ̂-action on X factors through a

µm-action. The image Θ(X) of the set X by the F ((t1/m))-definable function

(4.3.1) g(x1, . . . , xn) = (x1/tk1/m, . . . , xn/tkn/m)

is anF -definable subset of kn which is endowed with a µm-action coming from the one onX.
In general, the set X is a disjoint union of definable subsets Xj of the previous type. Since
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an F -definable subset of kn is nothing but a constructible subset of AnF , there is a unique
morphism of semi-rings

(4.3.2) Θ: K+(RES) −→ K[,µ̂
+ (VarF )

such that, for every F ((t))-definable set X in the structure RES of the form X = ∪Xj with
Xj ⊂

∏
1≤i≤n Vki/m,

(4.3.3) Θ([X]) =
∑
j

[Θ(Xj)].

One derives from (4.3.2) a ring morphism

(4.3.4) Θ: !K(RES) −→ Kµ̂(VarF ).

We shall also consider the morphism

(4.3.5) Θ0 : !K(RES) −→ K(VarF )

obtained by composing the morphism (4.3.4) with the morphism Kµ̂(VarF ) → K(VarF )

induced by forgetting the µ̂-action.

P 4.3.1. – The morphisms (4.3.2) and (4.3.4) are isomorphisms.

Proof. – Let us prove that (4.3.2) is injective. Let X and X ′ be respectively F ((t))-defin-
able subsets of RVn and RVn′ whose respective images in Γn and Γn

′
under valrv are a single

point and choose a positive integer m such that the µ̂-action on X and X ′ factors through a
µm-action. Consider the F ((t1/m))-definable functions g and g′ associated respectively to X
and X ′ as in (4.3.1). Let f be a µ̂m-invariant isomorphism between g′(X ′) and g(X). Then
g−1◦f◦g′ : X ′ → X is anF ((t1/m))-definable bijectionX ′ → X, which moreover is invariant
under the Galois group of F ((t1/m))/F ((t)) hence is an F ((t))-definable bijection. In general,
when the images ofX andX ′ under valrv are only supposed to be finite, if Θ([X]) = Θ([X ′]),
one can write X and X ′ as a disjoint union of definable subsets Xj and X ′j of the previous
type, 1 ≤ j ≤ r, such that for all j, Θ(Xj) = Θ(X ′j), and injectivity of (4.3.2) follows.

For surjectivity, by induction on dimension, it is enough to prove that, for m ≥ 1, if V is
an irreducible quasi-projective variety over F endowed with a µm-action, then there exists
an F ((t))-definable set W over RES such that Θ(W ) is a dense subset of V . We may assume,
by partitioning, that the kernel of the action is constant, so that the action is equivalent to
an effective µm′ -action for some m′ | m, and for notational simplicity we take m = m′. Set
U = V/µm. By Kummer theory there exists f ∈ F (U) such that F (V ) = F (U)(f1/m).
Up to shrinking V , we may assume f is regular and does not vanish on U . It follows
that V is isomorphic to the closed set V ∗ = {(u, z) ∈ U × Gm; f(u) = zm}, with
µm-action the trivial action on the U -factor and the standard one on the Gm-factor. If one
sets W = {(u, z) ∈ U × V1/m; f(u) = tzm}, one gets that Θ(W ) = V .

Since any linear µm-action on AnF is diagonalizable, the relations involved in dropping the
“flat" from (4.3.2) to (4.3.4) are just those implicit in adding the ! on the left-hand side. So
the bijectivity of (4.3.4) follows from the one of (4.3.2).
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5. Étale Euler characteristics with compact supports

5.1. Étale cohomology with compact supports of semi-algebraic sets

LetK be a complete non-archimedean normed field. LetX be an algebraic variety overK
and write Xan for its analytification in the sense of Berkovich. Assume now X is affine.
A semi-algebraic subset of Xan, in the sense of [16], is a subset of Xan defined by a finite
Boolean combination of inequalities |f | ≤ λ|g| with f and g regular functions on X

and λ ∈ R.

We denote by K the completion of a separable closure of K and by G the Galois
group Gal(K/K). We set Xan = Xan⊗̂K and for U a semi-algebraic subset of Xan we
denote by U the preimage of U in Xan under the canonical morphism Xan → Xan. Let ` be
a prime number different from the residue characteristic of K.

Let U be a locally closed semi-algebraic subset of Xan. For any finite torsion ring R, the
theory of germs in [3] provides étale cohomology groups with compact supports Hi

c(U,R)

which coincide with the ones defined there when U is an affinoid domain of Xan.
These groups are also endowed with an action of the Galois group G. We shall set
Hi
c(U,Q`) = Q` ⊗Z` lim

←−
Hi
c(U,Z/`n).

We shall use the following properties of the functor U 7→ Hi
c(U,Q`) which are proved by

F. Martin in [29]:

T 5.1.1. – Let X be an affine algebraic variety over K of dimension d. Let U be a
locally closed semi-algebraic subset of Xan.

(1) The groups Hi
c(U,Q`) are finite dimension Q`-vector spaces, endowed with a G-action,

and Hi
c(U,Q`) = 0 for i > 2d.

(2) If V is a semi-algebraic subset ofU which is open inU with complement F = U \V , there
is a long exact sequence

(5.1.1) −→ Hi−1
c (F ,Q`) −→ Hi

c(V ,Q`) −→ Hi
c(U,Q`) −→ Hi

c(F ,Q`) −→ .

(3) Let Y be an affine algebraic variety over K and let V be a locally closed semi-algebraic
subset of Y an. There are canonical Künneth isomorphisms

(5.1.2)
⊕
i+j=n

Hi
c(U,Q`)⊗Hj

c (V ,Q`) ' Hn
c (U × V ,Q`).

R 5.1.2. – We shall only make use of Theorem 5.1.1 when X = An and
K = F ((t)) with F a field of characteristic zero. Note also that, though in subsequent arXiv
versions of [29] the proof of Theorem 5.1.1 relies on Theorem 1.1 of [6] which uses de Jong’s
results on alterations and Gabber’s weak uniformization theorem, the first version is based
on Corollary 5.5 of [4], which does not use any of these results.
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5.2. Definition of EUét

We denote byG-Mod the category ofQ`[G]-modules that are finite dimensional asQ`-vec-
tor spaces and by K(G-Mod) the corresponding Grothendieck ring. Let K be a valued field
endowed with a rank one valuation, that is, with Γ(K) ⊂ R. We can consider the norm
exp(−val) on K. Let U be an ACVFK-definable subset of VFn. By quantifier elimination
it is defined by a finite Boolean combination of inequalities val(f) ≥ val(g) +α where f and
g are polynomials and α in Γ(K)⊗Q. Thus, after exponentiating, one attaches canonically
toU the semi-algebraic subsetUan of (An

K̂
)an defined by the corresponding inequalities, with

K̂ the completion of K, and also a semi-algebraic subset Uan of An
K

. When Uan is locally
closed, we define EUét(U) as the class of

(5.2.1)
∑
i

(−1)i[Hi
c(U

an,Q`)]

in K(G-Mod). It follows from (1) of Theorem 5.1.1 that this is well-defined.

L 5.2.1. – Let U be an ACVFK-definable subset of VFn. Then there exists a finite
partition of U into ACVFK-definable subsets Ui such that each Uan

i is locally closed.

Proof. – The setU is the union of setsUi defined by conjunctions of formulas of the form
val(f) < val(g), f = 0, or val(f) = val(g), with f and g polynomials. Since the intersection
and intersection of two locally closed sets are locally closed, it suffices to show that each
of these basic subsets are locally closed. Since |f | and |g| are continuous functions for the
Berkovich topology with values in R≥0, the sets defined by f = 0 and val(f) = val(g) are
closed, as well as val(f) ≤ val(g). The remaining kind of set, val(f) < val(g), is the difference
between val(f) ≤ val(g) and val(f) = val(g), hence is locally closed.

P 5.2.2. – There exists a unique ring morphism

(5.2.2) EUét : K(VF) −→ K(G-Mod)

such that EUét([U ]) = EUét(U) whenU is an ACVFK-definable subset of VFn such thatUan is
locally closed.

