Nous étudions les sous-algèbres de Cartan dans le contexte du produit amalgamé de facteurs de type II et nous obtenons plusieurs résultats d'unicité et de non-existence. Nous démontrons que, si appartient à une grande classe de produits amalgamés de groupes (qui contient le produit libre de deux groupes infinis), alors tout facteur de type II associé à une action libre ergodique de a une sous-algèbre de Cartan unique, à conjugaison unitaire. Nous démontrons aussi que, si est le produit libre de toute relation d'équivalence ergodique non-hyperfinie dénombrable, alors le facteur de type II a une sous-algèbre de Cartan unique, à conjugaison unitaire. Enfin, nous démontrons que le produit libre de tout facteur de type II n'a pas de sous-algèbre de Cartan. Plus généralement, nous démontrons que, si est une sous-algèbre de von Neumann amenable et non-atomique et si désigne l'algèbre engendrée par son normalisateur, alors soit est amenable, soit un coin de peut être unitairement conjugué dans ou .
We study Cartan subalgebras in the context of amalgamated free product II factors and obtain several uniqueness and non-existence results. We prove that if belongs to a large class of amalgamated free product groups (which contains the free product of any two infinite groups) then any II factor arising from a free ergodic probability measure preserving action of has a unique Cartan subalgebra, up to unitary conjugacy. We also prove that if is the free product of any two non-hyperfinite countable ergodic probability measure preserving equivalence relations, then the II factor has a unique Cartan subalgebra, up to unitary conjugacy. Finally, we show that the free product of any two II factors does not have a Cartan subalgebra. More generally, we prove that if is a diffuse amenable von Neumann subalgebra and denotes the algebra generated by its normalizer, then either is amenable, or a corner of can be unitarily conjugate into or .
Keywords: II$_1$ factor, Cartan subalgebra, amalgamated free product.
Mot clés : Facteur de type II$_1$, sous-algèbre de Cartan, produit amalgamé.
@article{ASENS_2015__48_1_71_0, author = {Ioana, Adrian}, title = {Cartan subalgebras of amalgamated free product {II}$_1$ factors}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {71--130}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {1}, year = {2015}, doi = {10.24033/asens.2239}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2239/} }
TY - JOUR AU - Ioana, Adrian TI - Cartan subalgebras of amalgamated free product II$_1$ factors JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 71 EP - 130 VL - 48 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2239/ DO - 10.24033/asens.2239 LA - en ID - ASENS_2015__48_1_71_0 ER -
%0 Journal Article %A Ioana, Adrian %T Cartan subalgebras of amalgamated free product II$_1$ factors %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 71-130 %V 48 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2239/ %R 10.24033/asens.2239 %G en %F ASENS_2015__48_1_71_0
Ioana, Adrian. Cartan subalgebras of amalgamated free product II$_1$ factors. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 71-130. doi : 10.24033/asens.2239. http://www.numdam.org/articles/10.24033/asens.2239/
Free products, orbit equivalence and measure equivalence rigidity, Groups Geom. Dyn., Volume 6 (2012), pp. 53-82 (ISSN: 1661-7207) | DOI | MR | Zbl
Amenable correspondences and approximation properties for von Neumann algebras, Pacific J. Math., Volume 171 (1995), pp. 309-341 http://projecteuclid.org/euclid.pjm/1102368918 (ISSN: 0030-8730) | DOI | MR | Zbl
Free product von Neumann algebras of type , Proc. Amer. Math. Soc., Volume 123 (1995), pp. 543-553 (ISSN: 0002-9939) | DOI | MR | Zbl
, New Mathematical Monographs, 11, Cambridge Univ. Press, 2008 | Zbl
Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math., Volume 150 (2014), pp. 143-174 (ISSN: 0010-437X) | DOI | MR | Zbl
On solid ergodicity for Gaussian actions, J. Funct. Anal., Volume 263 (2012), pp. 1040-1063 (ISSN: 0022-1236) | DOI | MR | Zbl
