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CARTAN SUBALGEBRAS
OF AMALGAMATED FREE PRODUCT II; FACTORS

BY ADRIAN IOANA
WITH AN APPENDIX BY ADRIAN IOANA AND STEFAAN VAES

Dedicated to Sorin Popa

ABSTRACT. — We study Cartan subalgebras in the context of amalgamated free product II; factors
and obtain several uniqueness and non-existence results. We prove that if I" belongs to a large class of
amalgamated free product groups (which contains the free product of any two infinite groups) then
any II; factor L°°(X) x I arising from a free ergodic probability measure preserving action of I" has
a unique Cartan subalgebra, up to unitary conjugacy. We also prove that if ® = R; * Ra is the
free product of any two non-hyperfinite countable ergodic probability measure preserving equivalence
relations, then the IT; factor L(&) has a unique Cartan subalgebra, up to unitary conjugacy. Finally,
we show that the free product M = M; * M of any two II; factors does not have a Cartan subalgebra.
More generally, we prove that if A C M is a diffuse amenable von Neumann subalgebra and P C M
denotes the algebra generated by its normalizer, then either P is amenable, or a corner of P can be
unitarily conjugate into M7 or M.

REsuME. — Nous étudions les sous-algebres de Cartan dans le contexte du produit amalgamé de
facteurs de type I1; et nous obtenons plusieurs résultats d’unicité et de non-existence. Nous démontrons
que, si I appartient a une grande classe de produits amalgamés de groupes (qui contient le produit libre
de deux groupes infinis), alors tout facteur de type II; associ¢ a une action libre ergodique de I" a une
sous-algebre de Cartan unique, & conjugaison unitaire. Nous démontrons aussi que, si £ = #1 * R est
le produit libre de toute relation d’équivalence ergodique non-hyperfinie dénombrable, alors le facteur
de type II; L(R) a une sous-algébre de Cartan unique, & conjugaison unitaire. Enfin, nous démontrons
que le produit libre M = M; x M de tout facteur de type I1; n’a pas de sous-algebre de Cartan. Plus
généralement, nous démontrons que, si A C M est une sous-algébre de von Neumann amenable et non-
atomique et si P C M désigne I’algebre engendrée par son normalisateur, alors soit P est amenable,
soit un coin de P peut étre unitairement conjugué dans M; ou Mo.
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72 A. IOANA

1. Introduction

A Cartan subalgebra of a 11; factor M is a maximal abelian von Neumann subalgebra A
whose normalizer generates M. The study of Cartan subalgebras plays a central role in
the classification of II; factors arising from probability measure preserving (pmp) actions.
IfT" ~ (X, ) is a free ergodic pmp action of a countable group T', then the group measure
space 11; factor L>®(X) x T [38] contains L>°(X) as a Cartan subalgebra. In order to
classify L*°(X) x I' in terms of the action I' ~ X, one would ideally aim to show that
L°°(X) is its unique Cartan subalgebra (up to conjugation by an automorphism). Proving
that certain classes of group measure space II; factors have a unique Cartan subalgebra is
useful because it reduces their classification, up to isomorphism, to the classification of the
corresponding actions, up to orbit equivalence. Indeed, following [58, 15], two free ergodic
pmpactionsI" ~ X and A ~ Y are orbit equivalent if and only if there exists an isomorphism
0:L®(X)xT'— L*(Y) x A such that (L (X)) = L*=(Y).

In the case of II; factors coming from actions of amenable groups, both the classifica-
tion and uniqueness of Cartan problems have been completely settled since the early 1980’.
A celebrated theorem of A. Connes [67] asserts that all II; factors arising from free ergodic
pmp actions of infinite amenable groups are isomorphic to the hyperfinite I1; factor, R. Addi-
tionally, [13] shows that any two Cartan subalgebras of R are conjugate by an automorphism
of R.

For a long time, however, the questions of classification and uniqueness of Cartan sub-
algebras for II; factors associated with actions of non-amenable groups, were considered
intractable. During the last decade, S. Popa’s deformation/rigidity theory has led to spec-
tacular progress in the classification of group measure space II; factors (see the surveys
[49, 62, 30]). This was in part made possible by several results providing classes of group
measure space II; factors that have a unique Cartan subalgebra, up to unitary conjugacy.
The first such classes were obtained by N. Ozawa and S. Popa in their breakthrough work
[41, 42]. They showed that II; factors L>°(X) x I' associated with free ergodic profinite
actions of free groups I' = IF,, and their direct products I' = F,,, x F,,, x --- x F,,, have
a unique Cartan subalgebra, up to unitary conjugacy. Recently, this result has been ex-
tended to profinite actions of hyperbolic groups [10] and of direct products of hyperbolic
groups [11]. The proofs of these results rely both on the fact that free groups (and, more
generally, hyperbolic groups, see [39, 40]) are weakly amenable and that the actions are
profinite.

In a very recent breakthrough, S. Popa and S. Vaes succeeded in removing the profinite-
ness assumption on the action and obtained wide-ranging unique Cartan subalgebra results.
They proved that if T is either a weakly amenable group with ,6’%2) (I") > 0[55] or a hyperbolic
group [56] (or a direct product of groups in one of these classes), then I1; factors L= (X) x T
arising from arbitrary free ergodic pmp actions of I" have a unique Cartan subalgebra, up to
unitary conjugacy. Following [55, Definition 1.4], such groups I', whose every action gives
rise to a II; factor with a unique Cartan subalgebra, are called G-rigid (Cartan rigid).

In this paper we study Cartan subalgebras of tracial amalgamated free product von
Neumann algebras M = M; xg M (see [46, 66] for the definition). Our methods are best
suited to the case when M = L°°(X) x I' comes from an action of an amalgamated free
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CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II; FACTORS 73

product group I' = T’y *, I's. In this context, by imposing that the inclusion A < T satisfies
a weak malnormality condition [53], we prove that L®°(X) is the unique Cartan subalgebra
of M, up to unitary conjugacy, for any free ergodic pmp actionI" ~ X.

THEOREM 1.1. — Let T' = T'; xp I's be an amalgamated free product group such
that [T1:A] > 2 and [Ts: A] > 3. Assume that there exist g1,92,...,9n € ' such that
Ny giAgi_1 is finite. Let T' ~ (X, u) be any free ergodic pmp action of T on a standard
probability space (X, p).

Then the I, factor M = L*(X) x I has a unique Cartan subalgebra, up to unitary
conjugacy.

Moreover, the same holds if T is replaced with a direct product of finitely many such groupsT.

This result provides the first examples of &-rigid groups I' that are not weakly amenable
(take e.g.,T' = SL3(Z) = X, where X is any non-trivial countable group).

Theorem 1.1 generalizes and strengthens the main result of [53]. Indeed, in the above
setting, assume further that A is amenable and that I'; contains either a non-amenable
subgroup with the relative property (T) or two non-amenable commuting subgroups. [53,
Theorem 1.1] then asserts that M has a unique group measure space Cartan subalgebra.

Theorem 1.1 provides strong supporting evidence for a general conjecture which predicts
that any group I" with positive first £2-Betti number, ﬂf) (T') > 0, is G-rigid. Thus, it implies
that the free product I' = T'; * I'y of any two countable groups satisfying |T'y| > 2 and
|T2| > 3, is G-rigid.

Recently, there have been several results offering positive evidence for this conjecture.
Firstly, it was shown in [53] that if ' = Ty x 'y, where I'y is a property (T) group and
I'; is a non-trivial group, then any II; factor L*°(X) x I associated with a free ergodic
pmp action of I has a unique group measure space Cartan subalgebra, up to unitary con-
jugacy (see also [16, 24]). Secondly, the same has been proven in [9] under the assumption
that 5§2) (I") > 0 and I" admits a non-amenable subgroup with the relative property (T). For a
common generalization of the last two results, see [63]. Thirdly, we proved that if ﬂf) (T >0,
then L*°(X) x I" has a unique group measure space Cartan subalgebra whenever the action
I' ~ (X, p) is either rigid [29] or compact [28]. As already mentioned above, the conjecture
has been very recently established in full generality for weakly amenable groups I'" with

& (T) > 0in [55].

As a consequence of Theorem 1.1 we obtain a new family of W*-superrigid actions.
Recall that a free ergodic pmp action I' ~ (X, u) is called W*-superrigid if whenever
L*(X) xT'2 L>®(Y) x A, for some free ergodic pmp action A ~ (Y, v), the groups I" and
A are isomorphic, and their actions are conjugate. The existence of virtually W*-superrigid
actions was proven in [43]. The first concrete families of W*-superrigid actions were found
in [53] where it was shown for instance that Bernoulli actions of many amalgamated free
product groups have this property. In [27] we proved that Bernoulli actions of icc property
(T) groups are W*-superrigid. By combining Theorem 1.1 with the cocycle superrigidity
theorem [51] we derive the following.
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74 A. IOANA

COROLLARY 1.2. — Let T'=T4 x5 Ty and TV =T xp/ T'y be two amalgamated free
product groups satisfying the hypothesis of Theorem 1.1. Denote G =T x T".

Then any free action of G which is a quotient of the Bernoulli action G ~ [0,1]¢ is
W*-superrigid.

Next, we return to the study of Cartan subalgebras of general amalgamated free
product II; factors M = M; xg M,. Assuming that B is amenable and M satisfies some
rather mild conditions, we prove that any Cartan subalgebra A C M has a corner which
embeds into B, in the sense of S. Popa’s intertwining-by-bimodules [48] (see Theorem 2.1).
This condition, written in symbols as A <j; B, roughly means that A can be conjugated
into B via a unitary element from M.

THEOREM 1.3. — Let (M1, 71) and (Ma,12) be two tracial von Neumann algebras with
a common amenable von Neumann subalgebra B such that Ti\g = T2|p. Assume that
M = M xg Ms is a factor and that either:

1. My and My have no amenable direct summands, or
2. M does not have property T' and pM1p # pBp # pMsp, for any non-zero projection
p € B.

If A C M is a Cartan subalgebra, then A <); B.

Recall that a tracial von Neumann algebra (M, ) is a von Neumann algebra M endowed
with a normal faithful tracial state 7. As usual, we denote by ||z||s = 7(z*z)? the induced
Hilbert norm on M. Recall also that a II; factor M has property T' if there exists a se-
quence u,, € M of unitary elements such that 7(u,,) = 0, for all n, and ||u,z — zu,||2 — 0,
for every x € M [37].

Theorem 1.3 has two interesting applications.

Firstly, it yields a classification result for von Neumann algebras L(R) [15] arising from
the free product ® = R, * R of two equivalence relations (see [19] for the definition).
For instance, it implies that if R, &4 are ergodic and non-hyperfinite, then any countable
pmp equivalence relation ¢f such that L(J) = L(&R) is necessarily isomorphic to &. More
generally, we have

COROLLARY 1.4. — Let R be a countable ergodic pmp equivalence relation on a standard
probability space (X, ). Assume that R = R x Ra, for two equivalence relations K1 and R
on (X, u). Additionally, suppose that either:

1. Ru\y and Ry |y are not hyperfinite, for any Borel setY C X with u(Y') > 0, or
2. R is strongly ergodic, and R1 and Ry have infinite orbits, almost everywhere.

Then L>(X) is the unique Cartan subalgebra of L(R), up to unitary conjugacy.
Thus, if L(R) = L(J), for any ergodic countable pmp equivalence relation J, then R = .

Here, Ry := RN (Y x Y) denotes the restriction of & to Y. Recall that an ergodic
countable pmp equivalence relation & on a probability space (X, u) is called strongly ergodic
if there does not exist a sequence of Borel sets ¥;, C X such that u(Y,) = %, for all n, and
w(0(Y,)AY,) — 0, for any Borel automorphism 6 of X satisfying (0(z), z) € &, for almost
every x € X.
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Secondly, Theorem 1.3 allows us to show that the free product of any two diffuse tracial
von Neumann algebras does not have a Cartan subalgebra. By using the notion of free
entropy for von Neumann algebras, D. Voiculescu proved that the free group factors L(F,,)
do not have Cartan subalgebras [65]. This result was extended in [34, Lemma 3.7] to show
that the free product M = M; * M, of any two diffuse tracial von Neumann algebras (M1, 1)
and (M, 2), which are embeddable into R“, does not have a Cartan subalgebra. Here we
prove this result without requiring that M, and M5 embed into R¥. More generally, we have

COROLLARY 1.5. — Let (My,71), (M, 72) be tracial von Neumann algebras satisfying
Then their free product M = M, * My does not have a Cartan subalgebra.

Corollary 1.5 shows that if My # Cl # M, and (dim(M;),dim(Ms)) # (2,2), then
M has no Cartan subalgebra. On the other hand, if dim(M;) = dim(Mz) = 2, then M is
of type I (see [14, Theorem 1.1]) and therefore has a Cartan subalgebra.

So far, our results only apply to Cartan subalgebras of amalgamated free product von
Neumann algebras M = M; *g Ms. From now on, we more generally study, in the spirit of
[41] and [55], normalizers of arbitrary diffuse amenable von Neumann subalgebras A C M.
Recall that the normalizer of A in M, denoted 9V 5, (A), is the group of unitaries u € M such
that uAu* = A. Assuming that the normalizer of A satisfies a certain spectral gap condition,
we prove the following dichotomy: either a corner of A embeds into M;, for some i € {1, 2},
or the algebra generated by the normalizer of A is amenable relative to B. More precisely,
we show

THEOREM 1.6. — Let (M1,71) and (Ma, 2) be two tracial von Neumann algebras with a
common von Neumann subalgebra B such that 71|g = T3|g. Let M = My *p M and A C pMp
be a von Neumann subalgebra which is amenable relative to B, for some projection p € M.
Denoteby P = N pnp(A)” the von Neumann algebra generated by the normalizer of A in pMp.
Assume that P' N (pMp)*¥ = C1, for a free ultrafilter w on N.

Then one of the following conditions holds true:
1. A <m B.

2. P <y M;, for somei € {1,2}.

3. P is amenable relative to B.

For the definition of relative amenability, see Section 2.2. For now, note that if B is
amenable, then P is amenable relative to B if and only if P is amenable.

We believe that Theorem 1.6 should hold without assuming that P’ N M“ = C1, but we
were unable to prove this for general B. Nevertheless, in the case B = C, a detailed analysis
of the relative commutant P’ N M* (see Section 6) enabled us to show that the condition
P’ N M¥ = C1is indeed redundant.

COROLLARY 1.7. — Let (My,71), (Ms,72) be two tracial von Neumann algebras. Let
M = M * My and A C M be a diffuse amenable von Neumann subalgebra. Denote P = 3/ p1(A)".

Then either P <p; M;, for some i € {1,2}, or P is amenable.
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76 A. IOANA

For a more precise version of this result in the case M; and M, are II; factors, see
Corollary 9.1.

Finally, we present a new class of strongly solid von Neumann algebras. Recall that a von
Neumann algebra M is called strongly solid if /" y;(A)"” is amenable, whenever A C M is a
diffuse amenable von Neumann subalgebra [41]. N. Ozawa and S. Popa proved in [41] that
the free group factors L(F,,) are strongly solid. More generally, I. Chifan and T. Sinclair
recently showed that the von Neumann algebra L(I") of any icc hyperbolic group I is strongly
solid [10].

The class of strongly solid von Neumann algebras is not closed under taking amalgamated
free products. For instance, if Fo ~ (X, p) is a pmp action on a non-atomic probability space (X, u),
then the group measure space algebra L>°(X) x Fp = (L>°(X) % Z) * 1 (x) (L (X) x Z)
is not strongly solid, although the algebras involved in its amalgamated free product decom-
position are amenable and hence strongly solid.

However, as an application of Theorem 1.6, we prove that the class of strongly solid von
Neumann algebras is closed under free products (Corollary 9.6) More generally, we show that
if M7 and M are strongly solid von Neumann algebras, then the amalgamated free product
M = M; xg M, is strongly solid, provided that the inclusions B C M; and B C M, are
mixing, and B is amenable.

THEOREM 1.8. — Let (My,11) and (M, 2) be strongly solid von Neumann algebras with
a common amenable von Neumann subalgebra B such that 71| = Ta)g. Assume that the
inclusions B C My and B C My are mixing. Denote M = My xg M.

Then M is strongly solid.

For the definition of mixing inclusions of von Neumann algebras, see Section 9.4. For
now, let us point out that the inclusion B C M is mixing whenever the B-B bimodule
L?(M) © L*(B) is contained in a multiple of the coarse B-B bimodule L?(B) ® L?(B).

Theorem 1.8 implies that if My, M5, ..., M,, are amenable von Neumann algebras with
a common von Neumann subalgebra B such that the inclusions B C M1,B C Ma, ...,
B C M, are mixing, then M = My xg M *p - - - g M, is strongly solid (Corollary 9.7).

Comments on the proofs. — The most general type of result that we prove is Theorem 1.6. Let
us say a few words about its proof. Assume therefore that A is a von Neumann subalgebra
of an amalgamated free product von Neumann algebra M = M, xg M that is amenable
relative to B. We denote P = A j;(A)” and assume that P’ N M* = C1.

Our goal is to show that either A <), M;, for some ¢ € {1,2}, or P is amenable relative
to B. This is enough to deduce the conclusion of Theorem 1.6, because by [32, Theorem 1.1]
the first case implies that either A <5 B or P <3y M;, for some i € {1, 2}.

The strategy of proof is motivated by a beautiful recent dichotomy theorem due to S. Popa
and S. Vaes. To state the particular case of [55, Theorem 1.6] that will be useful to us, let
Fs ~ (N, T) be a trace preserving action of the free group [y on a tracial von Neumann
algebra (N, 7). Denote M = N x F,. Given a von Neumann subalgebra D C M that is
amenable relative to NN, it is shown in [55] that either D <,;; N or A ;;(D)” is amenable
relative to N.
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In order to apply this result in our context, we use the free malleable deformation intro-
duced in [32]. More precisely, define M = M xp (BRL(F,)). Then M C M and one con-
structs a 1-parameter group of automorphisms {6; }+cr of M as follows. Let uq,us € L(Fy)
be the canonical generating unitaries and hy, he € L(F3) be hermitian elements such that
uy = exp(ihy) and uy = exp(ihg). For t € R, define the unitary elements u} = exp(ith;)
and u, = exp(ithy). Then there exists an automorphism 6, of M such that

9t|M1 = Ad(u§)|M1, 9t|M2 = Ad(u§)|M2 and 9t|L(IF2) = idL(FQ).