Proof. – Let U be an ACVFK-definable subset of VFn. Choose a partition of U
into ACVFK-definable subsets Ui, 1 ≤ i ≤ r, such that each Uan

i is locally closed. If
Uan is locally closed, it follows from (2) in Theorem 5.1.1, using induction on r, that
EUét(U) =

∑
i EUét(Ui). For general U , set EUét(U) =

∑
i EUét(Ui). This is independent

of the choice of the partition Ui. Indeed, if (U ′j) is a finer such partition with (U ′j)
an locally

closed, then
∑
i EUét(Ui) =

∑
j EUét(U

′
j) by the previous remark, and two such partitions

always have a common refinement. Note that EUét(U) depends only on the isomorphism
class of U as a definable set. Indeed, when f is a polynomial isomorphism f : U → U ′

(with inverse given by a polynomial function), and Uan and (U ′)an are locally closed,
this is clear by functoriality of H•c , and in general one can reduce to this case by taking
suitable partitions Ui and U ′i of U and U ′. Thus, if now U is an ACVFK-definable subset
of X, with X an affine variety over K, if i is some embedding of X in an affine space An,
EUét(i(U)) will not depend on i, so one may set EUét(U) = EUét(i(U)). Note that, by
definition, K(VF) is generated by classes of ACVFK-definable subsets of affine algebraic
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varieties over K. Furthermore, by (2) in Theorem 5.1.1, EUét satisfies the additivity
relation, thus existence and uniqueness of an additive map EUét : K(VF) → K(G-Mod)

with the required property follows. Its multiplicativity is a consequence from Property (3)
in Theorem 5.1.1.

5.3. Definition of euét

We now assume for the rest of this section that K = F ((t)) with F algebraically closed of
characteristic zero. Thus the Galois group G may be identified with µ̂ in the standard way,
namely to an element σ ∈ G corresponds the unique element ζ = (ζn)n≥1 ∈ µ̂ such that, for
any n ≥ 1, σ(x) = ζnx if xn = t.

LetX be an F -variety endowed with a µ̂-action factoring for some n through a µn-action.
The `-adic étale cohomology groups Hi

c(X,Q`) are endowed with a µ̂-action, and we may
consider the element

(5.3.1) euét(X) :=
∑
i

(−1)i[Hi
c(X,Q`)]

in K(µ̂-Mod). Note that euét([V, %]) = 1 for any finite dimensional F -vector space V
endowed with a µ̂-action factoring for some n through a linear µn-action. Thus, euét factors
to give rise to a morphism

(5.3.2) euét : Kµ̂(VarF ) −→ K(µ̂-Mod).

Furthermore, the morphism euét ◦Θ, with Θ as in (4.3.4), factors through !K(RES)/([A1]− 1)

and gives rise to a morphism

(5.3.3) euét : !K(RES)/([A1]− 1) −→ K(µ̂-Mod).

5.4. Compatibility

We have the following fundamental compatibility property between EUét and euét.

T 5.4.1. – The diagram

(5.4.1) K(VF)
EUΓ //

EUét &&

!K(RES)/([A1]− 1)

euétvv
K(µ̂-Mod)

is commutative.

Proof. – It is enough to prove that if X is a definable subset of VFn, then
EUét(X) = euét(EUΓ([X])). Using the notation of (2.4.1) and the isomorphism (2.3.6), we
may assume the class of X in K+(VF) is of the form L(Ψ(a ⊗ b)) with a in K+(RES[m])

and b in K+(Γ[r]).

If r ≥ 1, EUΓ([X]) = 0 by construction of EUΓ. Indeed, with the notations from 2.5,
χr([a⊗ b]) = χ(b) · [Gm]r ·a, which implies thatEn(a⊗ b) = 0 for n ≥ r, and EUΓ([X]) = 0

follows. To prove that EUét(X) = 0, it is enough by multiplicativity of EUét, to prove that
EUét(L(Ψ(1⊗ b))) = 0, which follows from Lemma 5.4.2.
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Thus, we may assume r = 0 and [X] = L(Ψ([Z]⊗1)), withZ a definable subset in RES[n].
Since EUΓ(L(Z)) is equal to the class of Z in !K(RES)/([A1]−1), it is enough to prove that
EUét([L(Z)]) = euét([Z]).

Let Z be a definable subset of RES[n]. For some integer d, Z is a definable subset
of RESd and, after partitioning Z into a finite number of definable sets, we may assume
that, with the notation of §4.3, there exist a positive integer m and integers ki, 1 ≤ i ≤ d,
such that Z is a definable subset of

∏
1≤i≤d Vki/m. Consider the F ((t1/m))-definable

isomorphism g :
∏

1≤i≤d Vki/m → AdF given by g(x1, . . . , xd) = (x1/tk1/m, . . . , xd/tkd/m).
The Galois action on the space

∏
1≤i≤d Vki/m factorizes through a µm-action

and g becomes µm-equivariant if one endows AdF with the action % of µm given
by ζ · (y1, . . . , yd) = (ζk1y1, . . . , ζ

kdyd). The set Y = g(Z) is an F -definable subset of AdF .
We shall still denote by g the induced F ((t1/m))-definable isomorphism g : Z → Y and
by % the induced action of µm on Y . We may assume Z is of RV-dimension n. Indeed, if
Z is of RV-dimension < n, there exists a definable morphism h : Z → RVn−1 with finite
fibers. Let i : RVn−1 → RVn denote the inclusion (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 0)

and set f = i ◦ h. Since L((Z, f)) = L((Z, h)) × M, with M the maximal ideal and
EUét([ M]) = 1, it follows that EUét([L((Z, f))]) = EUét([L((Z, h))]) by multiplicativity
and we may conclude by induction on n in this case. Thus, by additivity, we may assume
Y is a smooth variety over F of pure dimension n and that the morphism fY : Y → AnF
given by projection to the first n factors has finite fibers. It follows that the morphism
fZ : Z →

∏
1≤i≤n Vki/m given by projecting to the first n factors has finite fibers too.

The definable subset L((Y, fY )) of (VF×)n × AdF is the isomorphic image of the subset
L((Z, fZ)) of (VF×)n ×

∏
1≤i≤d Vki/m under the mapping g̃ : (z1, . . . , zn, x1, . . . , xd) 7→

(z1/tk1/m, . . . , zn/tkn/m, x1/tk1/m, . . . , xd/tkd/m). It is endowed with a µm-action %̃ given
by ζ · (z1, . . . , zn, y1, . . . , yd) = (ζk1z1, . . . , ζ

knzn, ζ
k1y1, . . . , ζ

kdyd).
Let us consider the formal completion Y of Y ⊗ F [[t]]. Denote by Yη the analytic

generic fiber of Y and by π the reduction map π : Yη → Y . The µm-action % induces
an action on Y and Yη which we still denote by %. By Lemma 13.2 in [20] and its proof,
L(Y )an is isomorphic to π−1(Y ). Furthermore, under this isomorphism the µm-action
on L(Y )an induced from %̃ corresponds to the action % on π−1(Y ). Denote by πm the
projection µ̂ → µm. The mapping g̃ induces an isomorphism between the spaces L(Z)an

and L(Y )an under which the Galois action on L(Z)an corresponds to the Galois action
twisted by %̃ on L(Y )an, namely the action for which an element σ of µ̂ acts on L(Y )an

by y 7→ σ · %̃(πm(σ)) · y = %(πm(σ)) · σ · y. It follows that, for i ≥ 0, Hi
c(L(Z)an,Q`) is

isomorphic to Hi
c(π
−1(Y ),Q`) and that, since the Galois action on Hi

c(π
−1(Y ),Q`) is

trivial, cf. Lemma 5.4.3, that the Galois action on Hi
c(L(Z)an,Q`) factorizes through µm

and corresponds to the action induced by % on Hi
c(π
−1(Y ),Q`). By Lemma 5.4.3 there is a

canonical isomorphism, equivariant for the action %,

(5.4.2) Hi
c(π
−1(Y ),Q`) ' H2n−i

c (Y,Q`(n))∨,

with the superscript ∨ standing for the dual of a Q`-vector space. Since EUét([L(Z)])

is equal to
∑
i(−1)i[Hi

c(L(Z)an,Q`)], it follows from (5.4.2) that it is equal
to
∑
i(−1)i[H2n−i

c (Y,Q`(n))∨] =
∑
i(−1)i[Hi

c(Y,Q`(n))∨], with the µm-action
induced from %. Let us note that a finite dimensional vector space Q`-vector space V with
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µm-action has the same class in K(µ̂-Mod) as its dual V ∨ endowed with the dual action
and that, for any integer n, V and the Tate twist V (n) have the same class in K(µ̂-Mod).
It follows that EUét([L(Z)]) =

∑
i(−1)i[Hi

c(Y,Q`)], with action on the right-hand side
induced from %, hence EUét([L(Z)]) = euét([Z]).