Mixing subalgebras of finite von Neumann algebras, New York J. Math., Volume 19 (2013), pp. 343-366 http://nyjm.albany.edu:8000/j/2013/19_343.html (ISSN: 1076-9803) | MR | Zbl
An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 431-450 (ISSN: 0143-3857) | DOI | MR | Zbl
Bass-Serre rigidity results in von Neumann algebras, Duke Math. J., Volume 153 (2010), pp. 23-54 (ISSN: 0012-7094) | DOI | MR | Zbl
Classification of injective factors. Cases , Ann. of Math., Volume 104 (1976), pp. 73-115 (ISSN: 0003-486X) | MR | Zbl
Some unique group-measure space decomposition results, Duke Math. J., Volume 162 (2013), pp. 1923-1966 (ISSN: 0012-7094) | DOI | MR | Zbl
On the structural theory of factors of negatively curved groups, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), pp. 1-33 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
On the structural theory of factors of negatively curved groups, II: Actions by product groups, Adv. Math., Volume 245 (2013), pp. 208-236 (ISSN: 0001-8708) | DOI | MR | Zbl
Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J., Volume 69 (1993), pp. 97-119 (ISSN: 0012-7094) | DOI | MR | Zbl
Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc., Volume 234 (1977), pp. 325-359 (ISSN: 0002-9947) | DOI | MR | Zbl
, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 931-1014 | DOI | MR | Zbl
On Popa's Cocycle Superrigidity Theorem, Int. Math. Res. Notices, Volume 2007 (2007) | Zbl
HNN extensions and unique group measure space decomposition of factors, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2601-2617 (ISSN: 0002-9947) | DOI | MR | Zbl
Coût des relations d'équivalence et des groupes, Invent. Math., Volume 139 (2000), pp. 41-98 (ISSN: 0020-9910) | DOI | MR | Zbl
Invariants de relations d'équivalence et de groupes, Publ. Math. I.H.É.S., Volume 95 (2002), pp. 93-150 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Funct. Anal., Volume 62 (1985), pp. 160-201 (ISSN: 0022-1236) | DOI | MR | Zbl
Construction of type factors with prescribed countable fundamental group, J. reine angew. Math., Volume 634 (2009), pp. 169-207 (ISSN: 0075-4102) | DOI | MR | Zbl
Strongly solid group factors which are not interpolated free group factors, Math. Ann., Volume 346 (2010), pp. 969-989 (ISSN: 0025-5831) | DOI | MR | Zbl
A class of groups for which every action is -superrigid, Groups Geom. Dyn., Volume 7 (2013), pp. 577-590 (ISSN: 1661-7207) | DOI | MR | Zbl
Type III factors with unique Cartan decomposition, J. Math. Pures Appl., Volume 100 (2013), pp. 564-590 (ISSN: 0021-7824) | DOI | MR | Zbl
Subequivalence relations and positive-definite functions, Groups Geom. Dyn., Volume 3 (2009), pp. 579-625 (ISSN: 1661-7207) | DOI | MR | Zbl
Rigidity results for wreath product factors, J. Funct. Anal., Volume 252 (2007), pp. 763-791 (ISSN: 0022-1236) | DOI | MR | Zbl
-superrigidity for Bernoulli actions of property (T) groups, J. Amer. Math. Soc., Volume 24 (2011), pp. 1175-1226 (ISSN: 0894-0347) | DOI | MR | Zbl
Compact actions and uniqueness of the group measure space decomposition of factors, J. Funct. Anal., Volume 262 (2012), pp. 4525-4533 (ISSN: 0022-1236) | DOI | MR | Zbl
Uniqueness of the group measure space decomposition for Popa's factors, Geom. Funct. Anal., Volume 22 (2012), pp. 699-732 (ISSN: 1016-443X) | DOI | MR | Zbl
Classiffication and rigidity for von Neumann algebras, Proceedings of the 6th European Congress of Mathematics (Kraków, 2012), Eur. Math. Soc. Publ. House (2013), pp. 601-625
Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math., Volume 200 (2008), pp. 85-153 (ISSN: 0001-5962) | DOI | MR | Zbl
Strongly singular MASAs and mixing actions in finite von Neumann algebras, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1861-1878 (ISSN: 0143-3857) | DOI | MR | Zbl
Strongly 1-bounded von Neumann algebras, Geom. Funct. Anal., Volume 17 (2007), pp. 1180-1200 (ISSN: 1016-443X) | DOI | MR | Zbl
Examples of amalgamated free products and coupling rigidity, Ergodic Theory Dynam. Systems, Volume 33 (2013), pp. 499-528 (ISSN: 0143-3857) | DOI | MR | Zbl
Orbit equivalence rigidity and bounded cohomology, Ann. of Math., Volume 164 (2006), pp. 825-878 (ISSN: 0003-486X) | DOI | MR | Zbl