The starting point of the proof is the key observation that M can be written as M = N x F,
where N is the von Neumann subalgebra of M generated by {u, M uy }ger, and Fy acts on N
via conjugation with {ug}ger, .

Now, let t € (0,1) and notice that 6,(P) C A ;;(6:(A))"”. Since A is amenable relative
to B and 6;(B) = B C N, we deduce that 6,(A) is amenable relative to N. By applying the
dichotomy of [55], we conclude that either 6,(A) <; N or 6,(P) is amenable relative to N.
Since t € (0, 1) is arbitrary, we are therefore in one of the following two cases:

1. 0,(A) <;; N, forsomet € (0,1).
2. 6;(P) is amenable relative to N, for any ¢ € (0,1).

The core of the paper consists of analyzing what can be said about the von Neumann
subalgebras A and P of M which satisfy these conditions. Note that since 6; (M) C N, these
conditions are trivially satisfied for any subalgebra A C M when ¢ = 1.

Thus, we prove in Section 3 thatif (1) holds then A <, M;, for some i € {1,2}. The proof
of this result has two main ingredients. To explain what they are, assume by contradiction
that A Ay M;, for any ¢ € {1,2}. Then [32, Theorem 3.1] provides a sequence of unitary
elements uy € A which are asymptotically (i.e., as k — oo) supported on words in M; & B
and M6 B of length > £, forevery £ > 1. In the second part of the proof, we use a calculation
from the theory of random walks on groups to derive that the unitaries 6;(uy) € 6,(A) are
asymptotically perpendicular to aNb, for any a, b € M. This contradicts the assumption that
(1) holds.

In Sections 4 and 5 we investigate which von Neumann subalgebras P C M satisfy (2).

Our first result in this direction applies in the particular case when P = M. More precisely,
we prove that if (2) holds for P = M, then either M; or M, must have an amenable direct
summand (see Theorem 4.1). In combination with the above, it follows that if A € M is
a Cartan subalgebra, then either A <), M, or M; has an amenable direct summand, for
some ¢ € {1,2}. This readily implies Theorem 1.3 and Corollary 1.4 under the first sets of
conditions.

In general, however, we are only able to treat von Neumann subalgebras P C M which in
addition to satisfying (2) also verify the spectral gap condition P’ N M*“ = C1. Under these
assumptions, we prove that either P <, M;, for some ¢ € {1,2}, or P is amenable relative
to B (see Theorem 5.1). It is clear that this result completes the proof of Theorem 1.6.

Note that if M = M; * M> is a plain free product and P’ N M is diffuse, then we can
show that either P <p; M;, for some ¢ € {1,2}, or P has an amenable direct summand (see
Theorem 6.3). It follows that, in the case of plain free products, Theorem 1.6 holds without
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the assumption P’ N M*“ = C1. This explains why Corollary 1.7 also does not require this
assumption.

Organization of the paper. — Besides the introduction this paper has eight other sections. In
Section 2 we recall the tools that are needed in the sequel as well as establish some new results.
For instance, we prove that if A € M = M; xg M, is a von Neumann subalgebra that is
amenable relative to M;, then either A is amenable relative to B, or a corner of A p;(A)”
embeds into M; (see Corollary 2.12). We have described above the contents of Section 3-5.
In Section 6, motivated by the hypothesis of Theorem 1.6, we study the relative commutant
P’ N M%, where P is a von Neumann subalgebra of an amalgamated free product algebra
M = M, xg M. Finally, Sections 7-9 are devoted to the proofs of the results stated in the
introduction.

Dedication. — This paper is dedicated to Sorin Popa, with great affection and admiration.

Acknowledgements. — 1 am very grateful to Rémi Boutonnet, lonut Chifan, Cyril Houdayer,
Yoshimichi Ueda and Stefaan Vaes for many helpful comments on the first version of this
paper. In particular, I would like to thank Cyril and Stefaan for pointing out errors in the
initial proofs of Lemmas 9.5 and 2.4, respectively, and Yoshimichi for pointing out that
Corollary 1.5 holds in the present generality. Finally, I would like to thank the two referees
whose comments helped improve the exposition.

Added in the proof. — Since the first version of this paper has been posted on the arXiv,
there have been some related developments. Firstly, R. Boutonnet, C. Houdayer and S. Raum
generalized some of our results to the non-tracial setting [6]. In particular, they extended
Corollary 1.5 to arbitrary von Neumann algebras. More recently, S. Vaes was able to remove
the spectral gap assumption P’ N M*¥ = C1 from Theorem 1.6. This allowed him for
instance to prove an improved, optimal version of Corollary 1.4, where one only assumes
that almost every class of ®; has at least 2 elements and almost every class of ®, has at least
3 elements [64].

Correction. — Theorem 2.5 from the initial version of this paper (posted on arXiv in July
2012) falsely asserted that the notions of spectral gap and w-spectral gap were equivalent for
arbitrary inclusions of tracial von Neumann algebras (see the Appendix for the definitions).
I am very grateful to Cyril Houdayer for pointing out this mistake. The false assertion was
only used in the proof of Theorem 5.1 to deduce spectral gap for an inclusion A C pMp that
was originally assumed to have w-spectral gap. However, the original proof of Theorem 5.1
still works if the inclusion A C pMp does not not necessarily have spectral gap, but instead
satisfies a certain weaker technical property. In the Appendix, written jointly with Stefaan
Vaes, we prove that this technical property, which, a priori, sits in between spectral gap and
w-spectral gap, is in fact equivalent to w-spectral gap.

2. Preliminaries

We start by recalling some of the terminology that we use in this paper.
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Throughout we work with tracial von Neumann algebras (M, ), i.e., von Neumann
algebras M endowed with a faithful, normal, tracial state 7. We assume that M is separable,
unless it is an ultraproduct algebra or we specify otherwise.

We denote by Z (M) the center of M, by U(M) the group of unitaries of M and by (M),
the unit ball of M. We say that a von Neumann subalgebra A C M is regular in M if
N (A" =M.

For a free ultrafilter w on N, the ultraproduct algebra M is defined as the quo-
tient £ (N, M)/, where 4 C £>°(N, M) is the closed ideal of z = (z,), such that
lim,,—,, ||Zn||2 = 0. As it turns out, M is a tracial von Neumann algebra, with its canonical
trace given by 7, (%5 )n) = lim, ., 7(z,).

If M and N are tracial von Neumann algebras, then an M-N bimodule is a Hilbert
space J{ endowed with commuting normal x-homomorphisms = : M — B(J) and
p: NP - B(H).Forx € M,y € N and £ € J we denote €y = m(z)p(y)(£).

Next, let M, N, P be tracial von Neumann algebras. Let /¢ and & be M-N and N-P
bimodules. Let Ky be vector subspace of vectors n € K that are left bounded, i.e., for which
there exists ¢ > 0 such that |lzn|| < c|z||2, for all z € N. The Connes tensor product
FHRnK is defined as the separation/completion of the algebraic tensor product # ® K
with respect to the scalar product (£ ®n 1,&’ @n 0') = (£y,&'), where y € N satisfies
(xn,n') = 7(xy), forall z € N. Note that #® y K carries an M-P bimodule structure given

by z(§ ®n n)y = € QN Y.

In the following six subsections we present the tools we will use in the proofs of our main
results.

2.1. Intertwining-by-bimodules

We first recall from [48, Theorem 2.1 and Corollary 2.3] S. Popa’s powerful intertwining-
by-bimodules technique.

THEOREM 2.1 ([48]). — Let (M, 1) be a tracial von Neumann algebra and P,Q C M be two
(not necessarily unital) von Neumann subalgebras. Then the following are equivalent:

o There exist non-zero projections p € P,q € Q, a x-homomorphism ¢ : pPp — qQq and

a non-zero partial isometry v € qMp such that ¢(x)v = vz, for all x € pPp.
o There is no sequence u, € U(P) satisfying ||Eq(zuny)||2 — 0, for allz,y € M.
If one of these conditions holds true, then we say that a corner of P embeds into Q inside M

and write P <1 Q.

Note that if M is not separable, then the same statement holds if the sequence {uy, }, is
replaced by a net.
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2.2. Relative amenability

A tracial von Neumann algebra (M,7) is called amenable if there exists a net
&, € L2(M)®L%(M) such that (x¢,,,&,) — 7(x) and ||z&, — &,x||2 — 0, for every z € M.
By A. Connes’ theorem [67], M is amenable iff it is approximately finite dimensional, i.e.,
M = (Up>1M,)", for an increasing sequence (M, ),, of finite dimensional subalgebras of M.

Let @ C M be a von Neumann subalgebra. Jones’ basic construction (M, eq) is de-
fined as the von Neumann subalgebra of B(L?(M)) generated by M and the orthogonal
projection eq from L%*(M) onto L?*(Q). Recall that (M, eq) has a faithful semi-finite
trace given by Tr(zegyL) = 7(xy) for all z,y € M. We denote by L?((M, eq)) the as-
sociated Hilbert space and endow it with the natural M-bimodule structure. Note that
L3((M,eq)) = L*(M)®qL?*(M), as M-M bimodules.

Now, let P C pMp be a von Neumann subalgebra, for some projection p € M. Following
[41, Definition 2.2] we say that P is amenable relative to @ inside M if there exists a net
&, € L*(p(M, eq)p) such that (z&,,,&,) — 7(z), for every z € pMp, and ||y, — &nyl2 — O,
for every y € P. Note that when @ is amenable, this condition is equivalent to P being
amenable.

By [41, Theorem 2.1], relative amenability is equivalent to the existence of a P-central
state ¢ on p(M, eq)p such that ¢|,a, = T|prrp- Recall that if S'is a subset of a von Neumann
algebra MU, then a state ¢ on M is said to be S-central if ¢(zT) = ¢(Tz), forallz € S
and T € .

REMARK 2.2. — Let P C pMp and @ C M be von Neumann subalgebras.

1. Suppose that there exists a non-zero projection py € P such that pg Ppy is amenable rel-
ative to @ inside M. Let p; € Z(P) be the central support of pg. Then Pp; is amenable
relative to Q. Indeed, let &, € L%(po(M, eq)po) be anet such that (2, &,) — 7(z), for
every x € poMpg, and ||y&, — &nyll2 — 0, for every y € poPpy. Also, let {v;}52, C P
be partial isometries such that p; = Z;’il v;v} and viv; < po, for all ¢. It is easy to
see that the net n, = Y o0, v;{,v} € L?(p1(M, eq)p1) witnesses the fact that Pp; is
amenable relative to Q.

2. Suppose that there exists a non-zero projection p; € P’ N pMp such that Pp; is
amenable relative to @ inside M. Let py € Z(P' N pMp) be the central support of p;.
By reasoning as in part (1) one deduces that Pp, is amenable relative to ) inside M.

3. If P < @, then there is a non-zero projection py € P such that pyPpg is amenable
relative to ). Thus by (1) and (2) there is a non-zero projection ps € Z(P'NpMp) such
that Pps is amenable relative to @ inside M.

The following lemma, established in [41, Corollary 2.3] (see also [55, Section 2.5]), pro-
vides a very useful criterion for relative amenability.

LeEmMA 2.3 ([41]). — Let (M, 1) be a tracial von Neumann algebra and QQ C M be a von
Neumann subalgebra. Let P C pMp be a von Neumann subalgebra, for some projectionp € M.
Assume that there exists a Q-M bimodule KX and a net &, € pL*(M)®qX such that

o limsup, ||z&, |2 < ||z||2, for all x € pMp,
e limsup,, [|£,]|2 > 0, and
o ||y&, — &nyll2 — 0, forally € P.

4¢ SERIE - TOME 48 —2015—N° 1



CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II; FACTORS 81

Then Py’ is amenable relative to Q inside M, for some non-zero projectionp’ € Z(P' NpMp).

Proof. — Let us first argue that we may additionally assume that lim inf,, ||£,]|2 > 0. To
see this, suppose that the net &, is indexed by a directed set I and denote 6 = lim sup,, ||€,||2-
Let J be set of triples 7 = (X,Y,¢), where X C pMp,Y C P are finite sets and e > 0. We
make J a directed set by putting (X,Y,e) < (X, Y, e)if X C X', Y CY'ande’ <e.

Fix j = (X,Y,¢) € J. By the hypothesis we can find n € I such that ||z&,, |2 < ||z||2 + €
and ||y&m — Emyll2 <, for all z € X, y € Y and every m > n. Since sup,,,>, [[€mll2 >
limsup,, |, |2, we can find m > n such that ||&,]|2 > $. Define n; = &,,. Then the net
(nj)jes clearly satisfies limsup; [|zn; |2 < [|z[|2, for all € pMp, liminf} [|n;[]2 > 0, and
lyn; — mjylla — 0, forally € P.

Now, choose a state, denoted lim;, on £>°(J) extending the usual limit. Note that
7 (M, eq) — B(L*(M)®qXK) given by 7(T)(£ ®q n) = T(£) ®¢g n is a normal *-homo-
morphism. Define ¢ : (M, eq) — C by letting

¥(T) = lim i ll2 2 (m (T)n;, m;)-

Then 1 is a state on (M, eq) such that ¢)(p) = 1, ¢ is P-central and 9|, s, is normal. By
choosing, as in the proof of [41, Corollary 2.3], the minimal projection p’ € Z(P’ N pMp)
such that ¢ (p’) = 1 and applying [41, Theorem 2.1], the conclusion follows. O

LEMMA 2.4. — Let (M, 7) be a tracial von Neumann algebra and QQ C M be a von Neumann
subalgebra. Let P C pMp be a von Neumann subalgebra, for some projectionp € M. Let w be
a free ultrafilter on N.

Suppose that P <ppe QY. More generally, assume that there exists a non-zero projection
po € P' N (pMp)¥ such that Ppg is amenable relative to Q¥ inside M*.

Then Py’ is amenable relative to Q inside M, for some non-zero projectionp’ € Z(P'NpMp).

Proof. — Let X C pMp,Y C P befinite subsets and € > 0. Since Ppg is amenable relative
to @, we can find a vector £ € L?(po(M“, eq-)po) such that

2.1 lz€ll2 < ||z|l2 forall ze X, |£]2> M, and

2
(2.2) ly€ — Eylla < e forall yeY.

By approximating £ in ||. |2, we may assume that £ is in the linear span of {aeg.bla,b € M“}.
Write £ = Zle aeqwb;, wherea;, b; € M. Foreveryi € {1,...,k}, represent a; = (a;.n)n
and b; = (bi n)n. Where a; »,b; , € M. For every n, define &, = >,_; aineqbin € (M, eq).

Then for all z € M, we have that ||z{||2 = lim,,—, ||2&.||2 and ||€z]|2 = limp,_, [|§n2]|2-
Using 2.1 and 2.2 it follows that we can find n such that n=¢, € (M,eq) satisfies
lznlle < ||z||2, for allz € X, ||n|l2 > @, and ||[y€ — &y|l2 < ¢, forally € Y. Con-
tinuing as in the proof of Lemma 2.3 gives the conclusion. O
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2.3. Property I'

A 11, factor M has property T of Murray and von Neumann [37] if there exists a sequence
of unitaries u,, € M with 7(u,) = 0 such that ||zu, — upz|2s — 0,forallz € M. Ifwisa
free ultrafilter on N, then property I' is equivalent to M’ N M*“ # C1. By a well-known result
of A. Connes [67, Theorem 2.1] property I is also equivalent to the existence of a net of unit
vectors &, € L2(M) © C1 such that ||z, — £,x]|2 — 0, forallz € M.

The following theorem is a joint result with S. Vaes (see the Appendix).
It shows in particular that if an inclusion P C M satisfies P’ N M*¥ = C1, then it also

satisfies an, a priori, stronger spectral gap property. We will use this fact later on to prove
Theorem 5.1.

THEOREM 2.5. — Let (M, 7) be a von Neumann algebra with a faithful normal tracial state.
Let P C M be a von Neumann subalgebra. The following two conditions are equivalent.

1. The inclusion P C M does not have w-spectral gap: there exists a net u; € (M),
in the unit ball of M satisfying lim; |zu; — w;z||2 = 0 for all x € P and satisfying
lim inf; ||us — Eprans(ui)|2 > 0.

2. There exist a Hilbert space H and anet of vectors &; € L*(M)® H satisfying the following
properties.:

o lim; [|[(z®1)& — &(z®1)||2 =0forallz € P,
e liminf; ||& — pre(paanen (&)l2 > 0,
e limsup; ||(a ® 1)& |2 < |la||2 and limsup;, ||¢;(a ® 1)||2 < |la||2 for all a € M.

REMARK 2.6. — In the initial version of this paper, it was falsely claimed that an in-
clusion P C M satisfies P’ N M“ = C1 if and only if it has spectral gap, i.e., every net
& € L2(M) © C1 of unit vectors that satisfy lim; ||2&; — &zl = 0, for all z € P, must
verify lim; ||€;|l2 = 0. For a discussion of the difference between these two spectral gap
properties, see the Appendix.

Next, we prove that the maximal central projection e of P’ N M* such that (P’ N M¥)e s
diffuse, belongs to M. More precisely, we have:

LEMMA 2.7. — Let (M, T) be a tracial von Neumann algebra and P C pMp a von
Neumann subalgebra, for a projection p € M. Let w be a free ultrafilter on N and denote
P, =P n(pMp)~.

Then we can find a projection e € Z(P' N pMp) N Z(P,,) such that

1. P,e is completely atomic and P,e = (P' N pMp)e.
2. P,(p — e) is diffuse.

Proof. — Lete € Z(P,) be the maximal projection such that P, e is completely atomic.