L 5.4.2. – Let m ≥ 1 be an integer and let Z be a definable subset of Γm. Then we
have

(5.4.3) EUét(val−1(Z)) = 0.

Proof. – Denote by 1 the class of the rank one Q`-vector space with trivial µ̂-action
in K(µ̂-Mod). Let D ⊂ A1

K be an open ball or A1
K . Recall that Hi

c(D
an,Q`) is zero if i 6= 2

and is isomorphic to Q`(−1) for i = 2. In particular, EUét([D]) = 1. By additivity of EUét, it
follows that, for any rational number c, ifE is a subset of VF defined by one of the conditions
val(x) ≤ c, val(x) < c, val(x) = c, or val(x) <∞, EUét([E]) = 0.

By quantifier elimination and cell decomposition in o-minimal structures, cf. [15], using
additivity of EUét, we may assume there exists a definable subset Z ′ of Γm−1, affine linear
forms with rational coefficients L1 and L2 in variables u1, . . . , um−1 such that Z is defined
by the conditions (u1, . . . , um−1) ∈ Z ′ and

(5.4.4) L1(u1, . . . , um−1) �1 um �2 L2(u1, . . . , um−1),

where �1 and �2 are of one of the following four types:

(1) no condition,
(2) = and no condition,
(3) < and <,
(4) < and no condition,
(5) no condition and <.

Thus val−1(Z) is the set defined by the conditions (x1, . . . , xm−1) ∈ val−1(Z ′) and

(5.4.5) L1(val(x1), . . . , val(xm−1)) �1 val(xm) �2 L2(val(x1), . . . , val(xm−1)).

In case (1), val−1(Z) is equal to the product of val−1(Z ′) by the open annulus C = VF\{0}
and we deduce EUét(val−1(Z)) = 0 from the fact that EUét(C) = 0. In case (2), Z is defined
by the conditions (u1, . . . , um−1) ∈ Z ′ and um =

∑
1≤i<m aiui + b with ai ∈ Z, 1 ≤ i < m,

and b in Q. We may rewrite the last condition in the form
∑

1≤i≤m biui = cwith (b1, . . . , bm)

a primitive vector in Γm and c ∈ Q. Thus, up to changing the coordinates in Γm, we may
assume Z is defined by (u1, . . . , um−1) ∈ Z ′ and um = c, so that val−1(Z) is equal to the
product of val−1(Z ′) by the closed annulus D defined by val(xm) = c. Since EUét(D) = 0,
we get that EUét(val−1(Z)) = 0 in this case. To deal with the remaining cases, consider the
sets Z1 and Z2 defined respectively by (u1, . . . , um−1) ∈ Z ′ and um ≤ L1(u1, . . . , um−1),
resp. um ≥ L2(u1, . . . , um−1). It is enough to prove that EUét(val−1(Z1)) = 0 and
EUét(val−1(Z2)) = 0, since then, by additivity, the result will follow from case (1). Let us
prove EUét(val−1(Z2)) = 0. Similarly as in case (2), after a change of variable one may
assume Z2 is defined by (u1, . . . , um−1) ∈ Z ′ and um ≥ c, for some rational number c, so
that val−1(Z2) is equal to the product of val−1(Z ′) by the setE defined by val(xm) ≥ c. Since
EUét(E) = 0, we deduce that EUét(val−1(Z2)) = 0. The proof that EUét(val−1(Z1)) = 0 is
similar.
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L 5.4.3. – Let X be a smooth formal scheme of finite type over the valuation ring
of K with special fiber X of pure dimension n and analytic generic fiber Xη. Let π : Xη → X

be the reduction map. Let S be a smooth closed subscheme of X. Then there exist canonical
isomorphisms

(5.4.6) Hi
c(π
−1(S),Q`) ' H2n−i

c (S,Q`(n))∨,

with ∨ standing for the dual vector space. In particular, the Galois action on Hi
c(π
−1(S),Q`)

is trivial for i ≥ 0. Assume furthermore that a finite group H acts on X inducing an action
onX such that S is globally invariant byH. Then the isomorphism (5.4.6) is equivariant for the
H-action induced on both sides.

Proof. – By Corollary 2.5 of [5], for any finite torsion group Λ, we have a canonical
isomorphism

(5.4.7) RΓc(π−1(S),Λ Xη ) ' RΓS(X,Rψη(Λ Xη )).

One checks by inspection of the proof in [5] that this isomorphism isH-equivariant. By triv-
iality of vanishing cycles for smooth analytic spaces, cf. Corollary 5.7 of [4],Rqψη(Λ Xη ) = 0

for q > 0 and R0ψη(Λ Xη ) = ΛX , hence it follows that there exist canonical H-equivariant
isomorphisms

(5.4.8) Hi
c(π
−1(S),Λ) ' Hi

S(X,Λ).

We may assume S is of pure codimension r, hence, by purity, we have canonical H-equiv-
ariant isomorphisms Hi

S(X,Λ) ' Hi−2r(S,Λ(−r)), so we get canonical H-equivariant iso-
morphisms

(5.4.9) Hi
c(π
−1(S),Λ) ' Hi−2r(S,Λ(−r)).

Note that S is smooth of dimension d = n − r. Thus, for j = 2d − (i − 2r) = 2n − i, the
canonical morphism

(5.4.10) Hj
c (S,Λ(d+ r))×Hi−2r(S,Λ(−r)) −→ H2d

c (S,Λ(d)) ' Λ

is a perfect pairing of finite groups by Poincaré Duality. The statement follows by passing to
the limit over torsion coefficients Z/`mZ and tensoring with Q`.

5.5. A fixed point formula

The following version of the Lefschetz fixed point Theorem is classical and follows in
particular from Theorem 3.2 of [8]:

P 5.5.1. – Let Y be a quasi-projective variety over an algebraically closed field
of characteristic zero. Let T be a finite order automorphism of Y . Let Y T be the fixed point set
of T and denote by χc(Y T ,Q`) its `-adic Euler characteristic with compact supports. Then

(5.5.1) χc(Y
T ,Q`) = tr(T ;H•c (Y,Q`)).
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Let us denote by Θ0 the morphism

(5.5.2) Θ0 : !K(RES)/([A1]− 1) −→ K(VarF )/([A1]− 1)

induced by the morphism Θ0 of (4.3.5). Denote by χc the morphism

χc : K(VarF )/([A1]− 1) −→ Z

induced by the `-adic Euler characteristic with compact supports.
Combining Theorem 5.4.1 with Proposition 5.5.1 we obtain the following fixed point

formula:

T 5.5.2. – Let X be an ACVFK-definable subset of VFn. Let ϕ be a topological
generator of G = Gal(K/K). Then, for every m ≥ 1,

(5.5.3) tr(ϕm; EUét([X])) = χc(Θ0 ◦ EUΓ,m([X])).

Proof. – Let m ≥ 1. By Theorem 5.4.1,

(5.5.4) tr(ϕm; EUét([X])) = tr(ϕm; euét(EUΓ([X]))).

On the other hand, it follows from Lemma 4.1.1 and Proposition 5.5.1 that

(5.5.5) tr(ϕm; euét(EUΓ([X]))) = χc(Θ0 ◦ EUΓ,m([X])).

The result follows.