On rings of operators, Ann. of Math., Volume 37 (1936), pp. 116-229 (ISSN: 0003-486X) | DOI | JFM | MR | Zbl
On rings of operators. IV, Ann. of Math., Volume 44 (1943), pp. 716-808 (ISSN: 0003-486X) | DOI | MR | Zbl
On a class of factors with at most one Cartan subalgebra, II, Amer. J. Math., Volume 132 (2010), pp. 841-866 (ISSN: 0002-9327) | DOI | MR | Zbl
On a class of factors with at most one Cartan subalgebra, Ann. of Math., Volume 172 (2010), pp. 713-749 (ISSN: 0003-486X) | DOI | MR | Zbl
Weak amenability of hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008), pp. 271-280 (ISSN: 1661-7207) | DOI | MR | Zbl
Examples of groups which are not weakly amenable, Kyoto J. Math., Volume 52 (2012), pp. 333-344 (ISSN: 2156-2261) | DOI | MR | Zbl
Examples of group actions which are virtually W*-superrigid (preprint arXiv:1002.1745 )
On a class of type factors with Betti numbers invariants, Ann. of Math., Volume 163 (2006), pp. 809-899 (ISSN: 0003-486X) | DOI | MR | Zbl
Strong rigidity of factors arising from malleable actions of -rigid groups. I, Invent. Math., Volume 165 (2006), pp. 369-408 (ISSN: 0020-9910) | DOI | MR | Zbl
, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445-477 | DOI | MR | Zbl
On Ozawa's Property for Free Group Factors, Int. Math. Res. Notices, Volume 2007 (2007) | Zbl
On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc., Volume 21 (2008), pp. 981-1000 (ISSN: 0894-0347) | DOI | MR | Zbl
On the classification of inductive limits of II factors with spectral gap, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2987-3000 (ISSN: 0002-9947) | DOI | MR | Zbl
Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math., Volume 111 (1993), pp. 375-405 (ISSN: 0020-9910) | DOI | MR | Zbl
Entropy and index for subfactors, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 57-106 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
On cocycle superrigidity for Gaussian actions, Ergodic Theory Dynam. Systems, Volume 32 (2012), pp. 249-272 (ISSN: 0143-3857) | DOI | MR | Zbl
Group measure space decomposition of factors and -superrigidity, Invent. Math., Volume 182 (2010), pp. 371-417 (ISSN: 0020-9910) | DOI | MR | Zbl
, Quanta of Maths (Clay Math. Proc.), Volume 11, Amer. Math. Soc., Providence, RI, 2010, pp. 519-541 | MR | Zbl
Unique Cartan decomposition for factors arising from arbitrary actions of free groups, Acta Math., Volume 212 (2014), pp. 141-198 (ISSN: 0001-5962) | DOI | MR | Zbl
Unique Cartan decomposition for factors arising from arbitrary actions of hyperbolic groups, J. reine angew. Math., Volume 694 (2014), pp. 215-239 (ISSN: 0075-4102) | DOI | MR | Zbl
Amenability, Kazhdan's property , strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 223-236 (ISSN: 0143-3857) | DOI | MR | Zbl
Automorphisms of finite factors, Amer. J. Math., Volume 77 (1955), pp. 117-133 (ISSN: 0002-9327) | DOI | MR | Zbl
Factoriality, type classification and fullness for free product von Neumann algebras, Adv. Math., Volume 228 (2011), pp. 2647-2671 (ISSN: 0001-8708) | DOI | MR | Zbl
Some analysis of amalgamated free products of von Neumann algebras in the non-tracial setting, J. Lond. Math. Soc., Volume 88 (2013), pp. 25-48 (ISSN: 0024-6107) | DOI | MR | Zbl
Explicit computations of all finite index bimodules for a family of factors, Ann. Sci. Éc. Norm. Sup., Volume 41 (2008), pp. 743-788 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Rigidity for von Neumann algebras and their invariants, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi (2010), pp. 1624-1650 | MR | Zbl
One-cohomology and the uniqueness of the group measure space decomposition of a factor, Math. Ann., Volume 355 (2013), pp. 661-696 (ISSN: 0025-5831) | DOI | MR | Zbl
Normalizers inside amalgamated free product von Neumann algebras, Publ. Res. Inst. Math. Sci., Volume 50 (2014), pp. 695-721 (ISSN: 0034-5318) | DOI | MR | Zbl
, CRM Monograph Series, 1, Amer. Math. Soc., Providence, RI, 1992, 70 pages (ISBN: 0-8218-6999-X) | MR | Zbl
The analogues of entropy and of Fisher's information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal., Volume 6 (1996), pp. 172-199 (ISSN: 1016-443X) | DOI | MR | Zbl
Cité par Sources :