Let us prove that e € Z(P' N pMp). To this end, write e = (e,,),, where e,, € pMpisa
projection, and let a be the weak limit of e,,, as n — w. We have the following:
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Claim. — Let f1, fa,..., fm € M“. Then we can find a subsequence {k, },>1 of N such that
the projection f = (e, )n € (pMp)« satisfies f € P, and

To(ef) = 7'((12), To(efa) = T(a3) and 7,(ef;f) = 1wu(ef;ja), forall je{1,2,...,m}.

Proof of the claim. Let {x;};>1 be a ||.||2 dense sequence of (P); and write f; = (fjn)n,
for j € {1,2,...,m}. Recall that |z;e, — enz;|l2 — O, for all ¢, and that e,, — a, weakly,
as n — w. Therefore, for every n > 1 we can find k,, > 1 such that

)

1 1
lzier, — ek, zill2 < —, forallie {1,2,...,n}, |r(enek,) — T(ena)| < —
n n

1 1
|T(enex, a) — T(ena®)| < - and |7(enfjner,) — T(enfjna)|l < e forall je€{1,2,...,m}.

These inequalities clearly imply that f = (e, ), satisfies the claim. O

Now, using the claim we can inductively construct a sequence of projections
{fm}m>1 € P, such that 7,(ef,) = 7(a?), T, (efma) = 7(a®) and 7,(ef; fm) = Tw(ef;a),
for all j € {1,2,...,m —1} and m > 1. But then it follows that 7(ef;fn) = 7(a®), for
alll <5 < m.

Next, for m > 1, let p,, = ef.,,. Since e belongs to the center of P,, we deduce that
{pm}m>1 € P,e are projections such that 7, (py) = 7(a?) and 7, (p;pm) = 7(a?), for
alll < j <m.

Finally, since P, e is completely atomic, its unit ball is compact in ||.||2. Thus we can find
a subsequence {pm, }i>1 of {Pm}m>1 which is convergent in ||.||2. In particular, we have
that |7, (Pm,Pmi) — Tw®m)| < 1Pm;, — Pmyll2w — 0, asl,k — oo. This implies that
7(a?) = 7(a®). Since 0 < a < 1, a must be a projection. Thus we have that e, — al|3 =
7(en) +7(a) —27(ena) — 0,asn — w. Hence e = (e,)n, = a € pMpandsoe € P’ NpMp.
Since P, NpMp C (P’ NpMp)' N pMp, it follows that e € Z (P’ N pMp).

Let Py = Pe. Since e € M, we have that P, is a subalgebra of eMe and P} N (eMe)” = P,e
is completely atomic. The proof of [67, Lemma 2.6] then gives that P, N (eMe)* C eMe.
Thus P,e C eMe and hence P,e = (P’ N pMp)e. This proves that e satisfies the first asser-
tion. The second assertion is immediate by the maximality of e. O

2.4. Normalizers in crossed products by free groups

Very recently, S. Popa and S. Vaes have established the following remarkable dichotomy.

THEOREM 2.8 ([55]). — Let F,, ~ (N, T) be a trace preserving action of a free group on a
tracial von Neumann algebra (N, 7). Denote M = N xF,, andlet A C pMp be a von Neumann
subalgebra that is amenable relative to N, for some projection p € M.

Then either A <pr N or N pap(A)” is amenable relative to N inside M.
More generally, it is proven in [55, Theorem 1.6] that the same holds when F,, is replaced
by a weakly amenable group I' that admits a proper cocycle into an orthogonal representa-

tion that is weakly contained in the regular representation.
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2.5. Deformations of AFP algebras

Let (M;,71) and (Ms,72) be two tracial von Neumann algebras with a common von
Neumann subalgebra B such that 715 = 72 . Denote by M = M, *p M, the amalgamated
free product algebra (abbreviated, AFP algebra) and by 7 its trace extending 7, and 72. To
present the canonical decomposition of L?(M), let us fix some notations:

NOTATIONS 2.9. — Letn > 1

e Wedenote by S, = {(1,2,1,...),(2,1,2,...)} the set consisting of the two alternating
sequences of 1’s and 2’s of length n.

e ForJ = (i1,i2,...,in) € Sn, wedenote # , = L>*(M;, ©B)®p ---®p L*(M;, © B).

o Wealso let #,, = @ g H ,and ¥, = L*(B).

With these notations, we have L2(M) = @~ , # . This decomposition easily implies the
following lemma that will be useful in the sequel:

LEMMA 2.10. — Let (My,711), (M2, 72), (Ms,13) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that T1\g = T2 p = 73/5. Then

1. We can find a B-My bimodule # and an M,-B bimodule K such that, as Mi-M;
bimodules, we have L?>(My g M) © L?(M;) = L*(M,)®pH = K@pL?(M).

2. We can find a B-B bimodule ¥ such that L>(M; xg My xp M3) = L?(M;)®p £@5L*(M>),
as M1-My bimodules.

Let us recall from [32, Section 2.2] the construction of the free malleable deforma-
tion of M = My xg M,. Define M = M xg (BRL(F2)). Denote uy = uq,, Uz = Uq,,
where a;, as are generators of Fy. Note that we can decompose M = M, xg M,, where
M; = M x5 (B®L(Z)) and My = My +p (B®L(Z)), and the two copies of Z are the
cyclic groups generated by a; and as, respectively.

Consider the unique function f : T — (—m, n] satisfying f(exp(it)) = ¢, for all¢t € (—m,7].
Then a3 = f(u1) and ay = f(uy) are hermitian operators such that u; = exp(iay) and
ug = exp(iag). For t € R, define the unitary elements u} = exp(ita;) and u} = exp(itaz).

Since the restrictions of the automorphisms Ad(u%) and Ad(ub) of M, and M, to B are
equal (to idg), the formulae

0,(z) = uizul”, forz e M, and 6,(y) = ubyul”, fory e Moy,
define a 1-parameter group {6; }+cr automorphisms of M.

The following is the main technical result of [32].

THEOREM 2.11 ([32]). — Let A C pMp be a von Neumann subalgebra, for a projection
p € M. Assume that there exist ¢ > 0 and t > 0 such that T(0:(w)u*) > ¢, for all u € U(A).

Then either A <1 B, or N pyp(A)”" <m M;, for some i € {1,2}.
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Theorem 2.11 is formulated in a different way and proved under an additional assumption
in[32, Theorem 3.1]. For the formulation given here, see [22, Section 5] and [53, Theorem 5.4].

Note that since 7(u¢) = 7(ub) = Singt), we have that FEp(0:(z)) = (Sinﬁ%t))%x, for
all x € #,,. Thus, if we write z € M as ¢ = Z@O T,, where x,, € #,, then we have

@3 r(0u()a) = 7(BaOu()a) = 3 (Do 2

n=0
We derive next a consequence of Theorem 2.11 that we will need in the proof of Theo-
rem 6.3.

COROLLARY 2.12. — Let A C pMp be a von Neumann subalgebra, for some projec-
tionp € M.
If A is amenable relative to M, then either A is amenable relative to B or N parp(A)” < Mi.

Proof. — Assume that A is amenable relative to M. In the first part of the proof we show
that either Ap’ is amenable relative to B, for a non-zero projection p’ € Z(A’ N pMp), or
N pmp(A)” < M. To do this, we follow closely the strategy of proof of [41, Theorem 4.9].

Since A is amenable relative to M; we can find a net {&, }ner € L?(p(M, epr, )p) such that

2.4) |z&n — Enzl|l2 — 0, forall z € A, and

(2.5) (Y&n,&n) — 7(y), forall y € pMp.

Moreover, the proof of [41, Theorem 2.1] shows that &,, can be chosen such that &, = Cé , for
some ¢, € L' ((M, enr, )+ Thus, (€ny, &) = Tr(Cay) = (Yén, fg) — 7(y), forally € pMp.

Next, for t € R, we consider the automorphism «; of M given by ay(z) =z, for
all z € My, and a,(y) = wubyub”, for all y € M,. Since oy is an automorphism of M
that leaves M, invariant we can extend it to a trace preserving automorphism of (M, ey, )
by letting az(enr, ) = e, -

We also let # be the ||.||2 closure of the span of Mey;, M = {xey, y|lz € M,y € M} and
denote by e the orthogonal projection from L2((M, ey, )) onto .

CLaM. — Letz € A,y € M and t € R. Then we have

1. limy, [y (€0) 15 = 7(y*you(p)) < ||yl and lim,, |loy (€0)yll3 = T(yy*ae(p)) < llyll3.
2. limsup,, lye(a:(én))ll2 < [|y]l2-
3. limsup,, [z (€n) — a(én)zll2 < 2| (z) — 2|2

Proof of the claim. — (1) Since &, € pJ, by using 2.5 we get that
Iy (&)ll3 = (o7 (™ Y)éns &n) = (Bar (o (U7 Y))én, &n)
= (pEn (o (Y y))kn, &n) — TEum (07 (¥ y))p) = T(y*you (p)).

The second inequality follows similarly using the fact that (£,y,&,) — 7(y), for all
y € pMp.

(2) Since (M © M) L J and H is a left M-module, we derive that
lye(as(€))II3 = (¥ ye(as(En))s e(ae(€n)) = (Bar(y y)e(as(€n), el (€n)))
= lle(Bar(y*y)? e (€)1 < |1 Ear(yy) T e ()12
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On the other hand, by (1) we have that || Eas (y*y) 2 o (&) [l2 < [ Ea (y*9) 2 [l2 = [ly]l2-
(3) Since
[z (§n) — e (En)zllz < l(z — ae(z))ar(én)ll2 + llar(én)(z — ar(2))ll2 + [26n — Enzll2,
the inequality folows by combining (1) and 2.4. O
Let J = (0,00) x I. Given (t,n) € J, we denote n;,, = o(&,) — e(a:(&,)) and
Ot,m = ||M1,n||2- For the rest of the proof we treat two separate cases.
Case 1. — We can find t > 0 such that limsup,, 6; , < %.
Case 2. — For all t > 0 we have that lim sup,, d; ,, > @.
In Case 1, fix z € %(A). Since  is a left M-module and (M © M)# L H we get that
[ Ens (e (@))ae(§n)ll2 2 lle(Enm (e () (§n))ll2 = lle(az(z)e(a(£n)))ll2
(2.6) 2 lle(ar(z)ae(En))ll2 — btn
2 lle(ar(én)ae(@))ll2 = [[2€n — Enzll2 — ¢ n-
On the other hand, since % is a right M-module we deduce that
2.7 lle(eu(En)ar(@))ll2 = lle(ar(én))u(@)ll2 = llew(En)ar(@)llz — 0en = I€nzll2 — 6
By combining part (1) of the Claim with Equations 2.6, 2.7, 2.4 and 2.5 we derive that
(2.8)
[ Enr (s ())ll2 > Tim || Ear (e (2)) s ()2
> limninf(||§nx||2 — lx&n — Enzll2 — 26:,0)
= ||lz||2 — 2limsup d; n, = ||p|l2 — 2limsup d; , > 0, forall =z € U(A).

Now, recall from notations 2.9 that L*(M) = Ho&D,,>,(D scs,, H s)- Thus, we can

write © = 2o + Y m>1 T4, Where z, € H . It is easy to see that if ¢, denotes the number
JESm

of times 2 appears in 4, then Eys(ay(z /) = (%)201 x 4. Therefore,

sin(mt) | 4.
1Ea (as(@))l13 = llzoll3 + > (T)4 /|l 4113-
m>=1
JESm
On the other hand, by 2.3 we have
SlIl(’/Tt)
r(Bu@)s) = laol3+ 32 (I
m>1
jeSm
Since every J € S, is an alternating sequence of 1’s and 2’s, we have that 2c, > m — 1.

By combining the last three facts, we conclude that 7(0; (x)z*) > (Sm("t V2| Eamr ( ()13,
for every x € M. Together with 2.8 this implies that inf,¢ ¢,4) 7(0:(z)z*) > 0.

Thus, by Theorem 2.11 we get that either A <3, My or A <y My, If A <, My, then[32,
Theorem 1.1] gives that either A <p; B or A a(A)” < M. Since by Remark 2.2, having
A < B implies that there exists a non-zero projection p’ € Z(A’ N pMp) such that Ap’ is
amenable relative to B, the conclusion follows in this case.
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Therefore, in order to finish the proof of Case 1 we only need to analyze the case when
A < Ms. By Remark 2.2 we can find a non-zero projection p’ € Z(A’ N pMp) such that
Ap' is amenable relative to M,. By the hypothesis we have that A and thus Ap’ is amenable
relative to M;.

We claim that Ap’ is amenable relative to B. To this end, denote
K = L*((M, err,))@m L*((M, errs)).-

Lemma 2.10 provides a B-B bimodule # such that L?(M) = L?(M;)®p£®pL*(M>), as
M;-Ms bimodules. Thus, we have the following isomorphisms of M-M bimodules

K = (L*(M)@p, L (M) @p (L (M) @1, L2 (M) 2 L (M) @, L (M) @1, L (M)
~ L2(M)®u, (LA (M) ®@pLRpL*(My))®n, L2(M) = L*(M)®pLRpL*(M).

Since Ap’ is amenable relative to both M; and Mo, the first part of the proof of [55,
Proposition 2.7] implies that the p’ Mp'-Ap’ bimodule L?(p'Mp') is weakly contained in
the p’ Mp/'-Ap’ bimodule p’ Xp’. Thus the p’ Mp'-Ap’ bimodule p' L2(M)®p LR L*(M)p’
weakly contains the p’ Mp’-Ap’ bimodule L?(p'Mp'). By Lemma 2.3 it follows that Ap’ is
amenable relative to B. This completes the proof of Case 1.

In Case 2, we claim that there exists a net (n;,) in % such that ||zn;, — gez||y — 0, for
all z € A, limsupy, ||ynkll2 < 2||y||2, for all y € pMp, and lim supy, ||pnx||2 > 0.

Towards this, let £k = (X,Y,¢) be a triple such that X C A, Y C pMp are finite sets
and € > 0. Then we can find ¢ > 0 such that
Iol:

10

Letz € X andy € Y. Firstly, since n;, = (1 — e)(w(€,)) and z € M we get that
lzne,n — e nzl|2 < ||z (€n) — ou(€n)x] 2. This inequality together with part (3) of the Claim
and 2.9 implies that lim sup,, |20t — M n|2 < 2||ou(z) — z||2 < €.

€
(2.9) lag(z) — z||2 < 2 forall z € X, and |a:(p) — pll2 <

Secondly, by combining parts (1) and (2) of the Claim we get that lim sup,, ||y7¢,n]l2 < 2|/y|l2.
Thirdly, part (1) of the Claim gives that

lim sup ||pn¢n|l2 = lim sup(||pa (&n)ll2 — lle(at(€n))ll2)
= llpat(p)ll2 — lim inf [|e(e; (§5)) l2-

Also, since ||€,||2 — ||p]l2 we have that

lim inf [le(a () l2 = \/IIPH% = limsup .03 < <-lpll2-

Since 2.9 implies that [[pay(p)[2 > +5p|l2. we altogether deduce that lim sup,, [|[pne,n 2 >

(% - 2l

The last three paragraphs imply that for some n € I, g, = 1 ,, satisfies || zn, — |2 < €,
forallz € X, |ynellz < 2[|yllz + &, forally € Y, and ||pnkllz > (35 — ?)Hp”g It is now
clear that the net (1) has the desired properties.

Finally, by the definition of #, the M-M bimodule L?((M, ey, )) © # is isomorphic

to the M-M bimodule (L?(M)& L*(M))®u, L*(M). Since M = M xp (BRL(Fy)),
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Lemma 2.10 (1) provides a B-M bimodule % such that L?(M) & L*(M) = L*(M)®pX.
Thus, we have the following isomorphism of M-M bimodules

L3((M,en,)) © H = L2 (M)®p (K@, L2 (M)).

Since n, € L2((M,epr,)) © H, for all k, by Lemma 2.3 there is a non-zero projection
p' € Z(A’ NpMp) such that Ap’ is amenable relative to B. This finishes the proof of Case 3.

Now, to get the conclusion, let pg € Z(A’ N pMp) be the maximal projection such that
Apy is amenable relative to B. It is easy to see that py € N parp(A) N pMp.

Letp; = p—po. If p1 = 0, then A is amenable relative to B. If p; # 0, then Ap; is amenable
relative to M. By the first part of the proof either Ap’ is amenable relative to B, for some
non-zero projection p’ € Z(A' N pMp)p1, ot N p, mp, (Ap1)” < M;. By the maximality
of po, the former is impossible; since N parp(A)p1 C N p, mp, (Ap1), the latter implies that
N pmip(A) <pr M. O

2.6. Random walks on countable groups

We end this section with some facts from the theory of random walks on countable groups
that we will need in Section 3. Let 1 and v be probability measures on a countable group I'.
The support of p is the set of g € T' with u(g) # 0. The convolution of y and v is the
probability measure on I given by (1 % v)(g) = > ,cr #(gh™")v(h). For n > 1, we denote
W=k ke %

n times

The next lemma is well-known (see for instance [17, Theorems 2.2 and 2.28]). For the

reader’s convenience, we include a proof.

LEmMA 2.13. — Let T be a finitely generated group and denote by g : T' — N the word
length with respect to a finite set of generators S. Let u be a probability measure on T' whose
support generates a non-amenable subgroup and contains the identity element.

1. Then p*™(g) — 0, forallg € T.
2. Assume that } 1 ls(9)Pu(g) < +oo, for some p € (0,1]. If ¥ < I is a finitely
generated nilpotent (e.g., cyclic) subgroup, then p*"(h¥k) — 0, for all h,k € T..

Proof. — (1) Let A : T — %(¢2(T")) be the left regular representation of I'. Define the
operator T : £2(T') — 2(T) by T = der 1(g)A(g). Since the support of i generates a non-
amenable group, by Kesten’s characterization of amenability (see e.g., [4, Appendix G.4]) we
have that || T[] < > o pu(g) = 1.