6. Proof of Theorem 1.1.1

In this section we are working overF ((t)), withF = C. Our aim is to prove Theorem 1.1.1,
namely that, for every m ≥ 1, with the notation from the introduction,

χc( Xm,x) = Λ(Mm
x ).

6.1. Using comparison results

Let X be a smooth complex variety and f be a regular function on X. Let x be a closed
point of the fiber f−1(0). We shall use the notation introduced in Corollary 4.2.3. Thus
π denotes the reduction map X( O)→ X(k), and we consider the ACVFF ((t))-definable sets

(6.1.1) Xt,x = {y ∈ X( O); f(y) = t and π(y) = x}

and

(6.1.2) Xx = {y ∈ X( O); rvf(y) = rv(t) and π(y) = x}.

The definable set Xt,x is closely related to the analytic Milnor fiber F x introduced in §9.1
of [33] whose definition we now recall. LetX∞ be the t-adic completion of f : X → SpecC[t]

and let Xη be its generic fiber (in the category of rigid F ((t))-varieties). There is a canonical
specialization morphism sp: Xη → X∞ (cf. §2.2 of [33]) and F x is defined as sp−1(x). It is
an open rigid subspace ofXη. It follows directly from the definitions thatXan

t,x and F an
x may

be canonically identified.
Fix a prime number ` and denote by ϕ the topological generator of µ̂(C) =

Gal(C((t))
alg
/C((t))) given by the family (ζn)n≥1 with ζn = exp(2iπ/n). It follows from

Theorem 9.2 from [33] (more precisely, from its proof ; note that in the notation of loc. cit.
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the exponent an is omitted), which is a consequence of the second isomorphism proved in
[5] Corollary 3.5, that there exist isomorphisms

(6.1.3) Hi(Fx,Q)⊗Q Q` ' Hi( F an
x ⊗̂ Ĉ((t))

alg
,Q`)

compatible with the action of Mx and ϕ. Here Fx is the topological Milnor fiber defined in
(1.1.2), Hi(Fx,Q) is a singular cohomology group, while the cohomology group appearing
on the right-hand side is an étale cohomology group. It follows that, for every m ≥ 0,

(6.1.4) Λ(Mm
x ) = tr(ϕm;H•( F an

x ⊗̂ Ĉ((t))
alg
,Q`)).

By Poincaré Duality as established in §7.3 of [3], there is a perfect duality

Hi( F an
x ⊗̂ Ĉ((t))

alg
,Z/`nZ))×H2d−i

c ( F an
x ⊗̂ Ĉ((t))

alg
,Z/`nZ(d))→ Z/`nZ,

with d the dimension of X, which is compatible with the ϕ-action. Hence, after taking the
limit over n and tensoring with Q`, one deduces that, for every m ≥ 0,

(6.1.5) Λ(Mm
x ) = tr(ϕm;H•c ( F an

x ⊗̂ Ĉ((t))
alg
,Q`)),

which may be rewritten as

(6.1.6) Λ(Mm
x ) = tr(ϕm;H•c (Xan

t,x⊗̂ Ĉ((t))
alg
,Q`)).

R 6.1.1. – With the notations of Corollary 3.5 of [5], when Y is proper, it is
explained in Remark 3.8 (i) of [5] how to deduce the first isomorphism of Corollary 3.5 of
[5] directly from Theorem 5.1 in [4] in the way indicated in [17]. When furthermore Xη is
smooth (keeping the notations of loc. cit.), the second isomorphism of Corollary 3.5 of [5]
follows from the first by Poincaré Duality and Corollary 5.3.7 of [3]. In particular, for the use
which is made of Corollary 3.5 of [5] in this paper, one may completely avoid using de Jong’s
results on stable reduction and one may rely only on results from [3] and [4].

6.2. Proof of Theorem 1.1.1

Let m ≥ 1. With the previous notations, one may rewrite (6.1.6) as

(6.2.1) Λ(Mm
x ) = tr(ϕm; EUét([Xt,x])).

On the other hand, by Theorem 5.5.2 we have

(6.2.2) tr(ϕm; EUét([Xt,x])) = χc(Θ0(EUΓ,m([Xt,x)])).

In Corollary 4.2.3, it is proven that EUΓ,m(Xt,x) = Xx[m] as classes in !K(RES)/([A1]−1).
In particular,

(6.2.3) χc(Θ0(EUΓ,m([Xt,x)])) = χc( Xx[m]).

To conclude the proof it is thus enough to check that

(6.2.4) χc( Xx[m]) = χc( Xm,x).

This may be seen as follows. For m ≥ 1,

(6.2.5) Xm,x = {ϕ ∈ X(C[t]/tm+1); f(ϕ) = tm mod tm+1, ϕ(0) = x}
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may be rewritten as

(6.2.6) {ϕ ∈ X(C[t1/m]/t(m+1)/m); f(ϕ) = t mod t(m+1)/m, ϕ(0) = x}

or as

(6.2.7) {ϕ ∈ X(C[t1/m]/t(m+1)/m); rv(f(ϕ)) = rv(t), ϕ(0) = x}.

Thus Θ( Xx[m]) and Xm,x have the same class in Kµ̂(VarF )/([A1] − 1). The equality
χc( Xx[m]) = χc( Xm,x) follows.

7. Trace formulas and the motivic Serre invariant

7.1. – In this section F denotes a field of characteristic zero, K = F ((t)), Km = F ((t1/m))

and K̄ =
⋃
m≥1Km. If X is an ACVFK-definable set or an algebraic variety over K, we

writeX(m) and X̄ for the objects obtained by extension of scalars toKm and K̄, respectively.
As in (5.5.2) we denote by Θ0 the morphism

(7.1.1) Θ0 : !K(RES)/([A1]− 1) −→ K(VarF )/([A1]− 1)

induced by the morphism Θ0 of (4.3.5).

7.2. The motivic Serre invariant

Let R be a complete discrete valuation ring, with perfect residue field F and field of
fractions K. We denote by Rsh a strict Henselization of R and by Ksh its field of fractions.
Let X be a smooth quasi-compact rigid K-variety. In [28], using motivic integration on
formal schemes, for any suchX a canonical classS(X) ∈ K(VarF )/([A1]−1) is constructed,
called the motivic Serre invariant ofX. IfX is a smooth proper algebraic variety overK, one
sets S(X) = S(Xrig), with Xrig the rigid analytification of X.

We have the following comparison between the morphism EUΓ and the motivic Serre
invariant in residue characteristic zero via the morphism Θ0:

P 7.2.1. – Let K = F ((t)) with F a field of characteristic zero. Let X be a
smooth proper algebraic variety over K. Then, for every m ≥ 1,

(7.2.1) Θ0(EUΓ,m([X])) = S(X(m)).

Proof. – After replacing F ((t)) by F ((t1/m)) we may assume m = 1. Let X be a weak
Néron model ofX, cf. Section 2.7 of [28]. This means that X is a smoothR-variety endowed
with an isomorphism XK → X such that the natural map X(Rsh)→ X(Ksh) is a bijection.
Consider the unique definable subset X1 of X such that for any valued field extension K ′

of K, with valuation ring R′, X1(K ′) is the image of X(R′) under the canonical mapping
X(R′)→ X(K ′) (in fact X gives rise to a definable set andX1 is its image through the natural
map X → X). Let X6=1 be the complement of X1 in X. By the very construction of EUΓ,1

and S(X), Θ0(EUΓ,1([X1])) = S(X). Thus it is enough to prove that EUΓ,1([X6=1]) = 0.
Since X6=1(F ′((t))) = ∅ for every field extension F ′ of F by the Néron property of X , this
follows from Lemma 7.2.2.

L 7.2.2. – Let X be an F ((t))-definable subset of VFn. Assume that X(F ′((t))) = ∅
for every field extension F ′ of F . Then EUΓ,1([X]) = 0.
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Proof. – Using the notation of (2.4.1) and the isomorphism (2.3.6), we may assume X
is of the form [X] = L(Ψ(a ⊗ b)) with a in K+(RES[m]) and b in K+(Γ[r]). If r ≥ 1,
EUΓ([X]) = 0 by construction of EUΓ. Thus, we may assume r = 0 and b = 1. Let ` be an
integer and Z a definable subset in RES` such that a = [Z]. By construction, Z and EUΓ(X)

have the same class in !K(RES)/([A1]−1). In particularZ∩k` and EUΓ,1(X) have the same
class in !K(RESZ)/([A1]− 1). The statement follows, since if X(F ′((t))) = ∅ for every field
extension F ′ of F , then Z ∩ k` = ∅.

In particular, we obtain the following:

C 7.2.3 ([33]). – Let K = F ((t)) with F an algebraically closed field of charac-
teristic zero. Let X be a smooth proper algebraic variety over K. Then, for every m ≥ 1,

(7.2.2) tr(ϕm;H•(X̄,Q`)) = χc(S(X(m))).

Proof. – By Corollary 7.5.4 of [3], for every q ≥ 0 there are canonical isomorphisms
Hq(X̄,Q`) ' Hq(Xan,Q`). On the other hand, X being proper, Hq(Xan,Q`) is canon-
ically isomorphic to Hq

c (Xan,Q`). Let m ≥ 1. Using Proposition 5.5.2 one deduces that
tr(ϕm;H•(X̄,Q`)) = χc(Θ0(EUΓ,m([X]))) and the result follows from Proposition 7.2.1.

The original proof in Corollary 5.5 [33] of Corollary 7.2.3 uses resolution of singularities,
which is not the case of the proof given here.

R 7.2.4. – Our results also provide a new construction, not using resolution of
singularities, of the motivic Serre invariant of arbitrary algebraic varieties in equal charac-
teristic zero. This motivic Serre invariant was constructed in equal characteristic zero and
mixed characteristic in Theorem 5.4 of [32], using resolution of singularities, weak factor-
ization and a refinement of the Néron smoothening process to pairs of varieties. In equal
characteristic zero, the trace formula extends to arbitrary varieties by a formal additivity ar-
gument, see Theorem 6.4 and Corollary 6.5 of [32].

7.3. Analytic variants

Assume again R is a complete discrete valuation ring, with perfect residue field F and
field of fractions K. In [31], the construction of the motivic Serre invariant was extended to
the class of generic fibers of generically smooth special formal R-schemes. Special formal
R-schemes are obtained by gluing formal spectra of quotient of R-algebras of the form
R{T1, . . . , Tr}[[S1, . . . , Ss]], cf. [31]. In particular, if Xη is such a generic fiber andK = F ((t))

with F an algebraically closed field of characteristic zero, then it follows from Theorem 6.4
of [31], generalizing Theorem 5.4 of [33], that, with the obvious notations, for every m ≥ 1,

(7.3.1) tr(ϕm;H•c ( X̄η,Q`)) = χc(S( Xη(m))).

In this setting it is natural to replace the theory ACVF(0, 0) considered in the present
paper by its rigid analytic variant ACVFR(0, 0) introduced by Lipshitz in [26] and one may
expect that the results from this section still hold for ACVFR(0, 0)-definable sets. It is quite
likely that it should be possible to prove such extensions using arguments similar to ours
once some appropriate extension of Theorem 5.1.1 to this analytic setting is established. In
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particular, one should be able to extend this way Proposition 7.2.1 and Corollary 7.2.3 to
generic fibers of generically smooth special formal R-schemes. This would provide a proof
of (7.3.1) which would not use resolution of singularities, unlike the original proof in [31].

8. Recovering the motivic zeta function and the motivic Milnor fiber

In this section, we shall work within the framework of 4.1. In particular the base structure
is the field L0 = F ((t)), with F a trivially valued algebraically closed field of characteristic
zero and val(t) positive and denoted by 1.

8.1. Some notations and constructions from [21]

Let A be an ordered abelian group and n a non-negative integer. An A-definable subset
of Γn will be called bounded if it is contained in [−γ, γ]n for some A-definable γ ∈ Γ. An
A-definable subset of Γn will be called bounded below if it is contained in [γ,∞)n for some
A-definable γ ∈ Γ. We recall from [21], Definition 2.4, the definition of various categories
ΓA[n], Γbdd

A [n], volΓA[n] and volΓbdd
A [n]. Thus, ΓA[n] is the category already defined in §2.3,

Γbdd
A [n] is the subcategory of bounded subsets while volΓA[n] has the same objects as ΓA[n]

with morphisms f : X → Y , those morphisms in ΓA[n] such that
∑
i xi =

∑
i yi whenever

(y1, . . . , yn) = f(x1, . . . , xn), volΓbdd
A [n] is the subcategory of volΓA[n] whose objects are

bounded below. Finally, we denote by volΓ2bdd
A [n] the subcategory of volΓA[n] whose objects

are bounded.
We shall also consider the corresponding Grothendieck monoids K+(ΓA[n]),

K+(Γbdd
A [n]), K+(volΓA[n]), K+(volΓbdd

A [n]), and K+(volΓ2bdd
A [n]). We also set

K+(Γbdd
A [∗]) =

⊕
nK+(Γbdd

A [n]) with the associated ring K(Γbdd
A ), and similar notation

for the other categories.
Let [0]1 denote the class of {0} in K+(Γbdd

A [1]). We set

(8.1.1) Kdf
+ (Γbdd

A ) = (K+(Γbdd
A [∗])[[0]−1

1 ])0,

where (K+(Γbdd
A [∗])[[0]−1

1 ])0 is the sub-semi-ring of the graded semi-ringK+(Γbdd
A [∗])[[0]−1

1 ]

consisting of elements of degree 0. One defines similarly Kdf
+ (volΓbdd

A ), Kdf
+ (volΓ2bdd

A ) and
denote by Kdf (Γbdd

A ), Kdf (volΓbdd
A ) and Kdf (volΓ2bdd

A ) the corresponding rings.
For x = (x1, . . . , xn) ∈ RVn, set w(x) =

∑
1≤i≤n valrv(xi). We recall from [21],

Definition 3.14, the definition of the categories volRV[n], volRES[n] and volRVbdd[n], given
a base structure A. The category volRV[n] has the same objects of the category RV[n],
namely pairs (X, f) with X ⊂ RV∗ and f : X → RVn a morphism with finite fibers,
and a morphism h : (X, f) → (X ′, f ′) in volRV[n] is a definable bijection h : X → X ′

such that w(f(x)) = w((f ′ ◦ h)(x)) for every x ∈ X. The category volRES[n] is the
full subcategory of volRV[n] consisting of objects in RES[n] and volRVbdd[n] is the full
subcategory of volRV[n] consisting of objects whose Γ-image is bounded below. One defines
volRV2bdd[n] as the subcategory of volRVbdd[n] whose Γ-image is bounded. Similar notation
as above for the various semi-rings and rings.

We have a map

(8.1.2) K+(volRES[n]) −→ K+(volRVbdd[n])
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induced by inclusion and a map

(8.1.3) K+(volΓbdd[n]) −→ K+(volRVbdd[n])

induced by X 7→ rv−1(X). By §3.4 in [21], taking the tensor product, one gets a canonical
morphism

(8.1.4) Ψ: K+(volRES[∗])⊗K+(volΓbdd[∗]) −→ K+(volRVbdd[∗])

whose kernel is the congruence relation generated by pairs

(8.1.5) ([val−1
rv (γ)]1 ⊗ 1, 1⊗ [γ]1),

with γ in Γ definable. Here the subscript 1 refers to the fact that the classes are considered in
degree 1. Note that (8.1.4) restricts to a morphism

(8.1.6) Ψ: K+(volRES[∗])⊗K+(volΓ2bdd[∗]) −→ K+(volRV2bdd[∗]).

Similarly, cf. Proposition 10.10 of [20], there is a canonical morphism

(8.1.7) Ψ: K+(volRES[∗])⊗K+(volΓ[∗]) −→ K+(volRV[∗])

whose kernel is generated by the elements (8.1.5).
Consider the category volVF[n] of Definition 3.20 in [21] and its bounded version

volVFbdd[n]. There is a lift of the mapping L to a mapping

(8.1.8) L : Ob volRV[n] −→ Ob volVF[n].