Denote by {8, }4er the canonical orthonormal basis of ¢2(I"). Then forn > land g € T
we have

pg) = Y ug)nlgz) - plgn) = (T7(3.),8,).

91,925--,9n €T
9192:9gn=9g

This implies that p*"(g) < ||T||" and since ||T’|| < 1, we are done.

(2) Define the product probability space (Q,v) = (I, uY) together with the shift
T:Q — Qgiven by (Tw),, = wpt1, forallw = (wy,), € Q. Then T is an ergodic, measure pre-
serving transformation of (2, v). For n > 1, define X, : Q — I by letting X, (w) = wiwa - - - wy,.
Note that p*" = (X,,)«(v).
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Further, let p € (0, 1] as in the hypothesis and define S,, : Q — [0,00) by Sy, (w) = Ig(Xn(w))P.
Since p € (0, 1], we have that (a+b)? < a? + P, for alla,b > 0. Recall that for every g,h € T
we have that £s(gh) < €s(g) + ¢s(h). Also we have that X, 1, (w) = X, (w) X, (T™(w)),
foralln,m > 1 and w € €. By combining these three facts we deduce that

(2.10) Sntm (W) < Sp(w) + Sy (T (w)), forall we Q and n,m > 1.

Additionally, by using the hypothesis we get that

(2.11) /QSl(w)du(w) =/QZS(X1(W))pdV(w) =/€S(w1)pd,u(w1) < +o0.

T

Since T is ergodic, Equations 2.10 and 2.11 guarantee that we can apply Kingman’s sub-
additive ergodic theorem. Thus, we can find a constant o € [0, 00) such that 1S, (w) — «,
for v-almost every w € Q. It follows that v({w € Q|S,,(w) > (e + 1)n}) — 0, as n — oo.

Hence, if we let f(n) = ((a + 1)n)%, then v({w € Q| £s(Xn(w)) > f(n)}) — 0,as n — 0.
Since (X, )« (v) = p*™, we deduce that

(2.12) en = p"({g €' Ls(g) > f(n)}) — 0, asn — oo.

Now, since X is a finitely generated nilpotent group, it has polynomial growth. Thus, we
canfind a,b > Osuch that |{g € 3| £s(g) < n}| < anb, foralln. Denoting ¢ = £5(h)+£s(k),
we get that

(2.13) {g € hZk| £s(g) < n}| < a(n + ¢)?, foralln.

Recall from the proof of part (1) that u**(g) < ||T||", forall g € I'and n > 1. Combining
this fact with 2.12 and 2.13 yields that
W (hER) < e + u7({g € WS £s(g) < F(n)})
< e+ a||T|™(f(n) +¢)°, foralln > 1.

Ase, — 0, ||T|| < 1and f(n) grows polynomially in n, we conclude that p*"(hXk) — 0.
O

3. A conjugacy result for subalgebras of AFP algebras

Let (M1, 1) and (Ms, 72) be two tracial von Neumann algebras with a common von Neumann
subalgebra B such that 7y = 72|5. Denote M = M; *p M, and let M = M x5 (BRL(F2)).
For t € R, we consider the automorphism 6; : M — M defined in Section 2.11. We denote
by {ug}ger, C L(F2) the canonical unitaries and consider the notations from 2.9.

In this context, we have

LEMMA 3.1. — Let 9 = (i1,42,.-.,%n) € Sp and J = (41,52, ,9m) € Sm, for some
n,m > 1. Letxy € M;, ©B,xo € M;, ©B,...,z, € M;, © Bandy, € M;, © B,
y2€szeB,...7ymEMjmeB.

Letgl,gg,...,gn+1,h1,h2,...,hm_HG]FQ‘
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Then

(Ug, T1Ug, T2 - -+ Ug, Ty, 1 Uk Y1URo Y2 "~ Uk, YmUhyy )

— {<x1m2"'xnayly2"'ym>7 lfn:mv‘j:j7andgk:hlmforallke {1727“‘7”—'—1}; and

0, otherwise.

Proof. — Denote Ay = {ug}ger,\{e}» A1 = M1 © Band Ay = My © B. We say that
z = 2129 - - - Zy 18 an alternating product if for all ¢ we have that z; € A;, for some j € {0, 1, 2}
and that z; and z; 41 belong to different A;’s. It is clear that 7(z) = 0, for any alternating
product z.

We proceed by induction on max{n, m}. Denote by a the quantity that we want to
compute. We have that

o= T(u,*;mﬂy:; . -y;‘uzzyi‘uh;lglxlugzxg S Tplg, )
Assuming that « # 0, let us prove that the first alternative holds.
Firstly, we must have that g = hy and i; = j;, otherwise a would be the trace of an alter-
nating product. Hence 1,51 € M;, © Band v = 7(up , yn - Y3up, (Y1 21)ug, T2 -+~ Tnlig, ).

Write yjz1 = b+ 2, whereb € Band z € M;, © B. Since uj, ., Y, -+ Y3}, 2Ug, T2 -+ Ty,
is an alternating product and b commutes with Fo we deduce that

a = T(u2m+1y:1 T y;uZQbugz'TQ T xnugn+1) = <u92 (be)ugs T TnpUg, gy Uy Y2Ung ~ ymuhm+1>'
By induction we get that n = m, i3 = jo,..., 4, = j, and that go = ha, ..., g, = hy,. It

also follows that & = (bxozs - - - T, Y2ys - - - Yn)- Since the latter is equal to (z129 -+ Tn, Y192+ * - Un),
we are done. O

Next, we present a crossed product decomposition of M (see [26, Remark 4.5]). Let N be
the subalgebra of M generated by {u, M uy|g € Fo}. Then N is normalized by Fy = {u,}ger, -
Since M is generated by N and Fy, and En(uy) = 0, for all g € Fy \ {e}, we conclude that
M = N x Fy, where F, acts on N by conjugation.

Moreover, if ¥ < [Fy is a subgroup, then for all g1,g2,...,9n+1 € [Fo and every
r1,...,T, € M, we have that
(3.1

B ) ug T1ug, o - Ug, Tnlg, ifg1g2++ - gnt1 € X, and
Nz (Ug, T1Ug, T2 - - Ug, Tnllg, ) =

0, if g192 - gngn+1 & 2.

Note that the subalgebras {u, Mu}}4er, of M are freely independent over B. Therefore,
N is isomorphic to the infinite amalgamated free product algebra M g *M *xp ---. If we
index the copies of M by Fs, then the action of F; on N = M xg *M *p --- is the free

Bernoulli shift.
We are now ready to state the main result of this section.

THEOREM 3.2. — Let A C pMp be a von Neumann subalgebra, for some projectionp € M.

Lett € (0,1). Assume that 6,(A) <;; N. More generally, assume that 6,(A) <; N x X,
where ¥ = {(a) is a cyclic subgroup of Fs.

Then either A <y B or N p(A)" <m M, for some i € {1,2}.

Theorem 3.2 is an immediate consequence of Theorem 2.11 and the next lemma.
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LEMMA 3.3. — Lett € (0,1) and zj, € (M), be a sequence such that T(0,(zx)x}) — 0.

Then || Ex (y0;(z1)2) |2 — 0, for everyy, z € M.

More generally, if ¥ is a cyclic subgroup of Fa, then | Enxx(y0:(zr)z)||2 — 0, for every
y,2 € M.

Proof of Theorem 3.2. — 1f 0:(A) <;; N x X, then by Theorem 2.1 we can find v € M such
that inf, c g4y | En s (v0;(u)v*)||2 > 0. Lemma 3.3 then implies that inf, c g, a) 7(0; (u)u*) > 0.
Finally, the conclusion follows from Theorem 2.11. O

Proof of Lemma 3.3. — Since M = N x F,, by Kaplansky’s density theorem we may
assume that y =uy, and z = uy, for some g,h € Fo. Thus, our goal is to prove that
| Ensis(ugbi(xk)un)|l2 — 0. Let us first show that this is a consequence of the next lemma
whose proof we postpone for now.

LemMma 3.4. — Fixt € (0,1) andforn > 0, define cn = sup,cy, | |zfl,<1 1 EN x5 (gl (T)un) (2.

Then c,, — 0, as n — oo.

Assuming Lemma 3.4, let us finish the proof of Lemma 3.3. Write z = ZZOZO Thoms
with x,,, € #,. By Equation 2.3 we have that (0, (z)z}) = zfzo(w)%nxk,nng.

Tt
Since 7(0:(xk)xy) — 0 and sin(nt) > 0, we derive that ||z, n||2 — 0, foralln > 0.

Forn > 1and J = (iy,42,...,in) € Sn, we let X, C L?(M) be the closure of the linear
span of
{Uh1$1Uh2$52 CUR, TpUh, |h17 ceey hn+1 eFy,x1 € Mi1 6 B,x, € Mig 6B,...,t, € Mzn © B}

By Lemma 3.1 we have that if /€ S, and J € d,,,, then X, L X, unless n=m
and J = /. Thus, denoting X', = @ 5, K s, we have that X, L K, for alln # m.

By using the definition of 6, and Equation 3.1 we derive that 6,(J,) C X, and
Enus(X,) C K ,. Since KX, is an L(F3)-L(IF3) bimodule, we deduce that

ENNg(ugﬁt(ﬂj)uh) C %‘/.

From this we get that En s (ug0(H,)un) C Ky, foralln > 1
Since the Hilbert spaces {,, },>1 are mutually orthogonal, the vectors

{Enss(ugbe(rn)un) n>1

are mutually orthogonal, for all k& > 1. By using this fact, the inequality ||¢ + 7|3 <
2(/1€112 + |Iml13) and the definition of ¢,,, we get that

IEN s (ugby(zr)un) |13 < 2[| Enss (ugh(zr,0)un)ll5 + 2| Z En s (ughi (0 )un)|l3

n=1
)

= 22 | EN s (g2 (Th,n )un) |13 < 220721”3% nll3-

n=0

Finally, let € > 0. Since ¢,, — 0 by Lemma 3.4, we can find ng > 1 such that ¢,, < ¢, for
all n > nyg. Since ||z |2 — 0, for all n, we can also find kg > 1 such that ||z ;|2 < nio, for
allk > ko and alls € {1,2,...,n9 — 1}. Also, note that ¢,, < 1, for all n.
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By using the above equation and the inequality 332 [|lzx..|13 < [|lzx|3 = 1, it follows
that

€ [e.e]
| En s (ug B (zr)un)|3 < 2(71(](”—0)2 + €2 Z |zknll3) < 4e?, forall k> k.

n=ngo

Since € > 0 was arbitrary, we are done. O

Proof of Lemma 3.4. — For 4 € Sp,letc, = SUPe , ||z]la=1 |1 En s (ugbe(x)up)]2.
Recall that #,, = @ 5, H ;. Since uy0:(H s)un, C K, and the Hilbert spaces {K ;} sesg,
are mutually orthogonal by Lemma 3.1, it follows that ¢, = max cg,_cy.

In the first part of the proof, we will find a formula for ¢, for a fixed = (41,42, ... ,%5) € Sn.

Recall that a; and a2 denote the generators of Fy. Let G; = (a1) and G2 = (a2) be the
cyclic subgroups generated by a; and as.

Let g1,h1 € G4y, g2, h2 € Giy,....Gn, by € G, Then by Lemma 3.1, the map given by

_ * * *
(3.2) Vo1,h1,92,hacesgn b (T1T2 * - Tp) = Ug, T1UR, Ugy ToUp, * * * Ug, Ty,

forallzy € M;, © B,zy € M;, © B, ...,z, € M; © B extends to an isometry

Vg1,h1792,h27---79n7hn : ﬂj - LQ(M)
Moreover, Lemma 3.1 implies that Vy, n, g5 ho,....gn .k (H 1) L Vot nt g mrogr e (H 4), unless
we have that g; = g}, hy 9o = A\ gh,hytgs = hs b, ... bt g = R gl it = RITL
Since G1 N G2 = {e}, this implies that g; = g1, h1 = A}, ..., g0 = gl hn = hl,.
Now, let #; : G1 — C and f, : G2 — C be given by £1(g1) = 7(ujuj, ) and fa(ga) = T(ubuj,).
Since u¢ € L(G1) and ub € L(G5), we can decompose
(3.3) ul = Z Bi(g1)ug, and ub = Z B2(g2)ug,
91€G1 g2€G2
where the sums converge in ||.||2. Since u} and u}, are unitaries, we have that
(3.4) Y Bl = Y 1Ba(e) = 1.
91€G 92€G2
If v =2x129---2,, for some z; € M;, ©B,20€ M;, ©B,...,x, € M; © B, then
by 3.3 we have

t *

in

= > Bi, (91)Biy (h1) i, (92) Biz (h2) - + - Bi,, (9n) B, ()

91,h1€Gi; g2,h2€Giy,....gnhn €Gi,,

ot ¢ ¢ * ¢
ugOy (T)up = ugls T1U;, Uj, Tol, U Tl Up

S UgUg, T1UR, Ug, ToU,, * * * Ug, Ty, U
By using Equations 3.1 and 3.2, we further deduce that
(35) ENNE(’U.gat(.'IZ)uh)
= Z Biy (91)Bi, (h1)Biy (92) Biy (h2) - - - Bi,, (9n) Bi,, (hn)

91,h1€Gi;,92,h2€Giy,....gnhn €Gy,
gg91hi1g2ha---gnhnh€X

T unglyhl,gz,hmm,gmhn ('T)uh
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Since the linear span such elements x is dense in J 4, this formula holds for every «z € ¥ ,.
Since the isometries Vg, py.gs.h,....g.,h,, Dave mutually orthogonal ranges, Formula 3.5 im-
plies that

| BN s (ug By (z)un) |13

= |l=lI3 > 182 (91) [B: (h1) Bz (92)17 1Bz (h2)

91,h1€Gi;,92,h2€Gy,...,gnhn €G;,
gg1higz2ha---gnhnh€X

<185, (90) [*1Bi,, ()|,
forall z € ¥ ,.
Thus,
(3.6)
¢y = > 185, (91) 18, (h1) 12185 (92) 21 Biz (h2) - -+ 15, (9) P18, ()

91,h1€Giy,92,h2€Giy,....9nhn €Gi,,
g91h1g2ha---gnhnh€X

In the second part of the proof, we use this formula for ¢, to conclude that ¢, — 0. By 3.4
we can define probability measures p1 and po on Fy by letting

(g) = {wi(g)ﬁ ifg € Gi, and

3.7
G- 0, ifg & Gy.

Denote p = 7 * p1 * p2 * po. Then we have
Cramm 3.1. — p*(gXh) — 0, for all g, h € F.

Assuming the claim, let us show that ¢, — 0. Firstly, the claim gives that
(v1 * ™ x 15)(gXh) — 0, for any probability measures vq,v5 on Fy and all g,h € Fo.
Secondly, the Formula 3.6 rewrites as

Cy = (Bay * iy * Hiy * iy =+ % i, % Hi, ) (97 SR,

Since i1 # ia,42 # i3,...,9n—1 # in, We have that p;, * Py % iy X flig K iy % i, €
{p B w5 5 g %, o * po % w*E) g % po % w771 % py * py}. By combining these
facts it follows that ¢,, — 0, as claimed.

Proof of the claim. — Firstly, let us prove the claim in the case ¥ = {e}. By Lemma 2.13 (1)
it suffices to show that the support of © generates a non-amenable group.

Recall that u,, = exp(ia;) and u! = exp(ita;). Thusif n € Z, then
sin(m(t —n)) )2 = (sin(mrt))?
7t —n) - om2(n—t)2’
Since t € (0, 1), it follows that y; (a7) # 0 and similarly that ys(a%) # 0, foralln € Z. As a
consequence the support of u contains a; and as, and thus generates the whole Fs.

(3.8) pa(al) = |r(ujugy)|* = |7(ui™)* = (

In general, assume that ¥ = (a), for some a € Fy. Let £ : Fo — N be the word length
on Fy with respect to the generating set S = {ay, afl, az,ay 1. Note that 3.8 also implies
that ’ull(a?) = /JQ((],S) g W%’ for all n e Z, Where C = ﬁ
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Letp € (0,1). Since |i + j|? < |3|” + |j|*, for 4,5 > 0, we get that
) . i|P 4+ |j|P
E D % ny _ § P E 2 J <02 § : |Z|
|n| (/‘Ll Nl)(al) |TL| ( /“Ll(al)lu'l(a’l)) (|Z|2+1)(|]|2+1)

nez neZ i+j=n i,jEL

1p 1

=207 E i E 0.
(. |7'|2 1)( |J|2 1) =
i€ JEL

Now, the support of u is {aT*al|m,n € Z} and £(aT*aly) = |m| + |n|, for every m,n € Z.
By using the last inequality and the analogous one for us we derive that

Y U9Pulg) = Y (Im]+Inl)P (1 * m)(ai") (uz * pz)(ap)

g€F2 m,ne”
<Y mlP(pa * pa) (@) + > InfP (u2 * p2)(al) < oo.
MEZL nez

Since X is a cyclic group, we can now apply Lemma 2.13 (2) to get the conclusion of the
claim. This finishes the proof of the lemma. O

4. Relative amenability and subalgebras of AFP algebras, I

Assume the notations from Sections 2.5 and 3. Thus, (M1, 1), (Ms, 72) are tracial von
Neumann algebras, M = M g My, M = M xp (BRL(F;)) and N = {ugMuylg € Fa}".

Our goal in the next two sections is to understand what subalgebras A C M have the
property that 6,(A) is amenable relative to N, for some (or all) ¢ € (0,1).

We start by considering the case A = M.

THEOREM 4.1. — Suppose that M = My xg My is a factor and let p € M be a projection.
If 0,(pMp) is amenable relative to N inside M, for some t € (0,1), then either

1. Mip; is amenable relative to B inside M, for some non-zero projection p1 € Z(My), or
2. Masps is amenable relative to B inside Mo, for some non-zero projection ps € Z(Ms).