We will denote by I ′sp the congruence generated by [1]1 = [RV>0]1 in eitherK+(volRV[∗]) or
K+(volRVbdd[∗]), or in one of the monoidsK+(volRV[n]) orK+(volRVbdd[n]); the context
will determine the ambient monoid or semi-ring. By Lemma 3.21 of [21] and Theorems 8.28
and 8.29 of [20], there are canonical isomorphisms

(8.1.9)
∫

: K+(volVF[n]) −→ K+(volRV[n])/I ′sp

and

(8.1.10)
∫

: K+(volVFbdd[n]) −→ K+(volRVbdd[n])/I ′sp

which are characterized by the prescription that, forX in volVF[n] and V in volRV[n] (resp.
volVFbdd[n] and volRVbdd[n]),

∫
([X]) is equal to the class of [V ] inK+(volRV[n])/I ′sp (resp.

K+(volRVbdd[n])/I ′sp) if and only if [X] = [L(V )]. We denote similarly the corresponding
isomorphisms between Grothendieck rings.

8.2. The morphisms hm and h̃m

For γ ∈ Γn, let w(γ) =
∑

1≤i≤n γi.
LetZ[T, T−1]loc denote the localisation of the ring of Laurent polynomialsZ[T, T−1] with

respect to the multiplicative family generated by the polynomials 1− T−i, i ≥ 1.
Let ∆ be a bounded definable subset of Γn. For every integer m ≥ 1, we set

(8.2.1) αm(∆) = (T − 1)n
∑

(γ1,...,γn)∈∆∩(m−1Z)n

T−mw(γ)

in Z[T, T−1].
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Assume now ∆ is a bounded below definable subset of Γn. The sum (8.2.1) is no longer
finite, but it still makes sense as a Laurent series in T−1, since in (8.2.1) only a finite number
of terms have a given weight since ∆ is bounded below (note that the weights are bounded
below).

L 8.2.1. – Let ∆ be a bounded below definable subset of Γn. For every integerm ≥ 1,
the Laurent series

(8.2.2) α̃m(∆) = (T − 1)n
∑

(γ1,...,γn)∈∆∩(m−1Z)n

T−mw(γ)

belongs to Z[T, T−1]loc.

Proof. – It is enough to prove the result for m = 1. We may assume ∆ is convex and
closed. Thus, it is the convex hull of a finite family of rational half-lines and points in Qn,
i.e., a rational polytope according to the terminology of [7]. Consider the formal series

Φ∆(T1, . . . , Tn) :=
∑

(γ1,...,γn)∈∆∩Zn

∏
T γii .

It follows from [7] and [23] that Φ∆(T1, . . . , Tn) belongs to the localisation
of Z[T1, T

−1
1 , . . . , Tn, T

−1
n ] with respect to the multiplicative family generated

by 1 −
∏
T γii , (γ1, . . . , γn) ∈ Zn \ {0}. Indeed, the core of the paper [7] deals with

integral polytopes, but in its §3.3 it is explained how to deduce the statement for rational
polytopes. Since ∆ is bounded below, Φ∆(T1, . . . , Tn) belongs in fact to the localisation
of Z[T1, T

−1
1 , . . . , Tn, T

−1
n ] with respect to the multiplicative family generated by 1−

∏
T γii ,

(γ1, . . . , γn) ∈ Nn \ {0}. Then Φ∆(T−1, T−1, . . . , T−1) belongs to Z[T, T−1]loc and one has
α̃m(∆) = (T − 1)nΦ∆(T−1, T−1, . . . , T−1).

Let !K(RES)([A1]−1)loc denote the localisation of !K(RES)([A1]−1) with respect to the
multiplicative family generated by the elements 1 − [A1]−i, i ≥ 1. There are unique mor-
phisms θ : Z[T, T−1] → !K(RES)([A1]−1) and θ̃ : Z[T, T−1]loc → !K(RES)([A1]−1)loc

sending T to [A1].
If ∆ is a bounded, resp. bounded below, definable subset of Γn, we set

am(∆) = θ(αm(∆)), resp. ãm(∆) = θ̃(α̃m(∆)). By additivity, this gives rise to
morphisms

(8.2.3) am : K(volΓ2bdd[∗]) −→ !K(RES)([A1]−1)

and

(8.2.4) ãm : K(volΓbdd[∗]) −→ !K(RES)([A1]−1)loc.

Now consider X = (X, f) in RES[n]. Let γ = (γ1, . . . , γn) and assume
f(X) ⊂ Vγ1 × · · · × Vγn . If m(γ1, . . . , γn) ∈ Zn, then set

(8.2.5) b0m(X) = [X]
( [1]1

[A1]

)mw(γ)

in !K(RES[∗])([A1]−1); note that f(X) = f(X) ∩ RESm in this case. Otherwise set
b0m(X) = 0. This construction extends uniquely to a morphism

(8.2.6) b0m : K(volRES[∗]) −→ !K(volRES[∗])([A1]−1).
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By composing b0m with the forgetful morphism !K(volRES[∗])([A1]−1) to !K(RES)([A1]−1),
one gets a morphism

(8.2.7) bm : K(volRES[∗]) −→ !K(RES)([A1]−1).

One denotes by b̃m the morphism

(8.2.8) b̃m : K(volRES[∗]) −→ !K(RES)([A1]−1)loc

obtained by composing bm with the localisation morphism from !K(RES)([A1]−1) to
!K(RES)([A1]−1)loc.

The morphism

(8.2.9) bm ⊗ am : K(volRES[∗])⊗K(volΓ2bdd[∗]) −→ !K(RES)([A1]−1)

factors through the relations (8.1.5) and gives rise to a morphism

(8.2.10) hm : K(volRV2bdd[∗]) −→ !K(RES)([A1]−1).

Indeed, if γ = i/m, then am([γ]1) = ( 1
[A1] )

i([A1]− 1) and [val−1
rv (γ)]1 = [A1] − [1]1

in !K+(volRES[1]), thus am([γ]1) = bm([val−1
rv (γ)]1). Similarly, the morphism

(8.2.11) b̃m ⊗ ãm : K(volRES[∗])⊗K(volΓbdd[∗]) −→ !K(RES)([A1]−1)loc

gives rise to a morphism

(8.2.12) h̃m : K(volRVbdd[∗]) −→ !K(RES)([A1]−1)loc

and the diagram

(8.2.13) K(volRV2bdd[∗]) hm //

��

!K(RES)([A1]−1)

��
K(volRVbdd[∗]) h̃m // !K(RES)([A1]−1)loc

is commutative.

L 8.2.2. – For every m ≥ 1, the morphism h̃m vanishes on I ′sp.

Proof. – Indeed, if ` denotes the open half-line (0,∞) in Γ,

α̃m(`) = (T − 1)
∑
i>0

T−i = 1,

therefore h̃m([RV>0]1) = 1. On the other hand, hm([1]1) = 1 by definition.

It follows that the morphism h̃m factors through a morphism

(8.2.14) h̃m : K(volRVbdd[∗])/I ′sp −→ !K(RES)([A1]−1)loc.

In particular, if α and α′ are two elements in K(volRV2bdd[∗]) with same image
in K(volRV[∗])/I ′sp, then hm(α) and hm(α′) have the same image in !K(RES)([A1]−1)loc.

Let us now state the analogue of Proposition 4.2.2 in this context.
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P 8.2.3. – Let m be a positive integer. Let n and r be integers, let β ∈ Γn

and letX be a β-invariant F ((t))-definable subset of On×RVr. We assume thatX is contained
in VFn×W withW a boundedly imaginary definable subset of RVr, and thatXw is bounded, for
everyw ∈W . We also assume that the projectionX → VFn has finite fibers. Then h̃m(

∫
([X]))

is equal to the image of the class X̃[m] as defined in §4.2 in !K(RES)([A1]−1)loc.

Proof. – Since both sides are invariant under the transformations of Proposition 3.2.2,
we may assume by Proposition 3.2.2 that there exists a definable boundedly imaginary sub-
set H of RVr′ and a map h : {1, . . . , n} → {1, . . . , r′} such that

(8.2.15) X = {(a, b); b ∈ H, rv(ai) = bh(i), 1 ≤ i ≤ n}

and the map r : H → RVn given by b 7→ (bh(1), . . . , bh(n)) is finite to one. According to
(8.1.6) we may assume [H] = Ψ([W ] ⊗ [∆]) with W in RES[r] and ∆ bounded in Γ[n − r].
By induction on dimension and considering products, it is enough to prove the result when
X is the lifting of W or ∆. In both cases, this is clear by construction.

R 8.2.4. – The definition of the morphisms of volVF[n] refers implicitly to the
standard volume form on Kn, restricted to On. When an n-dimensional variety is given
without a specific embedding, we must specify a volume form since, in principle, integrals
depend on the form, up to multiplication by a definable function into Gm( O). However,
when V is a smooth variety over F , with a volume form ω (a nowhere vanishing section
of
∧top

TV ) defined overF , andX is a bounded, β-invariantF ((t))-definable subset of V ( O),
then

∫
([X]) does not depend on the choice of ω, as long as ω is chosen over F . The reason

is that given another such form ω′, we have ω′ = gω for some non-vanishing regular
functions g on V , defined over F . Thus, denoting by red the reduction mapping V ( O)→ V ,
for u ∈ V we have red(g(u)) = g(red(u)) 6= 0 so val(g(u)) = 0. In particular, we shall refer
to
∫

([X]) ∈ K(volRV[n]) in this setting without further mention of the volume form.

8.3. Expressing the motivic zeta function

Let Kµ̂(VarF )loc denote the localisation of Kµ̂(VarF ) with respect to the multiplicative
family generated by [A1] and the elements 1 − [A1]i, i ≥ 1. Note that this is equivalent
to localising first with respect to the multiplicative family generated by [A1] and then with
respect to the multiplicative family generated by the elements 1− [A1]−i, i ≥ 1. One defines
similarly K(VarF )loc. The isomorphism Θ of (4.3.4) induces isomorphisms

(8.3.1) Θ: !K(RES)[[A1]−1] −→ Kµ̂(VarF )[[A1]−1]

and

(8.3.2) Θ: !K(RES)[[A1]−1]loc −→ Kµ̂(VarF )loc.

Let X be a smooth connected algebraic variety of dimension d over F and f a non-
constant regular function f : X → A1

F .
For any m ≥ 1, we consider Xm,x as defined in (1.1.4)

(8.3.3) Xm,x = {ϕ ∈ X(C[t]/tm+1); f(ϕ) = tm mod tm+1, ϕ(0) = x}

and Xx from Corollary 4.2.3

(8.3.4) Xx = {y ∈ X( O); rvf(y) = rv(t) andπ(y) = x}.
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Recall that Xx is β-invariant for every β > 0. After replacing X by an affine open
containing x, we may assume the existence of a volume form on X defined over F . Thus,
using the convention in Remark 8.2.4, we may consider h̃m(

∫
([ Xx])) in !K(RES)[[A1]−1]loc.

We have the following interpretation for the class of Xm,x.

P 8.3.1. – Let X be a smooth connected variety over F of dimension d, f be a
regular function on X which is non identically zero, and x be a closed point of f−1(0). Then,
for every integer m ≥ 1,

Θ
(
h̃m

(∫
([ Xx])

))
= [ Xm,x] [Amd]−1

in Kµ̂(VarF )loc.

Proof. – By definition, using notation from 4.2,

X̃x[m] = [ Xx[m; 1 + 1/m]] [Amd]−1.

It follows from Proposition 8.2.3, by a similar argument as the one in the
proof of Corollary 4.2.3, that h̃m(

∫
([ Xx])) and X̃x[m] have the same image

in !K(RES)([A1]−1)loc. On the other hand, since, as already observed in 6.2, Xm,x
is isomorphic to {ϕ ∈ X(C[t1/m]/t(m+1)/m); rv(f(ϕ)) = rv(t), ϕ(0) = x}, Xm,x and
Θ([ Xx[m; 1 + 1/m]]) have the same class in in Kµ̂(VarF ). The result follows.

The motivic zeta function Zf,x(T ) attached to (f, x) is the following generating function,
cf. [9], [12],

(8.3.5) Zf,x(T ) =
∑
m≥1

[ Xm,x] [Amd]−1 Tm

in Kµ̂(VarF )[[A1]−1][[T ]].
Let ι : Kµ̂(VarF )[[A1]−1] → Kµ̂(VarF )loc denote the localisation morphism. Applying ι

termwise to Zf,x(T ) we obtain a series Z̃f,x in Kµ̂(VarF )loc[[T ]].
Thus, by Proposition 8.3.1, Z̃f,x(T ) may be expressed directly in terms of Xx:

C 8.3.2. – Let X be a smooth connected variety over F of dimension d, f be a
regular function on X which is non identically zero, and x be a closed point of f−1(0). Then,

Z̃f,x(T ) =
∑
m≥1

Θ
(
h̃m

(∫
([ Xx])

))
Tm.

8.4. Rational series

Let R be a ring and let A be an invertible element in R. We consider the ring R[T ]†
(resp. R[T, T−1]†) which is the localization of R[T ] (resp. R[T, T−1]) with respect to the
multiplicative family generated by 1 − AaT b, a ∈ Z, b ≥ 1. By expanding into powers in T
one gets a morphism

(8.4.1) eT : R[T ]† −→ R[[T ]]

which is easily checked to be injective. We shall identify an element in R[T ]† with its image
in R[[T ]]. If h = P/Q belongs to R[T ]†, the difference deg(P ) − deg(Q) depends only on h,
thus will be denoted deg(h). If deg(h) ≤ 0, we define limT→∞ h as follows. If deg(h) < 0,
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we set limT→∞ h = 0. If h = P/Q with P and Q of degree n, let p and q be the leading
coefficients of P and Q. Since q is of the form εAa for some a ∈ Z and ε ∈ {−1, 1}, we may
set limT→∞ h = pεA−a, which is independent from the choice of P and Q.

Since

(8.4.2)
1

1− AaT b
= − A−aT−b

1− A−aT−b
,

one may also expand elements of R[T ]† into powers of T−1, giving rise to a morphism

(8.4.3) eT−1 : R[T ]† −→ R[[T−1]][T ].

In particular, if h belongs to R[T ]†, deg(h) ≤ 0 if and only if eT−1(h) belongs to R[[T−1]].
Furthermore, in this case limT→∞ h is equal to the constant term of eT−1(h).

If f(T ) =
∑
n≥0 anT

n and g(T ) =
∑
n≥0 bnT

n are two series in R[[T ]] one defines their
Hadamard product as (f ∗ g)(T ) =

∑
n≥0 anbnT

n.

L 8.4.1. – Let h and h′ belong to R[T ]†. Set ϕ = eT (h), ϕ′ = eT (h′).

(1) There exists a (unique) element h̃ in R[T ]† such that eT (h̃) = ϕ ∗ ϕ′.
(2) Assume that ϕ and ϕ′ belong to TR[[T ]], and that deg(h),deg(h′) ≤ 0. Then deg(h̃) ≤ 0

and
lim
T→∞

h̃ = − lim
T→∞

h · lim
T→∞

h′.

Proof. – Assertion (1) follows from Propositions 5.1.1 and 5.1.2 of [11] and their proofs.
Indeed, by (the proof of) Proposition 5.1.1 of [11], there exists h̃ ∈ R[T, T−1]† such that
eT (h̃) = ϕ ∗ ϕ′ (with eT extended to a morphism R[T, T−1]† → R[[T ]][T−1]). But this
forces h̃ to belong in fact to R[T ]†. By (the proof of) Proposition 5.1.1 of [11], cf. also
Proposition 5.1.2 of [11] and its proof, it follows from the assumptions in (2) that

(eT−1(h̃))(T−1) = −(eT−1(h))(T−1) ∗ (eT−1(h′))(T−1).

Thus deg(h̃) ≤ 0 and limT→∞ h̃ = − limT→∞ h · limT→∞ h′.