In particular, if B is amenable and M7, Ms have no amenable direct summands, then
0:(pMp) is not amenable relative N, for any ¢ € (0, 1). It would be interesting to determine
whether the conclusion of Theorem 4.1 can be strengthened to “M is amenable relative to B”.

In preparation for the proof of Theorem 4.1, we establish a useful decomposition of
the M-M bimodule L?((M,ey)). Note that ugMuy C N, forall g € Fa. Equivalently,
[ugenuy, M] = 0, for every g € FFy. Therefore, L?((M,ey)) contains an infinite direct sum
of trivial M -M bimodules:

H = @ L*(M)ugenu;.

g€F2

If we let #5 = L2((M, en)) & #, then we have the following

LEMMA 4.2. — There is a B-M bimodule X such that 5 = L?*(M)®pX, as M-M
bimodules.

4¢ SERIE - TOME 48 —2015—N° 1



CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II; FACTORS 95

Proof. — Since M = N x F, we have that

L M eny) @ L¥( N)ugenuy,.
g,h€F2
For g € Ty, let o, be the automorphism of N given by oy(z) = uyzuy, for x € N. Then
the N-N bimodule L?(N)ugenuj, is isomorphic to L?(N) endowed with the N-N bimodule
structure given by z - £ - y = z€o -1 (y), forall z,y € N and £ € L*(N). For simplicity, we
denote this bimodule by NL2(N)Ugh71 (N)-

Next, we define the M-M bimodules ¥ = L*(N)o L*(M) and £y =y L*(N),, (1) The
first paragraph implies that #> = @72, (£ @ @ cp,\ (o) Lo)» a8 M-M bimodules.

Now, denote P = (Uk€F2\{e}UkMUZ)H and Py = (UkeFQ\{e,g}ukMuZ)”, for g € Fy\ {e}.
Then N = M g Pand N = M xp o4,(M) *p P,. By using Lemma 2.10 we can
find a B-M bimodule #’ and a B-0,(M) bimodule #;, such that ¥ = L?*(M)®p% and
Ly =L*(M)®p2,, forallg € Fs \ {e}. In combination with the last paragraph this yields
the conclusion. O

In the proof of Theorem 4.1 we will also need a technical result showing that for ¢ € (0, 1),
the angle between the Hilbert spaces u} #u! " and ubHub™ is positive.

LEMMA 4.3. — Let t € (0,1) and u},ul € L(Fy) be the unitaries defined in Section 2.5.
Fori € {1,2}, wedenote by P; the orthogonal projection from L?>({M, ex)) onto £; = utH ut"
Then ||P1P2|| <1

Proof. — Let S = Pyjp, : L2 — £i.Since ||PyP,| = ||S]| it suffices to prove that
IIS|| < 1. We will achieve this by identifying S with the inflation of a certain contraction
from L(F7).

Given g € Fp, letay = |7(u}” uhu})|?. Note that > ger, &g = 1. If we define the operator
T =3 ,er, @gA(g) € L(F2), then it is clear that [|T| < 1.

We claim that ||T'|| < 1. To see this, recall that a; and ag are generators of Fy. By using the
same calculation as in 3.8 we get that uf =Y, %uwf andub =3, %uag.
It follows that a4 # 0 if and only if g € {aT*ay|m,n € Z}. Thus, the support of a gener-
ates the whole Fy. Since IF5 is non-amenable and a4 > 0, for all g € Fy, we deduce that

1T <> ger, 29 = 1.
Next, for i € {1,2}, we define the unitary operator U; : L?(M)®¢?(Fy) — #£; given by
Ui(€ ® 8y) = ulug€enuiul”, for £ € L*(M) and g € Fa.
Let g, h € Fy. Since ujul “ubu, € L(F2), we get that Ex (ujul “ubuy) = 7(ujul “ubugy)1.
Thus, for every &, € L?(M) we get that
(U SU (€ ® 8,),m1 84} = (Pi(ubug€enuiu’), ufunmenujus")
= (uhug€enujub”, ujunpnenujuy”) = |7(ujui ubug)* (€, n)
= Qpg-1 <£a 77> = <(1 ® T)(f ® 69)3 n ® 6h>
Therefore, S = U;1(1 ® T)U; and since ||T|| < 1 we get that ||.S]| < 1. O
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Proof of Theorem 4.1. Assume that 6;(pMp) is amenable relative to N, for some non-zero
projection p € M. Since M is a II; factor it follows that 8; (M) is amenable relative to N (see
Remark 2.2). By [41, Definition 2.2] we can find a net of vectors &, € L?((M, ey)) such that
(x€n,€n) — T(x), forall z € M, and ||yé, — Enylla — 0, for all y € 6,(M).

We denote &) ,, = ul "¢ ul and &, = ub & ub. Since 6;(y) = ulyul™, for ally € M; and
i € {1, 2}, we derive that

(41) ||y§1,n_€1,ny|| - Ov fOI' all Yy S Mla and ||y§2,n_§2,ny|| - 07 fOI‘ all ) S M2'

We also clearly have that

4.2) (2€1 my 1) — T(x) and (z€sp, &) — 7(x), forall z e M.

Denote by e and f the orthogonal projections from L2((M, ey)) onto #y = L*((M,en)) © H
and onto H = P e, L?(M)ugenu, respectively. Since e + f = 1, we are in one of the
following three cases:

Case 1. limsup,, |le(&1,,)]l2 > 0.
Case 2. lim sup,, ||e€z2,5)|]2 > 0.
Case 3. [[§1,n — f(€1,n)ll2 = O and [[€2,n — f(&2,n) |2 — O

In Case 1, since # 5 is an M-M bimodule, Equations 4.2 and 4.1 imply that

limsup [|ze(&1,0)l2 < |2,
n

forallz € M, and ||ye(£1.,) — e(€1.)yllz — 0, forally € M;.

We claim that there is a B-M; bimodule K5 such that #5 = L2(M;)®p K2, as My-M;
bimodules. Assume for now that the claim holds. Then, since limsup, ||e({1,»)|l2 > O,
Lemma 2.3 implies that M;p; is amenable relative to B inside M;, for some non-zero
projection p; € Z(My).

Now, let us justify the claim. Firstly, Lemma 4.2 provides a B-M bimodule K such that
Ho = L2(M)®pK, as M-M bimodules. Since M = M; x5 My, by Lemma 2.10 we can find
a B-M; bimodule % such that L?(M) = L?(M;)®pX 1, as M;-M; bimodules. Finally, it
is clear that the B-M; bimodule Xy = X ;®pX satisfies #o = L?(M;)®p Ko, as My-M;
bimodules.

Similarly, in Case 2, we get that Mspo is amenable relative to B, for a non-zero projection
D2 € Z(Mg)

Finally, let us show that Case 3 is impossible. Indeed, in this case we would have that
1€ — wif(&rn)ul™|la — 0and ||&, — ubf(éan)ub™]l2 — 0. Now, as in Lemma 4.3,
fori € {1,2}, we let P; be the orthogonal projection from L?((M,ey)) onto £; = utHut".
Since uf f (& n)ut” € £;, we deduce that ||€, — Py(€,)]l2 — 0 and ||&, — Py(€,) ]2 — O.

Thus, ||€, — P1P2(€,)|l2 — 0. On the other hand, Lemma 4.3 shows that | P; P»|| < 1. By
combining these two facts we derive that ||£,||2 — 0, which is a contradiction. O
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We end this section by noticing that Theorem 4.1 yields a particular case of Theorem 1.1:

Proof of Theorem 1.1 in the case Ty and 'y are non-amenable, and A is amenable. Therefore,
letT' ~ (X, 1) be a free ergodic pmp action of T' = I'y %5 T'p. Recall that (), g;Ag; ' is finite,
for some g1, 92,...,9, € I, and denote M = L>°(X) x T

We claim that any Cartan subalgebra A of M is unitarily conjugate to L>°(X). To this
end, notice that M = M; xg Ms, where M; = L*°(X) xI'y,Ms = L*®(X) x I'y and
B = L>(X) x A. Let M, {6, }+er C Aut(M) and N be defined as above.

Let ¢t € (0,1). Since M = N x Fy, by applying Theorem 2.8 to 6,(A) C M we have that
either 6;(A) <,; N or 6;(M) is amenable relative to N inside M.

In the first case, Theorem 3.2 gives that either A <3, B = L®(X) x A or M <y M;
for some ¢ € {1,2}. If the first condition holds, then since M is a factor, [24, Proposition §]
implies that A <pr L=(X) x (N7, giAg; ). Thus, A <5 L>(X) and [47, Theorem A.1]
gives that A and L*°(X) are indeed unitarily conjugate. On the other hand, the second
condition cannot hold true. To see this, let g; € T'y \ A and g2 € T'y \ A. Then the unitary
U = ug, g, satisfies | Eag, (zu™y)||2 — 0, for every z,y € M.

In the second case, Theorem 4.1 implies that M;p; is amenable relative to B for some
p; € Z(M;) and some ¢ € {1,2}. Since B is amenable, this would imply that M;p; is
amenable. Since L(T';) C M; and I'; is non-amenable, this case is impossible. O

5. Relative amenability and subalgebras of AFP algebras, 11

Let (M1, 71) and (Ms, 72) be two tracial von Neumann algebras. Following the nota-
tions from Sections 2.5 and 3, we denote M = M; x5 Moy, M = M xp (B®L(F3)) and
N = {ugMuj | g € Fa}".

In this section we prove two structural results for subalgebras A C M with the property
that 0;(A) is amenable relative to N, for any ¢ € (0, 1). Firstly, we show:

THEOREM 5.1. — Let A C pMp be a von Neumann subalgebra, for some projectionp € M.
Let w be a free ultrafilter on N and suppose that A’ N (pMp)“ = Cp.

If 0,(A) is amenable relative to N inside M, for any t € (0,1), then either

1. A < M, for some i € {1,2}, or
2. A is amenable relative to B inside M.

It seems to us that this theorem should hold without assuming that A’ N (pMp)“ = Cp,
but we were unable to prove this. This assumption is verified for instance if A = M and M is
a Il factor without property I'. By [8, Corollary 3.2] if B is amenable and Mj is a II; factor
without property I, then M = M xg M> is a 11; factor which does not have property I'". In
the next section we will see more situations in which the above assumption holds.

Nevertheless, the condition A’ N (pMp)“ = C is not satisfied in other situations to which
we would like to apply Theorem 5.1. For instance, let I' = I'; * I's be a free product group
andI' ~ (X, p) be a free ergodic but not strongly ergodic action. Then the amalgamated free
product II; factor M = L (X) xT' = (L*°(X) xT'1) *pee(x) (L°(X) xI'z) has property I'.

In order to treat such situations, we prove the following variant of Theorem 5.1:
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THEOREM 5.2. — In the above setting, assume that we can decompose B = PRQy,
M; = PRQ and My = PRQs, for some tracial von Neumann algebras P, Qq, Q1 and Qs.
Note that M = PRQ, where Q = Q1 *¢, Q2.

Let A C M be a von Neumann subalgebra. Suppose that there exist a subgroup U C U(P)
and a homomorphism p : U — U(Q) such that

e u® p(u) € A, forallu € U, and
o the von Neumann subalgebra Ay C Q generated by {p(u)|u € U} satisfies AyNQ« = C

If 0,(A) is amenable relative to N inside M, for any t € (0,1), then either

1. Ay < Qi, for somei € {1,2}, or
2. Ay is amenable relative to Qg inside Q.

In the rest of this section, we first prove Theorem 5.1 and then use it to deduce Theo-
rem 5.2.

Proof of Theorem 5.1. — Suppose by contradiction that conditions (1) and (2) fail.

We begin by introducing the following notation:

o Ho =@ ,cr, Cugenuy and H 1 = @ g, (L*(M) © Clugenu;.

o H =Ho®H 1= ,ep, L*(M)ugenu and 7, = L*((M, en)) © K.

o Ko =D, cr, Cpugenuj and X1 = @ e, (L?(pMp) © Cp)ugenuy.

o K =Ko® K1 =D ,ep, L*(PMp)ugenu} and Ky = pL*((M,en))p & K.

Note that L2((M,en)) = Ho & H1 & Hy and pL2((M,en))p = Ko & K1 & Ko.
For j € {0,1,2}, we denote by e; the orthogonal projection from L?*((M,ey)) onto X ;.
We also denote by e = eg + e; the orthogonal projection onto K.

We denote by I the set of 4-tuples i = (X, Y, d,t) where X C M and Y C %(A) are finite
subsets, 6 € (0,1) and ¢ € (0,1). We make I a directed set by letting: (X,Y,d,t) < (X', Y",d',t)
ifandonlyif X C X', Y CY’, 8’ <dandt <t

Let i = (X,Y,6,t) € I. Since 6,(A) is amenable relative to N inside M, by [41,
Definition 2.2] we can find a vector &; € L?({M, ey)) such that

|(x€, &) — 7(x)| <6, forallz € X,
[{(0:(y) — y)"(0:(y) — ¥)&, &) — T((0e(y) — y)"(6:(y) —y))| < 6 and
10:(y)& — &ib:(y)|2 < 9, forally €Y.

Moreover, following the proof of [41, Theorem 2.1] we may assume that &; = n; , for some
ni € L*((M,en))y. Thus, (z€;,&) = Tr(zn;) = (&x,&), forallz € M andi € 1.

The first part of the proof consists of three claims.

Cra 1. — We have that (x;,&;) — 7(x), for all x € M, and lly& — &ylle — 0, for all
y € U(A).
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Proof of Claim 1. — The first assertion is clear. To prove the second assertion, let
1= (X,Y,6,t) € I and y € Y. Then we have

[10:(y) — )&ill3 = ((0:(y) — y)* (B:(y) — y)&i, &) < 5+ 16:(y) — ylI3-

Similarly, we have that ||&;(6:(y) —y)||3 < d+6:(y)—y||3. By combining these inequalities
we deduce that

ly& — &yllz < 116:(¥)& — &be(W)ll2 + 1(0:(y) — y)&illz + 1€: (Oe (y) — v) |2

<O+24/6+10:(y) — yl3-

Since ||0:(y) — y||l2 — 0, as t — 0, it follows that ||y&; — &yll2 — O. O

For i € I, we denote ¢; = p&p € pL?>((M,en))p. Note that e;(&) = e;(¢), for all
je{0,1,2}.

Cramm 2. — || — eo(&i)|l2 — O.

Proof of Claim 2. — Since eg(¢) + e1(¢) + e2(¢) = ¢, for every ¢ € pL*((M,en))p, it
suffices to show that |le1(¢;)]|2 — 0 and ||ea(¢;)]]2 — O.

Firstly, since K is a pMp-pMp bimodule, Claim 1 implies that the vectors e((;) = e(p&;p) € K
satisfy lim [|ze((;) — e(G;)z2 = 0, for all z € A. Also, we get that limsup [|ye(¢) |2 < ||yl

for every y € M. Indeed, if y € M, then for all ¢ we have that
lye(G)1I2 = ((py*yp)e(G), e(G)) = lle((y*yp)2pep)lI3 < [l (py*up) 2 &il12 = ((py*yp)éi, &)

Since im{(py*yp)&;, &) = 7(py*yp) < ||y||3, this proves our assertion. Similarly, it
follows that limsup [le(G:)yllz < [lyll2, for ally € M. Note that X = L*(pMp) ® ¢2,
as a Hilbert lep-pM p bimodule. Since A’ N (pMp)“ = Cp, the inclusion A C pMp has
w-spectral gap, and by applying Theorem 2.5 we get that lim ||e({;) — eo(¢;)||l2 = 0. Thus,
lim lex (¢)]12 = 0. l

Secondly, since Ko = pFap is a pMp-pMp bimodule, es is pMp-pMp bimodular and
therefore we have that

lim sup [[zez(G:) |2 = lim sup [|zes(&:)[l2 = limsup [[es(2€:) |2 < limsup [|2& |2

K3 K3 7

= limsup \/(2*2§;, &) = [|z2, forallz € M,

and that [lye2(¢;) — e2(Gi)yll2 = lle2 (& — &y)ll2 < lly&i — &iyllz — 0, for ally € %(A).
Now, recall that Lemma 4.2 shows that #, = L?(M)®pg X, for some B-M bimodule K.
Thus, if lim sup, |le2(¢;)|l2 > 0, then by Lemma 2.3 we could find a non-zero projection
z € Z(A' N pMp) such that Az is amenable relative to B inside M. Since A’ N pMp = C,
this would imply that A is amenable relative to B inside M, leading to a contradiction. [

Before proving our third claim, let us state two lemmas whose proofs we postpone for now.
Denote by A : Fo — %(¢%(F5)) the left regular representation of Fy. Then we have
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LEMMA 5.3. — Define the unitary operator U : Ho — £*(Fy) given by U(ugenu}) = &,
for g € Fs.
Ifn e Hoandy € M, then

llyn —nyll3 = > IM@Um) = U@ En(yu;)l3-

g€F2

LEMMA 5.4. — There exists ¢>0 such that if two elements g,h € Fy satisfy
IA(g)(m) —nll < clln|| and ||A(R)(n) — 7| < , for some non-zero vector n € £%(Fs),
then g and h commute.

Going back to the proof of Theorem 5.1, recall that Claim 2 yields that ||(; —eq(¢;)|]2 — 0.
Moreover, Claim 1 gives that ||(;||2 — ||p||2 and that ||p&; — &;p||2 — O.

Thus, we can find ¢ = (X,Y,4,t) € I such that for every ¢’ > ¢ we have that

¢ — eo(Cir)||2 < min{ c!gyf , 7”12”2}, ICirll2 = ||p||2’ and ||p& — &irpll2 < C||£l||2_

Note that ||pf, (y)p|2 > |[pl|2 — 2/|6:(p) — pl|2, for all y € U(pMp). Since lim,_q ||f:(p) — pll2 = 0,
after eventually shrinking ¢, we may also assume that

) ||pet<y>p||2>@, forall y € U(pTp).

Let ' > . Then [leg ()2 >
for some 7 € #. Then ||n; ||2

(Cv) € Ko = pH o, we can write eo((i) = nip = P,
_ Heo”(Cﬁ A2
p

and therefore ||| > 7

Also, we have that ||(;; — &pll2 = ||p€ip — &ipll2 < ||PEr — §z'p||2 < 64 and similarly
that ||¢;r — p€irl2 < M . By using these inequalities we derive the following

Cram 3. — Let ¢ be the constant provided by Lemma 5.4. Then for every finite set
F C U(A) we can find a unit vector n € I depending on F such that

| (P0: (y)p)n — n(P0:(y)p)|l2 < C”ZHZ, forall y € F.

Proof of Claim 3. — Leti’ = (X,Y U F,t, min{6, 2121} and define n := Tt € Ho.

Lety € F. By the definition of §; we have that ||6;(y)& — &0+ (y)]l2 < c”p”2 .Sinced’ > i
by using the previous inequalities we derive that

1 (P8: ()P — n(@6. (9)p) 12 = Wﬁnpexy)eo(m ~ e 0 )Pl
< 4|p8:(y)Cir — Cir0:(y)pll2 + 8¢ — eo (i) |2

(5.2)

Additionally, we have that

[P0 (y)Cor — CirOe(y)pll2 < [IPBe(y)&irp — PEir Oe(y)pll2 + [ICir — Eirpll2 + 1o — pEir |2
(5.3) 3
< W0 — 0. (0) + A2 < 2Pl

Since ||¢;r — eo(Cir)]l2 < cqgls‘z , by combining Equations 5.2 and 5.3 the claim follows.  [J
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In the second part of the proof we combine Lemmas 5.3, 5.4 and Claim 3 to get a con-
tradiction. Since A £ M;, for all i € {1,2}, Theorem 3.2 implies that 6;(A) 4,; N and
moreover that §,(A) 4 ,; N x X, for any cyclic subgroup ¥ < Fs.

Thus, we can find y € %(A) such that || Ex(pf:(y)p)|l2 < Hp4||2. I we write pfl (y)p —
3 g, Yotig: Where g € N, then ||y < 122
a unit vector 1) € Ho such that [|(p6; (y)p)n — n(pd:(y)p)ll2 < 2l2.

Let 1 = {g € F|[A(g)(U(m) = U(n)|| > c} and S = {g € F2 \ {e}{[A(9)({U(m) = U(n)]| < c}.
By using Lemma 5.3 we get that

. By applying Claim 3 to F' = {y} we can find

|lpl3
16 = 0 (w)p)n = n(po:(v)p)3 = > IA) ~UMPllygll3 > ¢ D llygll3.

g€lF2 g€S1
Hence, we derive that

lel3 . lel3 _ lel3
(54 S Ml = el Yyl < 1202 Pl P

16 8
geS1U{e} geS1

. 2 .

Since - e, [19gll3 = I1p0:(y)pll3 > % by Equation 5.1, we get that S = Fy \ (S; U {e}) # 2.
On the other hand, by Lemma 5.4, any two elements g, h € S; commute. If follows that we
can find k € Fy \ {e} such that Sy C %, where ¥ = {k"|n € Z}. Moreover, we can pick k
such that if ¥’ € Fy commutes with k™, for some m € Z \ {0}, then k¥’ € .

Further, since 0;(A) Ay N x X, we can find z € %(A) such that || En s (pf:(2)p)]|2 < ”ﬂ”’“.
Since y, z € U(A), by applying Claim 3 to F' = {y, 2z} we can find a unit vector ¢ € J¢, such

that [|(p0 (y)p)C — C(p0: (v)p)]l2 < <212 and || (p6:(2)p)¢ — C(pB:(2)p) ]2 < 2Lz

Let Th = {g € F5[[[AM9)(U(C) = U(Q)]| > c} and Ty = {g € Fa \ {e}{[|M9)(U(¢)) = U(Q)]| < c}-
Write pd:(2)p = 3 cx, 29U where 24 € N.The same calculation as above then shows that
Ipli3 Ipll
(5.5) Dyl < g% and D lzglls < T
geTy geTy
3lpll3

By combining inequalities 5.4 and 5.5 it follows that 3 © < 7 (s, uge}) V9 I3 < . Since

16
we also have that 3, s, 45112 = [p6: (w)pl13 > '3 we get that T3 U S, U {e} # Fy. Hence
SN Ty 7é .

Fix ¥’ € Sy NTy. If k¥ € Ty, then Lemma 5.4 implies that £ commutes with . Since
k' € Sy C X\ {e}, we get that ¥ € ¥ and therefore T> C X.

2
Thus, T, U {e} C Sand so X cp e 12003 < [Envss(@0:(2)p)[3 < 1202 Since
Ty UT, U {e} = Fa, combining this inequality with 5.5 yields that 3° p, l|z[3 < pHQ
This however contradicts the fact that ||p;(2)p||2 > ”p l2 and finishes the proof. O

Proof of Lemma 5.3. — Writen = }_ g, ngugenuy, wheren, € C,andy = 3=, cr Yrus,
where yj, € N. Recall that the canonical semi-finite trace on (M, ey) is given by
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Tr(zeny) = 7(zy). If we denote by (04)4er, the conjugation action of Fy on N (ie.,
o4(T) = ugzuy), then we have

(yn,ny) = Z <Z/kuk77gug€NU;7ﬁhuhBNUZylul)
g,h,k,l€F2

— * k% *
= E NgMn Tr(Yruruy en uyujy; un en uy,)
g,h,k,lE€F;

= > nglr(Ex(uhykurug) En (ujuiyiun)).
g,h,k,LEF;
If g, k are fixed and the expression 7(En (uj,yruru,) En (uju)y; up)) is non-zero, then h = kg
and | = k. Moreover, in this case this expression is equal to 7 (0 ()1 (Yk )0 (kg)-2 (¥5)) = [l |l3-
Thus, we deduce that

wnny) = Y nemegllyeld = D> O me-1g7g) I3

g,k€Fs keFy g€els
= > AERUMm),UMm) | Ex(yup)-
keF,
Since we also have that |lyn|l2 = [Inyll2 = |lyll2||n]l2, the lemma follows. O

Proof of Lemma 5.4. — Let a and b be generators of [F5. Since F5 is non-amenable, there
exists ¢ > 0 such that any non-zero vector n € £2(Fy) satisfies

IX(a) () =l + [A®) () = 1ll* > 2¢*[In]]*.

Now, let g, h € Fy such that [|A(g) () — nl| < c|lnl| and [A(k)(n) = nl| < c|ln]. for some
non-zero vector € ¢2(Fy). From this we get that || A(g) (n) —n||2+||IA(h) (n)—n||* < 22||n||%.

Let A < Ty be the subgroup generated by g and h, and v : A — %(¢2(A)) be its left
regular representation. Since Fo = UyesAg, for a set S of representatives, the restriction \|a
is a subrepresentation of @, v : A — U@, L2(A)). If we write n = (1), where
M € £2(A), then we can find n such that [|[v(g) (1) — 11> + |7 () (1) — 1n|1? < 2¢3|1na]|
and 7, # 0.

If g and h do not commute, then they generate a copy of 5. In other words, there exists an
isomorphism p : A — Fy such that p(g) = a and p(h) = b. In combination with the above,
this leads to a contradiction. O

Proof of Theorem 5.2. — Recall that B = PRQg, M1 = PR®Q; and My = PRQ2. There-
fore, M = P®Q, where Q = Q1 *¢, Q2. Also, recall that M = M *p (B®L(F2)) and that
N = {ugeru}lg € Fo}". We define Q = Q #q, (Qo®L(F2)) and No = {uyQu|g € F2}" C Q.
Note that M = P&Q and that N = PQN,.

We denote by {a;}ier C Aut(Q) the free malleable deformation associated to the AFP
decomposition @ = Q1 *g, @2 (see Section 2.11). Then for everyx € Pand y € Q we have
that 6, (z ® y) = = ® o (y).

Lett € (0,1). We claim that a; (Ag) is amenable relative to Ny inside Q. Once this claim is
proven the conclusion follows by applying Theorem 5.1 to the inclusion Ay C Q = Q1 *¢, Q-

Since 6;(A) is amenable relative to N inside M, by [41, Definition 2.2] we can find a
0;(A)-central state ® : (M, ex) — C such that Q=T
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Since M = P®Q and that N = P®N,, we have that (M, ex) = P&(Q, en,). Define a
state U : (Q,en,) = Cby U(T) = ®(1®T) and let u € %. Since u ® p(u) € A we have that
u® ay(p(u)) = 0;(u @ p(u)) € 0;(A). Thus for every T' € (Q, en,) we have that

U(ae(p(u))Tae(p(u)) = (1@ ar(p(w)Tar(p(u))
=P((u® ar(p(u) 1@ T)(u® ar(p(u))") = (1R T) = Y(T).

Thus, W(ay(p(u))T) = ¥(Tay(p(u)), for every ue % and T € (Q,en,). Since
{ou(p(u))|u € U} generates oy (Ag) and W5 =7, we get that ¥ is ay(Ag)-central. Thus
o (Ap) is amenable relative to Ny inside Q. This proves the claim and finishes the proof. [

6. Property I for subalgebras of AFP algebras

Let @ be a von Neumann subalgebra of an amalgamated free product algebra
M = M, *g Ms. In this section we study the position of the relative commutant Q' N M“
inside M“. We start by considering the case @ = M.

LEMMA 6.1. — Let (My, 1) and (Ms, 12) be tracial von Neumann algebras with a common
von Neumann subalgebra B such that T\ g = T2|p. Denote M = My xp Ma. Assume that there
exist unitary elements u € My and v,w € My such that Eg(u) = Eg(v) = Ep(w) = Eg(w*v) = 0.

If w is a free ultrafilter on N, then M' " M“ C B“.

In the case B = C1 this result was proved in [3, Theorem 11]. The proof of Theorem 6.1 is
a straightforward adaptation of the proof of [3, Theorem 11] to the case when B is arbitrary.

Proof. — We denote by S; C M the set of alternating words in My © B and M, © B
that begin in M; © B. Concretely, x € S; if we can write z = zix9---x,, for some
r1 € M1 ©B,z5 € My & B,z3 € M; & B---. Similarly, we denote by So C M the set
of alternating words in M; © B and M, © B that begin in M, & B. Fori € {1, 2}, we denote
by #; C L?(M) the |.||2 closure of the linear span of S; and by P; the orthogonal projection
onto J;.

Note that if z € My, © B andy € My © B, then z#(>x* C J( and y#1y* C 5. The
hypothesis therefore implies that

(6.1) udou* C H1, vH1v* C Ho, wHiw* C Ho and vIH1v* L wH w*.

The last fact holds because (w*v) 1 (w*v)* C H 5 and hence (w*v)IE 1 (w*v)* L H;.

Now, let £ € L?(M). Notice that if Py is the orthogonal projection onto a closed subspace
K C L*(M) and u € U(M), then P, 4+ (€) = uPy (u*€u)u* and therefore || P,y y- ()2 =
|| Py (u*€u)||2. By combining this fact with Equation 6.1 we get that

(6.2) 1P2(u*u)ll2 < [[PL(E)]l2 and [|[Py(v*€v)ll3 + || PL(w"éw) |13 < | P2(8)]3.

Let z = (zy,)n, € M’ N M*. Then |[u*z,u — zy |2, |00 — Tp |2, W Epw — 2,2 — 0,
as n — w. Using this fact and applying 6.2 to £ = z,, we get that lim,_, ||Pa2(z,)||2 <
lim,, ., || P1(,)|]2 and v21lim,, ., | P ()2 < limp_, || P2(2zy)||2. Therefore, we have that
| P1(zn)]|2 — 0 and |Pa(zy)]|2 — 0,as n — w.

Since L?(M) = L%*(B) ® #1 ® ¥, it follows that lim,, ., ||z, — EB(z)||2 = 0 and thus
T € BY. O
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Lemma 6.1 implies that a large class of AFP groups give rise to II; factors without
property T'.

'y xp Ty be an amalgamated free product group such

COROLLARY 6.2. — Let ' =
| > 3. Assume that there exist g1,92,...,9m € T such that

that [T'1:A] > 2 and [Ta:A
Mizy gihgi " = {e}-

Then L(T) is a I factor without property T.

Moreover, T is not inner amenable, i.e., the unitary representation ™ : T — U(¢*(T \ {e}))
given by m(g)(0n) = Ogng-1,for g € T and h € T'\ {e}, does not have almost invariant vectors.

Proof. — Letx = (x,)n € L(T')’ N L(T")*. Firstly, by Lemma 6.1 we get that € L(A)¥.

Secondly, fori € {1,2,...,m}, denote by E; the conditional expectation onto L(g;Ag; b,
Then E;(x) = uy, Era)(uy,zug, )uy,, for every z € L(T). Since (z,), € L(T')" N L(A) it
follows that ||E;(zy) — zp|l2 — 0,as n — w, forevery i € {1,2,...,m}.

On the other hand, since (-, giAgjl = {e}, we derive that E1 Es - - - B, (z) = 7(2)1,
forall z € L(T). Altogether, it follows that ||7(x,,)1 — z,]]2 — 0,asn — w, i.e., (z,), € C1.

We leave it to the reader to modify the above proof to show that I' is indeed non-inner
amenable. O

Next, we show that if a von Neumann subalgebra Q C M = M; xg Mo is “large” (i.e., if
conditions (2) and (3) below are not satisfied) then a corner of Q' N M* embeds into B¥.
Thus, the phenomenon from Theorem 6.1 extends in some sense to arbitrary subalge-
bras @ C M.

THEOREM 6.3. — Let (M1, 1) and (Ms, T2) be tracial von Neumann algebras with a com-
mon von Neumann subalgebra B such that 7\ |p = T2|p. Let M = My xp My and Q C pMp be
a von Neumann subalgebra, for some projectionp € M. Let w be a free ultrafilter on N. Denote
by P the von Neumann subalgebra of M* generated by M and B“.

Then one of the following conditions holds true:
l. @' N(pMp)¥ C Pand Q' N (pMp)¥ <p B“.

2. N pmp(Q)" < My, for some i € {1,2}.
3. Qp’ is amenable relative to B, for some non-zero projection p’ € Z(Q' NpMp).

To prove Theorem 6.3 we will need the following result.

THEOREM 6.4 ([8]). — Let (M, 11) and (May, 12) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that 1|g = T2|g. Let M = Myxp Mz and Q C pMp
be a von Neumann subalgebra, for some projectionp € M.

Then one of the following conditions holds:
1. Q' NnpMp < B.

2. N pmp(Q)" < My, for some i € {1,2}.
3. Qp’ is amenable relative to B, for some non-zero projection p’ € Z(Q' N pMp).
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In the case when B is amenable and @) has no amenable direct summand this result was
proved by I. Chifan and C. Houdayer [8, Theorem 1.1]. The argument that we include below
follows closely their proof.

Note that part (1) of Theorem 6.3 implies part (1) of Theorem 6.4. Indeed, if
Q' N (pMp)¥ <p B“, then (Q' N pMp)* <pr« BY. This readily implies that Q' N pMp < B.
Therefore Theorem 6.3 is stronger than Theorem 6.4.

Before proceeding to the proofs of Theorems 6.3 and 6.4, let us fix some notations.
Let M = M % (BRL(F)) and {6, };cr be the automorphisms of M defined in Section 2.11.
We extend 6; to an automorphism of M by putting 8;((z,)n) = (8:(xn))n. Forz € M,
we denote

6:(z) = 04(x) — Epge (0(x)) € MY & M*.
Note that if z € M, then 6;(z) € M & M.

Let 3 be the automorphism of M satisfying 8(z) = z if © € M, B(ua,) = ug, and
B(ug,) = uy,, where ay, ap are the generators of F3 chosen in Section 2.11. We still denote
by 3 the extension of 8 to M. It is easy to check that 3% = idy;. and 80,8 = 0_,, for
allt e R.

By [51, Lemma 2.1], the existence of 3 implies that

(6.3) |62t (x) — z||2 < 2||0¢(x)||2, forall z € M andevery ¢t e R.

In the proofs of Theorems 6.3 and 6.4 we assume for simplicity that p = 1, the general case
being treated similarly. We continue with the following lemma which is key in both proofs.

LEMMA 6.5. — Let (M1, 71) and (Ma, 1) be tracial von Neumann algebras with a com-
mon von Neumann subalgebra B such that T \g = T2|p. Let Q C M = My xp Ms be a von
Neumann subalgebra such that Qp' is not amenable relative to B, for any non-zero projection
p e Z(Q NM).

Then we have that sup,e g/, [10¢(z)|l2 — 0, ast — 0.

Proof. — Tt is easy to see that the map R >t — [|6:(x)]|2 € [0,00) is even on R, and
decreasing on [0, 00), for every = € M*. Thus, if the lemma is false, then there exists ¢ > 0
such that sup ¢ g/narey, 10:(2)[l2 > ¢, forevery t € R\ {0}.

For m > 1, put ¢, =2"™. Let z,, € (@' N M¥); such that &, = d;, () satisfies
€mlla > c.

Fixy € M and z € (Q)1. Then we have that

9&mllz = I(1 = Eare ) (0s,, (zn))ll2 < |90t (zm)ll2 < [[yll2-
Also, since zx,,, = x,,2, by using S. Popa’s spectral gap argument [50] we get that
126m — Emzllz = |(1 = Enr) (204, (€m) — O, (2m)2) |2 < (1204, (zm) — O, (xm)2]2
= 10—+, (2)zm — Tmb—¢,,(2)]l2 < 2[|0—s,,(2) — 2]z — 0.
By writing &, = (&m,n)n, Where &, , € Mo M, we find a net n, € M &M such
that ||nx|l2 > ¢, limsupy |lynkll2 < |lyll2, for every y € M, and |zn; — ngz||2 — 0, for
every z € Q.