When ϕ ∈ R[[T ]] is of the form eT (h) with h ∈ R[T ]†, we shall say limT→∞ ϕ exists if
deg(h) ≤ 0, and set limT→∞ ϕ = limT→∞ h.

8.5. Expressing the motivic Milnor fiber

We consider the rings Kµ̂(VarF )[[A1]−1][T ]† and Kµ̂(VarF )loc[T ]† with A = [A1]. More
generally, in this section, when we write R[T ]† it will always be with A = [A1].

It is known that the motivic zeta function Zf,x(T ) belongs to Kµ̂(VarF )[[A1]−1][T ]† and
that limT→∞ Zf,x(T ) exists, cf. [12], [27].

One sets

(8.5.1) Sf,x = − lim
T→∞

Zf,x(T ).

This element of Kµ̂(VarF )[[A1]−1] is the motivic Milnor fiber considered in [12], [27]. We
shall show in Corollary 8.5.3 how one may extract directly the image of Sf,x inKµ̂(VarF )loc

from
∫

([ Xx]).

Let χ denote the o-minimal Euler characteristic. There exists a unique morphism

(8.5.2) α : K(volΓ[∗]) −→ !K(RES)([A1]−1)
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which, for every n ≥ 0, sends the class of ∆ inK(volΓ[n]) to χ(∆)([A1]− 1)n, and a unique
morphism

(8.5.3) β : K(volRES[∗]) −→ !K(RES)([A1]−1)

which, for every n ≥ 0, sends the class of Y in K(volRES[n]) to [Y ].

Taking the tensor product of α and β one gets a morphism

(8.5.4) Υ: K(volRV[∗]) −→ !K(RES)([A1]−1)

since the relations (8.1.5) in the kernel of the morphism (8.1.7) are respected. One defines
similarly a morphism

(8.5.5) Υ: K(volRV2bdd[∗]) −→ !K(RES)([A1]−1).

P 8.5.1. – Let Y be in K(volRV2bdd[∗]). The series

Z(Y )(T ) =
∑
m≥1

hm(Y )Tm

in !K(RES)([A1]−1)[[T ]] belongs to !K(RES)([A1]−1)[T ]†, limT→∞ Z(Y )(T ) exists and

lim
T→∞

Z(Y )(T ) = −Υ(Y ).

Proof. – We may assume Y is of the form Ψ([W ] ⊗ [∆]) with W in RES[p] and ∆

in Γ[q]. By Lemma 8.4.1, Z(Y )(T ) is the Hadamard product of Z(Ψ([W ] ⊗ 1))(T ) and
Z(Ψ(1⊗ [∆]))(T ). Thus it is enough to prove the statement for Ψ([W ]⊗ 1) and Ψ(1⊗ [∆]).
By construction,

(8.5.6) Z(Ψ([W ]⊗ 1))(T ) = [W ]
∑
m≥1

[A1]−αm T βm

for some integers α ∈ Z and β ≥ 1. Hence Z(Ψ([W ]⊗ 1))(T ) belongs to
!K(RES)([A1]−1)[T ]†, limT→∞ Z(Ψ([W ]⊗ 1))(T ) exists and is equal to −[W ] =

−Υ(Ψ([W ]⊗ 1)).

The statement for Ψ(1 ⊗ [∆]) follows from Lemma 8.5.2, using the morphism
Z[U,U−1]→ !K(RES)([A1]−1) sending U to [A1]−1.

L 8.5.2. – Let ∆ be a bounded definable subset of Γn. Let ` : ∆ → Γ be piecewise
(i.e., on each piece of a finite definable partition) of the form x = (xi) 7→

∑
aixi + b, with the

ai’s and b in Z. For every integer m ≥ 1, set

sm(∆, `) =
∑

(γ1,...,γn)∈∆∩(m−1Z)n

U−m`(γ),

in Z[U,U−1] and set

Z(∆, `)(T ) =
∑
m≥1

sm(∆, `)Tm

inZ[U,U−1][[T ]]. Then, the seriesZ(∆, `) belongs toZ[U,U−1][T ]†, limT→∞ Z(∆, `)(T ) exists
and

lim
T→∞

Z(∆, `)(T ) = −χ(∆).
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Proof. – Let ∆ be a bounded definable subset of Γn. We shall say the lemma holds for ∆ if
it holds for ∆ and any `. If ∆′ is another bounded definable subset of Γn such that [∆] = [∆′]

in K+(Γbdd
Z )[n], then the lemma holds for ∆ if and only if it holds for ∆′. Thus the property

for ∆ depends only on its class in K+(Γbdd
Z )[n]. Localisation with respect to [0]1 is harmless

here, and one deduces that the property of satisfying the lemma for ∆ depends only on its
class [∆]/[0]n1 in Kdf

+ (Γbdd
Z ). We shall say [∆]/[0]n1 satisfies the lemma if ∆ does.

Let I be a definable bounded interval in Γ and `′ : Γ → Γ a linear form x 7→ ax + b

with a and b in Z. Then, by a direct geometric series computation one gets that the lemma
holds for I and `′. It follows that the lemma holds for I and any `. In particular, the lemma
holds for the subsets [0, γ) and {γ} of Γ, with γ in Q. Let Kdf

+ (Γbdd
Z )′ be the sub-semi-ring

ofKdf
+ (Γbdd

Z ) generated by [γ]1/[0]1 and [0, γ)1/[0]1, for γ in Q. It follows from Lemma 8.4.1
that the lemma holds for all elements inKdf

+ (Γbdd
Z )′ since it holds for the generators [γ]1/[0]1

and [0, γ)1/[0]1. By Lemma 2.21 of [21], for any element a inKdf
+ (Γbdd

Z ) there exists a nonzero
m ∈ N, b and c in Kdf

+ (Γbdd
Z )′ such that ma + b = c. Since the lemma holds for b and c, it

follows that the lemma holds for ma, hence for a, and the statement follows.

C 8.5.3. – Let X be a smooth connected variety over F of dimension d, f be a
regular function onX which is non identically zero, and x be a closed point of f−1(0). Then the
image of Sf,x in Kµ̂(VarF )loc is equal to

Θ
(

Υ
(∫

([ Xx])
))
.

Proof. – This follows directly from Corollary 8.3.2 and Proposition 8.5.1.

R 8.5.4. – It is not known whether the localisation morphisms
ι : K(VarF )[[A1]−1] → K(VarF )loc and ι : Kµ̂(VarF )[[A1]−1] → Kµ̂(VarF )loc are
injective. However, the morphism H : K(VarF )[[A1]−1] → Z[u, v, u−1, v−1] induced by the
Hodge-Deligne polynomial vanishes on the kernel of ι, hence factors through the image of ι.
In particular, the Euler characteristic with compact supports χc : K(VarF )[[A1]−1] → Z
factors through the image of ι. This extends to the equivariant setting. In particular one can
recover the Hodge-Steenbrink spectrum of f at x from the image of Sf,x in Kµ̂(VarF )loc,
cf. [12], [27].

R 8.5.5. – When F = C, Theorem 1.1.1 together with Corollary 8.5.3 provides a
proof avoiding resolution of singularities that the topological Milnor fiberFx and the motivic
Milnor fiber Sf,x have the same Euler characteristic with compact supports, namely that
χc(Fx) = χc( Sf,x). Indeed, by Remark 8.5.4 one may apply χc to (8.5.1), thus getting
χc( Sf,x) = − limT→∞

∑
m≥1 χc( Xm,x)Tm, which may be rewritten, by Theorem 1.1.1,

as χc( Sf,x) = − limT→∞
∑
m≥1 Λ(Mm

x )Tm. By quasi-unipotence of local monodromy (a
statement for which there exist proofs not using resolution of singularities, see, e.g., SGA 7 I
1.3), there is an integer m0 such that all eigenvalues of Mx on the cohomology groups of Fx
have order dividingm0. Thus

∑
m≥1 Λ(Mm

x )Tm can be rewritten as
∑

1≤i≤m0
Λ(M i

x) T i

1−Tm0

and the equality χc( Sf,x) = Λ(Mm0
x ) = χc(Fx) follows.
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