Now, since M = M * (BRL(F,)), by Lemma 2.10 we have that L?(M) © L?>(M) =
L?(M)®pX, for some B-M bimodule £. We may therefore apply Lemma 2.3 to conclude
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that Qp’ is amenable relative to B, for a non-zero projection p’ € Z(Q’ N M), which gives a
contradiction. O

Proof of Theorem 6.4. — Assuming that condition (3) is false, we prove that either (1) or
(2) holds.

Since @' " M C @ N M*, Lemma 6.5 implies that sup,¢o/nar), 10:(2)]l2 — 0, as
t — 0. Together with inequality 6.3 this yields ¢ > 0 such that ||6;(z) — z||> < 1, for all
z€(Q NM);.

Thus, 7(6;(u)u*) > 3, for every u € %(Q N M). Applying Theorem 2.11 gives
that either @' N M <y B or ¥ py(Q' N M) <y M;, for some i € {1,2}. Since
N (Q) C N p(Q N M), this finishes the proof. O

In the proof of Theorem 6.3 we will also use the following technical result:

LEMMA 6.6. — Let P be the von Neumann subalgebra of M* generated by M and B*.

Then we have

1. My and M are freely independent over B¥,
2. M¥ 1L (P& P)and
3. (Mo M)(M“eP)LM“Mo M).

Proof. — Let x € M © B*, 20 € M © B¥,...,z, € M’ © B“, for some in-
dices i1,%2,...,%m € {1,2} such that iy # ix+1, for all 1 <k <m—1. Then we can
represent xy = (g n)n, Where i, € M; © B, for all n and every 1 < k < m. Since
Epo(x122 - Tm) = limy o, Ep(1 nTam -+ - Tm.n) = 0, the first assertion follows.

Towards the second assertion, define P, = {M;,B¥}’, P, ={M,y,B“} and
P; = {BRL(F2),B“}’. All of these algebras contain B¥ and we have that P, C MY,
P, C M¥ and P; C (B®L(F3))“. Now, the first assertion implies that My, M§ and
(BRL(IF,))* are freely independent over B¥. Since P = {P,, P,}" and P = {P,, P, P3}",
we deduce that P = P xg. Ps.

This implies that P © P is contained in the ||.|[z-closure of the linear span of ele-
ments of the form z = vow1v1 * * * Vpyy—1 Wy, Vim, Where vg, vy, € P3,v1,...,0m_1 € P3© BY,
and wy,...,w, € PoBY, for some m>1. Since PO BYC M“Y© B“Y and
P; 6 BY C (BRL(F9))¥ © BY, we can represent v; = (v; ), and w; = (w; n)n, wWhere
Vo,n, Umn € BRL(F2), vin, ..., Um—1,n € (BRL(F2)) © B, and wy p, ..., Wmn € M © B,
for all n. It is now clear that = (Vo W1,nV1,n * * - Um—1,nWm,nUm,n)n belongs to M* o M*.
This shows that P& P ¢ M* & M, thereby proving (2).

Finally, let 21,20 € M © M,y;, € M“ © P and yo € M* such that |y, ||va] < 1.
Write y1. = (Y1,n)n,¥2 = (Y2,n)n, Where y1 n,y2., € (M);. Our goal is to prove that
(z1y1,Y222) = 0 or, equivalently, that lim,,_,,, (211 n, Y2.n?22) = 0.

Since M = M xp (B&L(F3)), by Lemma 2.10 we can find an M-B bimodule & such
that L2(M) & L*(M) = K®pL?(M). Viewing z1, z, as vectors in L?(M) & L?(M) and
using approximations in ||.||2, we may assume that z; = & ®p M1, 22 = &2 ®p 12, Where
£1,€ € K and n1,m2 € M. Moreover, we may take &; to be right bounded, i.e., such that
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l€1y]l2 < Cllyll2, forally € M, for some constant C' > 0. By using the definition of Connes’
tensor product we get that

[(21Y1,n> Y2,n22)| = (¥3,,€1 @B MY1n, &2 @B N2)]
= (Y2, 61 EB(MmYy1,nm3), &2)| < CllEB(my1,nm3)|2|€21l2-

Since y; L P and n} Bne C P, we get that y; L nf B¥nq. Hence, lim,, ., | Eg(my1,nm3) |2 =
|Egw (myins)ll2 = 0, which proves the last assertion. O

To prove Theorem 6.3 we adapt the proof of [27, Lemma 3.3] (see also the proof of [5,
Theorem 3.8]) to the case of AFP algebras. In the proof of Theorem 6.3 we apply Theorem 6.4
and [32, Theorems 1.1 and 3.1] to non-separable tracial von Neumann algebras. While these
results are only stated for separable algebras, their proofs can be easily modified to handle
non-separable algebras. We leave the details to the reader.

Proof of Theorem 6.3. — For simplicity, we assume that p = 1. Assuming that (2) and (3)
are false, we will deduce that (1) holds. The proof is divided between two claims, each proving
one assertion from (1).

Criamm 1. - Q'NnM¥ C P.

Proof of Claim 1. — Assume by contradiction that there exists z € Q' N M* such that
z¢ Pandputy =2z — Ep(z) #0.Fixz € (Q); and ¢t € R.
Since Epre (8:(2)) = (Ene © Egp)(60:(2)) = En(6:(2)) and y € M“ we get that
16:(2)y = y6:(2)ll2 = [[(1 = Enr)(0:(2))y — y(1 = Ear)(6:(2))]2
= (1 = Ene)(0:(2)y — yb:(2))ll2 < [16:(2)y — y0:(2) 2.

Since zx = xzz and z € M C P, we get that zy = yz. Thus, we derive that
(6.5)  110:(2)y — yb:(2)ll2 = l|20—(y) — O—+(y)zll2 < 2[16—¢(y) — yll2 = 2[|0:(y) — yll2-

On the other hand, since € M“, Lemma 6.6 (2) gives that E5(z) = Ep(x). Since 0,
leaves P globally invariant we conclude that 6;(Ep(z)) = 0;(Ep(z)) = Ep(6:(z)). As a
consequence, we have

(6.6) 16:(y) = wll2 = I(1 = Ep)(0:(2) — z)ll2 < [|6:(2) — 22

By combining 6.4, 6.5 and 6.6 we get that ||0;(2)y — yd:(2)]|2 < 2(|0:(x) — z||2.
Since 6,(z) € M © M andy € M* © P, Lemma 6.6 (3) implies that &,(z)y L yd(z).
Therefore we derive that ||0;(2)y|l2 < 2]|0:(z) — z||2. Since

16:(2)y — 6e(zy)ll2 < 10:(2)y — Oe(zy)ll2 < [10:(y) — yll2,
we altogether deduce that ||0;(zy)||2 < 3]|0:(x) — z||2, for every z € (Q); and ¢ € R.
By using this inequality together with 6.3 and 6.6 we derive that
16:(2)y — 2yll2 < 10:(2y) — zyll2 + 10:(y) — 2
(6.7) <2002 (zy)ll2 + 10:(y) — yll2 < 6[|02 (z) — z([2 + [|6¢(z) — |2
< 2||6% (@)|2 + 2||6%(x)||2, forallz € (Q); andt e R.

(6.4)
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Now, since (3) is assumed false, Lemma 6.5 implies that sup,¢ /e, [|0:(z)[l2 — 0, ast — 0.

In combination with 6.7 it follows that we can find ¢ > 0 such that ||6;(2)y — zy||2 < %,
for all z € (@)1. Thus, if we let w = E;(yy*), then

2
R 7(0:(2)wz") = N 7(04(2)yy*z") > ||y2||2, forall z € U(Q).

By using a standard averaging argument we can find 0 # v € M such that 6,(z)v = vz, for
all z € Q. By [32, Theorem 3.1] we would conclude that @ < M;, for some i € {1,2}.

If we denote /" = A p,(Q)”, then [32, Theorem 1.1] would imply that either A" <, M,
N <pm Mz or Q <pr B. Since the last condition implies that there is a non-zero projection
p' € Z(Q'NM) such that Qp’ is amenable relative to B, we altogether get a contradiction. [J

To end the proof we are left with showing:
CrLammM2. - Q'N MY <p B“.

Proof of Claim 2. — Recall from the proof of Lemma 6.6 that P, = {M;,B*}" and
P, = {M, B¥}" are freely independent over B“, and that P = P; g« Ps.

By applying Theorem 6.4 to the inclusion @ C P it follows that we are in one of the
following three cases: (a) @' NP <p B, (b) ¥ p(Q)” <p P;, for some i € {1,2}, or (c) Q=
is amenable relative to B* inside P, for some non-zero projection z € Z(Q' N P).

In case (a), Claim 1 implies that Q' " M“ = Q' NP <p B* and thus (1) is satisfied. Let us
show that cases (b) and (c) contradict our assumption that conditions (2) and (3) are false.

Firstly, since /" = Ay (Q)” € N p(Q)’, P, € My and P C MY, case (b) implies that
N <pe M. By Remark 2.2 it follows that /"py is amenable relative to M;” inside M, for
some non-zero projection pg € A N M*. Lemma 2.4 further implies that //"p’ is amenable
relative to M; inside M, for some non-zero projection p’ € "' N M. By Corollary 2.12 we get
that either (b;) A"p’ is amenable relative to B inside M or (by) A <p; M;. In the case (by) we
get in particular that Qp” is amenable relative to B inside M, contradicting the assumption
that (3) is false. In turn, case (bs) contradicts the assumption that (2) does not hold.

Finally, in case (c), Lemma 2.4 implies that Qp’ is amenable relative to B, for some non-
zero projection p’ € Z(Q' N M). In other words, (3) holds, a contradiction. O

7. Uniqueness of Cartan subalgebras for II; factors
arising from actions of AFP groups

The main goal of this section is to prove Theorem 1.1 and derive several consequences.
7.1. Uniqueness of Cartan subalgebras
Towards proving Theorem 1.1 we first establish a general technical result.

THEOREM 7.1. — Let 'y and T's be two countable groups with a common subgroup A such
that [I'1:A] > 2 and [T'a:A] > 3. Denote I' = Ty x5 'y and suppose that there exist
91,925+, gn € T such that (., g:Ag; " is finite.
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LetT ~ (D, 1) be any trace preserving action of T on a tracial von Neumann algebra (D, T).
Denote M = D x T and suppose that M is a factor.
If A is a regular amenable von Neumann subalgebra of M, then A <p; D.

Before proceeding to the proof of Theorem 7.1, let us introduce some notations that will
essentially allow us to reduce to the case when (), g;Ag; ! is trivial and not only finite.

Since ), giAg; " is finite, ¥ = Nyer gAg~! is a finite group and there exist Ay, ho, ..., hy €T
such that ¥ = ﬂ;”zl thhj_l. Since ¥ < A is a normal subgroup of I', we can define the
following groups IV =T /X, T} =T, /%, T =Ty /Y and A’ = A/3. Note that TV = T} x5/ T,
and let p : T' — T be the quotient homomorphism. Note also that ﬂ;"zl k; A kj_l = {e},
where k; = p(h;).

Denote M = MRL(T') and let A : M — MU be the comultiplication [53] defined by

A(augy) = aug @ u,g), forevery a€ D andall geT.

We next record a property of A that will be of later use.

LEmMA 7.2. — Let Q C M be a von Neumann subalgebra and Ty < T be a subgroup.
IfA(Q) = M®L(p(F0)), then Q <pr D x Ty.

Proof of Lemma 7.2. — Assume by contradiction that Q £3; D x I'g. Then we can find
a sequence of unitaries u, € @ such that |[Epxr,(zuny)ll2 — 0, for all z,y € M. We
claim that || Enrg 1 (p(ry)) (VA(un)w)||2 — 0, for all v,w € . This will provide the desired
contradiction.

To prove the claim, by Kaplansky’s density theorem, we may assume that v = 1 ® wu,p)
and w = 1®u,(), for some h, k € T'. For every n, write u,, = der Zn gUg, Where z, o € D.
Then A(un) = 3 cr Tn,gUg ® Up(g). Since ker(p) = £, it follows that

Enonpro) 0AU)w) = Y @0 gty @ ELpre)) (Uphgh) = D Tngllg @ Up(ngr)-
gel geh—1ToSk—1

Further, since X is finite we deduce that

IEvareproy ©Aw)w)E = D> lzngld <D IEDwr, (ntnum)|3-
gER— T Zk—1 lex
Since | Ep xr, (untnugi)|l2 — 0, as n — oo, the lemma is proven. O

Proof of Theorem 7.1. — Define My = MQL(T), My = MIL(TY,) and B = ML(A').
Then we have that M = My x5 M.

Define M = M+ (BRL(Fy)) and let {6;},cr C Aut(Ji) be the deformation de-
fined in Section 2.11. Also, let N be the von Neumann subalgebra of 7 generated
by {ugMujlg € Fo}. Recall from Section 3 that M= N x Fy, where Fy = {u,}ger, acts
on N by conjugation.

Let ¢ € (0,1) and consider the amenable von Neumann subalgebra 6,(A(A)) C J.
By S. Popa and S. Vaes” dichotomy (Theorem 2.8) we get that either 6;(A(A)) <,;; N or
N ;i(0:(A(A)))" is amenable relative to N inside M.

Since A is regular in M, we have that 6,(A(M)) C N ;;(0:(A(A))"”. Therefore, we are in
one of the following two cases:

Cram 1. — There exists t € (0,1) such that 0;(A(A)) <4 N.
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CLAIM 2. — Foreveryt € (0,1) we have that 6,(A(M)) is amenable relative to N inside M.

In Case 1, Theorem 3.2 gives that either A(A) < B or N 4 (A(A))" <u M;, for some
i € {1,2}. Since A is regular in M, the latter condition implies that A(M) < M;.

By using Lemma 7.2 we derive that either A <)y D x A or M <j; D x T';, for some
ie{1,2}. If A<y D x A, then as M is a factor, [24, Proposition 8] implies that
A<y D x (N, 9ihg; ). Since N}, g:Ag; ' is finite, we conclude that A <3, D, as
claimed.

Now, since [I'; : A] > 2and [I'y : A] > 2, wecanfindg; € I'y \ Aand g» € T3\ A.
Letu = ug, 4, € U(L(T)). Then we have that || Epxr, (zu"y)||2 — 0, for every z,y € M and
i € {1,2}. Thus, L(T") £y D x T'; and hence M #£3; D x I';. This shows that the second
alternative is impossible and finishes the proof of Case 1.

In Case 2, since [I'] : A'] > 2, [T, : A'] > 3 and ﬂ;n=1 ij’kj_l = {e}, Corollary 6.2
implies that L(I')' N L(I')* = C1.

Note that uy ® u,) € A(M), for every g € I'. Moreover, the von Neumann alge-
bra Ay generated by {u,(,) }¢er is equal to L(I') and satisfies Ay N L(I")“ = C1. Since
0, (A(M)) is amenable relative to N, for any ¢ € (0,1), by Theorem 5.2 we deduce that either
L(I") =gy L(TY), for some i € {1,2}, or L(I'") is amenable relative L(A’) inside L(T").

Since [I'} : A'] > 2and [I'} : A’] > 2, we can choose g1 € I} \ A’ and g2 € T4\ A'.
Then u = uy, 4, € L(IV) satisfies || Er ) (zu™y)|l2 — 0 and || EL ;) (zu”y)|l2 — 0, for all
z,y € L(I"), showing that the first alternative is impossible.

Finally, if L(I") is amenable relative to L(A’) inside L(I), then A’ is co-amenable in T”,
i.e., there exists a I'-invariant state ® : £°(IV/A’) — C (see [2, Proposition 3.5]). Let us show
that is impossible as well.

Letg; € T4\ A’ and go, g3 € T\ A’ such that g3 *g> ¢ A’. Let S; and S, be the set of words
inT{ \ A’ and T', \ A’ beginning in I'; \ A’ and in T', \ A/, respectively. Then IV = S; LISy LA/
and we have A’ C g151,9152 C 51,9251 C S2,g3S1 C 8.

Now, let ¢ : IV — I"/A’ be quotient map and define T} = ¢(S1),T> = q(S2). Then we
have F//AI =Ty uTsU {eA'} and e\’ € ngl, g1T2 c 1Ty, gng C Ts, gng C T5. Moreover,
since g;lgng C Ts, we get that goT1 N gsTy = @. Hence, goT1 U g3T1 C Ts.

For a subset T C IV/A’, let m(T') = ®(17) € [0,1]. Then m is a finitely additive I'-in-
variant probability measure on I'/A’. The relations from the last paragraph therefore
imply that m(eA’) < m(Th), m(T2) < m(Ty) and 2m(T1) < m(T3). This would imply that
m(eA) = m(T1) = m(Tz) = 0, contradicting the fact that m(eA’) + m(Ty) + m(Tz2) =
m(T'/A) = 1. O

Proof of Theorem 1.1. — AssumethatT' =Ty x 'y x --- x I';,, where I'; =T 1 %5, I'; o is
an amalgamated free product group satisfying the hypothesis of Theorem 1.1, for every
it €{L,2,...,n}. We denote by G, < T the product of allT'; with j € {1,2,...,n}\ {i}.

Let ' ~ (X,u) be a free ergodic pmp action. Let A be a Cartan subalgebra of
M = L>*(X) xT. For a subset S C I, we denote by eg the orthogonal projection from
L?(M) onto the ||.||2 closed linear span of {L°°(X)ugy|g € S}.

Fori e {1,2,...,n}, we decompose M = (L*°(X) x G;) x T;. By applying Theorem 7.1
we deduce that A <5, L*°(X) x G;. Since A C M is maximal abelian, it follows that we can
find a non-zero projection p € A and v € M such that Ap C v(L>®(X) x G;)v*. By possibly
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shrinking p, we may assume that 7(p) = %, for some m > 1. Since A is a Cartan subalgebra
we can find unitaries uy, ug, . . ., Uy, € N ar(A) such that Z;":l ujpuj = 1. Thus, we get that
A C YT ui(Ap)uy € 3T, wu(L®(X) % Gi)v*uj. By using ||.[|2-approximations, we
conclude that for every e > 0 we can find a finite set S C I" such that ||z — esg,s(2)|l2 < ¢,

forall z € (4);.
Thus, we can find finite sets Sq, Ss,...,S, C I' such that

1
lz —es;q;s; ()2 < T forall z € (A); andevery i € {1,2,...,n}.
n

Let S = (N, SiGiS;. Then S is a finite subset of I" and ||z — es(z)||2 < ;%5 for every
z€(A);. Thus, |les(u)llz > 17, forevery u € %U(A). Since |les(u)l[3 = 2 e g | B x) (wu)) |3,
Theorem 2.1 gives that A <, L>°(X). Since A and L*°(X) are Cartan subalgebras, [47,
Theorem A.1] implies that they are unitarily conjugate. O

7.2. Applications to W*-superrigidity

Next, we combine Theorem 1.1 with S. Popa’s cocycle superrigidity [51] to provide a new
class of W*-superrigid actions. In particular, we will deduce Corollary 1.2.

A free ergodic pmp action I’ ~ (X, p) is called W*-superrgid if whenever L™ (X) x I' &
L*>(Y) x A, for a free ergodic pmp action A ~ (Y, v), the groups I and A are isomorphic
and their actions are conjugate. This means that we can find a group isomorphism § : I' — A
and a measure space isomorphism 6 : X — Y such that 8(g - z) = d(g) - 0(z), forallg € T
and p-almost every x € X.

Recall that any orthogonal representation 7 : I' — @)(FR) onto a real Hilbert space #g
gives rise to a pmp action I' ~ (X, ), called the Gaussian action associated to 7 (see for
instance [18, Section 2.g]).

THEOREM 7.3. — Let T' = T'y x5 Iy and IV = T} xar T, be amalgamated free product
groups such that [T1:A] > 2, [Ta:A] = 3, [[1:A'] = 2 and [T5:A'] > 3. Suppose that
there exist g1,92,...,9n € I and g}, 45,...,9,, € T’ such that (;_, giAgi_1 = {e} and
Ny 9N g, = {e}.

Let G=T xT"andw: G — O(Hr) be an orthogonal representation such that

e the representation mp has stable spectral gap, i.e., mjr ® T|r has spectral gap, and

e the representation mp is weakly mixing, i.e., mp: ® T|r has no invariant vectors.

Then any free ergodic pmp action G ~ (X, p) which can be realized as a quotient of the Gaussian
action G ~ (X, pr), is W*-superrigid.

S. Popa and S. Vaes have very recently proven that the same holds when I" and T are
icc weakly amenable groups that admit a proper 1-cocycle into a representation with stable
spectral gap [55, Theorem 12.2].

Proof. — Denote M = L*°(X) x G andlet A ~ (Y, v) be a free ergodic pmp action such
that we have an isomorphism 6 : L= (Y) x A — M. Then §(L>°(Y")) is a Cartan subalgebra
of M. Thus, by Theorem 1.1 we can find a unitary u € M such that 0(L>(Y")) = uL>®(X)u*.

This implies that the actions G ~ (X, ) and A ~ (Y, v) are orbit equivalent. Therefore,
in order to show that the actions are actually conjugate, it suffices to argue that G ~ (X, u)
is orbit equivalent superrigid.
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Let us show that we can apply [51, Theorem 1.3] to G ~ X. Firstly, by Corollary 6.2,
" and I'” have no finite normal subgroup. Thus, G has no finite normal subgroups. Secondly,
by [18, Theorem 1.2] the action G ~ X is s-malleable.

Thirdly, consider the unitary representation p: G ~ L?*(X,) © C1. Then p is a sub-
representation of m ® o, where o = @n>0 7@~ . Since mr has stable spectral gap and mp/
is weakly mixing, the same properties hold for pr and pjr.. Thus, the action I' ~ X has
stable spectral gap and the action IV ~ X is weakly mixing.

Thus, we can apply [51, Theorem 1.3] to deduce that the action G ~ X is OE superrigid.
O

Proof of Corollary 1.2. — Note that the Bernoulli action G ~ [0,1]¢ can be identified
with the Gaussian action associated to the left regular representation A : G — U(¢%(G)).
Since " and IV are non-amenable, the corollary follows from Theorem 7.3.

REMARK 7.4. — In[35, Theorem 1.1], Y. Kida proved the following: let Mod*(.S) be the
extended mapping class group of a surface of genus g with p boundary components. Suppose
that 3g + p > 5 and (g,p) # (1,2),(2,0). Let A < Mod*(S) be a finite index subgroup and
A < A be an infinite, almost malnormal subgroup (i.e., hRAh~1 N A is finite, for all h € A\ A)
and denote I' = A x4 A. Then any free ergodic pmp action I' ~ (X, 1) whose restriction
to A is aperiodic is OE-superrigid.

Since A < T is weakly malnormal, Theorem 1.1 implies that all such actions of I" are
moreover W*-superrigid.

7.3. An application to W*-rigidity

In combination with the orbit equivalence rigidity results of N. Monod and Y. Shalom,
Theorem 1.1 implies the following.

THEOREM 7.5. — LetT'1,T's,T's andT 4 be any non-trivial torsion-free countable groups and
defineT’ = (I'1%'g) x (T'sxy). LetT' ~ (X, p) be a free ergodic pmp action whose restrictions
toTy x T, T'3 x T'y and any finite index subgroup T' < T are also ergodic.

Let A ~ (Y, v) be an arbitrary free mildly mixing pmp action.
IfL>®(X)xT 2 L®°(Y) 1A, thenT = A and the actionsT ~ X and A ~'Y are conjugate.

Following [36, Definition 1.8], a measure preserving action A ~ (Y, v) is called mildly
mixing if for any measurable set A C Y and any sequence A, € A with \,, — oo, one has
v(AnA A A) — 0ifand only if v(A) € {0, 1}.

Proof of Theorem 7.5. — By [36, Theorem 1.3] the groups I'; * I's and I's * I'y belong to
the class Greg. Applying [36, Theorem 1.10] then gives the conclusion. O
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7.4. W* Bass-Serre rigidity

We next combine Theorem 1.1 with results of A. Alvarez and D. Gaboriau [1] to generalize
part of [32, Theorem 7.7] and [8, Theorem 6.6].

THEOREM 7.6. — Let m,n > 2 be integers and I'y,Ta,... , Ty, A1, Ao, ..., Ay, be non-
amenable groups with vanishing first £2-Betti numbers. Define T = T'y * Ty % --- x I',,, and
A=Ay xAsx---x A, LetT' ~ (X, u) and A ~ (Y, v) be free pmp actions such that the
restrictionsT'; ~ X and Aj; ~Y are ergodic, foreveryi € {1,2,... ,m}andj € {1,2,...,n}.

Let0: L®°(X) x T — (L>®(Y) x A)* be an isomorphism, for some t > 0.

Thent = 1, m = n and there exists a permutation o of {1,2, ..., m} such that the actions
s ~ X and Aoy ~ Y are orbit equivalent, for every i € {1,2,...,m}.

Moreover, for every i € {1,2,...,m}, there exists a unitary element u; € L*>°(Y) x A such
that (L>*(X)) = u; L (Y )uj and O(L>°(X) x I';) = us(L=(Y) % Aggy)u;.

Proof. — By Theorem 1.1, the II; factor L*°(X) x I" has a unique Cartan subalge-
bra, up to unitary conjugacy. Thus, we can find a unitary u € (L*°(Y) x A)? such that
(L (X)) = w(L>(Y))'u*. Denoting by R(I' ~ X) the equivalence relation induced
by the action T' ~ X, it follows that (T ~ X) = R(A ~ Y):. By using [20] to cal-
culate the first £2-Betti number of both sides of this equation (see the end of the proof
of [32, Theorem 7.7]) we deduce that ¢ = 1. Now, by [1, Corollary 4.20], non-amenable
groups with vanishing first £2-Betti number are measurably freely indecomposable. Since
R(T ~X) =2, R(T; ~ X) and R(A~Y) = +7_, R(A; ~Y), by applying [1, Theo-
rem 5.1], the conclusion follows. O

7.5. 1I; factors with trivial fundamental group

Theorem 1.6 also leads to a new class of groups whose actions give rise to II; factors with
trivial fundamental groups.

THEOREM 7.7. — Let 'y, T's be two finitely generated, countable groups with |I'1| > 2 and
|Ts| > 3. DenoteT =Ty x Ty and let T' ~ (X, p) be any free ergodic pmp action.

Then the II; factor M = L>(X) x T has trivial fundamental group, F (M) = {1}.

Proof. — By Theorem 1.6, L*°(X) x I' has a unique Cartan subalgebra, up to unitary
conjugacy. Therefore, we have that (M) = F(R(IT ~ X)). Since ﬂf)(r‘) € (0,00), a
well-known result of D. Gaboriau [20] implies that 7 (R(I’ ~ X)) = {1}. O

REMARK 7.8. — Theorem 7.7 generalizes [54, Theorem 1.2]. Thus, it was shown in [54]
that the conclusion of Theorem 7.7 holds, for instance, if I'; is an icc property (T) group and
I's is an infinite group. Note that Theorem 7.7 fails if the groups involved are not finitely
generated. Indeed, by [54, Theorem 1.1] if A; is a non-trivial group and A, is an infinite
amenable group, then I' = Aj* % Ao does not satisty the conclusion of Theorem 7.7. In
fact, as shown in [54], there are free ergodic pmp actions I' ~ X such that F(L*>°(X) x I')
is uncountable.
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7.6. Absence of Cartan subalgebras

Finally, Theorem 7.1 allows us to provide a new class of II; factors without Cartan
subalgebras:

COROLLARY 7.9. — Let T' = T'; %z 'y be an amalgamated free product group such
that [T'1:A] > 2 and [Ta:A] > 3. Assume that there exist g1,92,...,9n € T such that
Nizy gilg; = {e}.

Then N®L(T) does not have a Cartan subalgebra, for any II; factor N.

Proof of Corollary 7.9. — Let N be a 11; factor and denote M = N®L(T'). Assume by
contradiction that M has a Cartan subalgebra A. Since M = N x I', where I acts trivially
on N, Theorem 7.1 implies A <3s N. By taking relative commutants (see [61, Lemma 3.5])
we get that L(T") <) A’ N M = A. Since A is abelian, while T" is non-amenable, we derive a
contradiction. O

8. Cartan subalgebras of AFP algebras and classification of I1; factors
arising from free product equivalence relations

In this section we prove Theorem 1.3 and Corollary 1.4.

8.1. Proof of Theorem 1.3

Let A be a Cartan subalgebra of M = M; xg M,. Recall that B is amenable, pMp #
pBp # pMsp, for any non-zero projection p € B, and that either

1. M, and M, have no amenable direct summands, or
2. M does not have property I'.

We claim that M 45, M;, foranyi: € {1,2}. Assume by contradiction that M <, M;, for
some i € {1,2}. By Theorem 2.1 we can find projections p € M, q € M;, a non-zero partial
isometry v € ¢Mp such that v*v = p, and a x-homomorphism ¢ : pMp — ¢M;q such that
¢(x)v = vz, for all z € pMp. Since M is a non-amenable factor and B is amenable, we have
that M Aj; B. Thus, by [61, Remark 3.8] we can moreover assume that ¢(pMp) A, B.

Then [32, Theorem 1.1] implies that ¢(pMp)' N gMq C ¢M;q. In particular, go := vv* € ¢Mq.
From this we get that goMqo = goM;qo. Let j € {1,2}\{¢} andx € M;©B. Then the orthog-
onal projection of gyzqo onto (L?(M;)6 L*(B))®p (L*(M;)oL?*(B))®p (L*(M;)© L*(B))
isequal to (go — EB(g0))z(q0 — E(qo))- Since gozgo € M;, we deduce that go — Eg(qo) = 0.
Thus, g0 € B and goM;q0 C qoM;qo N goM;q0 = goBgo. This contradicts our assumption
that goM;qo # goBqo-

Next, consider M = M %5 (BRL(F,)) and the free malleable deformation {6; };cr C Aut(M).
Let N = {u,Muj|g € Fo}". Since M = N x F,, by applying Theorem 2.8 we have two
cases:

Case a. 0,(A) <;; N, for some ¢ € (0,1).

Case b. 6;(M) is amenable relative to N inside M, for any ¢ € (0,1).

In Case a, Theorem 3.2 gives that either A <3y B or M <, M, for some i € {1,2}.
Since the latter is impossible by the above, the conclusion holds in this case.
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To finish the proofit is enough to argue that Case b contradicts each of the above assump-
tions (1) and (2). Indeed, by applying Theorem 4.1 we get that M;p; is amenable relative to B,
for some non-zero projection p; € Z(M;) and some ¢ € {1,2}. Since B is amenable, this
would imply that either My or Ms has an amenable direct summand, contradicting assump-
tion (1).

Also, by applying Theorem 5.1 we would get that either M has property I', M <p; M;,
for some ¢ € {1,2}, or M is amenable relative to B (hence M is amenable and therefore
isomorphic to the hyperfinite II; factor). Since the hyperfinite II; factor has property I', this
contradicts assumption (2).

REMARK 8.1. — Theorem 1.3 requires that M = M; xg M, is a factor. Note that when
Bisatype I von Neumann algebra, [25, Theorem 5.8] and [60, Theorem 4.3] provide general
conditions which guarantee that M is a factor.

8.2. Proof of Corollary 1.4

Denote M = L(R), M; = L(R1), Ms = L(R2) and B = L*°(X). Then M = M;*p M>.
Since the restrictions of &1 and %, to any set of positive measure have infinite orbits, we get
that pMyp # pBp # pMsp, for any non-zero projection p € B.

Now, if the restrictions of &, and &, to any set of positive measure are non-hyperfinite,
then M, and M> have no amenable direct summand [13].

Next, let us show that if & is strongly ergodic, then M does not have property I'. Since the
restrictions of #, and %, to any set of positive measure have infinite orbits, [31, Lemma 2.6]
provides §; € [®1] and 02,03 € [Rs] such that 6,(z) # z,02(z) # z,05(z) # = and
O2(x) # 65(x), for p-almost every z € X. Thus the unitaries u = ug, € M, v = up, € My
and w = ug, € M satisfy Eg(u) = Ep(v) = Ep(w) = Ep(w*v) = 0. By Lemma 6.1 we
get that M’ N M“ C B¥.

Since K is strongly ergodic, we have that M’ N B¥
have property I'.

Altogether by applying Theorem 1.3 we deduce that if A is a Cartan subalgebra of M,
then A <,s B. Hence, by [47, Theorem A.1] it follows that A and B are unitarily conjugate.

Finally, let J be a countable measure preserving equivalence relation on a probability
space (Z,v) and 0 : L(J) — M be an isomorphism. Then 8(L>°(Z)) is a Cartan subalgebra
of M and so it must be conjugate to B. This shows that the inclusions L>(X) C L(f) and
L>(Z) C L({) are isomorphic, hence R = . O

Note that, as one of the referees pointed out, one can alternatively use [60, Theorem 4.8]
to deduce that M = L(R) does not have property T.

C, which shows that M does not

REMARK 8.2. — This proof moreover shows that if v € H?(®, T) is any 2-cocycle, then
L*>(X) is the unique Cartan subalgebra of the II; factor L(&, v), up to unitary conjugacy.
Thus, if L(R,w) = L(J,v), for any ergodic countable measure preserving equivalence rela-
tion f on a standard probability space (Y, v) and any 2-cocycle w € H2((, T), then £ =
and the cocycles v and w are cohomologous. More precisely, there exists an isomorphism of
probability spaces § : X — Y such that (§ x 6)(R) = Jand [vo (8 x 6 x )] = [w] in
H2(R,T) (see [15]).
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9. Normalizers of amenable subalgebras of AFP algebras

In the first part of this section we prove Theorem 1.6 and Corollary 1.7, and then deduce
Corollary 1.5.

9.1. Proof of Theorem 1.6

For simplicity of notation, we assume that p = 1, and leave the details of the general
case to the reader. Let A C M = M, xg M, be a von Neumann subalgebra that is amenable
relative to B. Suppose that P = /", (A)” satisfies P’ N M« = CI1.

Let M = M xp (B®L(F5)) and {6, };cr C Aut(M) the associated free malleable defor-
mation. Let N = {uy,Muj|g € F2}"” and recall that M = N x F,. Since A is amenable rela-
tive to B and 0;(B) = B C N, we deduce that 0;(A) is amenable relative to N, forany ¢ € R.

By Theorem 2.8 either there exists ¢ € (0,1) such that 6,(A) <,; N or else 6,(P) is
amenable relative to N inside M, for every t € (0,1).

In the first case, Theorem 3.2 gives that either A <)s B or P <) M;, for some s € {1,2}.
In the second case, Theorem 5.1 implies that either P <5, M;, for some ¢ € {1,2}, or P is
amenable relative to B inside M. Altogether, the conclusion follows. O

9.2. Proof of Corollary 1.7

We establish the following more precise version of Corollary 1.7. If P C pMpand Q@ C M
are von Neumann subalgebras then we write P <3, @ if Pp’ <) Q, for any non-zero
projection p’ € P’ N pMp.

COROLLARY 9.1. — Let (M;y,71), (Ma,2) be two tracial von Neumann algebras. Let
M = My * My and A C M be a diffuse amenable von Neumann subalgebra. Denote P = 3/ pr(A)".

Then we can find projections p1,p2,ps € Z(P) satisfying p1 + p2 + ps = 1 and

1. Ppy <3 My,
2. Ppy =3 My, and
3. Pps is amenable.

Moreover, if My and My are factors, then we can find unitary elements uy,us € M such that
w1 Pprul C My and us Ppsul C Mo.

Proof. — If a non-zero projection p € Z(P) = P' N M satisfies Pp < M;, for some
i € {1, 2}, then there exists a non-zero projection p’ € Z(P)p such that Pp’ <%, M;. Thus,
in order to get the first part of the conclusion, it suffices to argue that if p € Z(P) is a
non-zero projection such that Pp has no amenable direct summand, then either Pp <, M;
or Pp <pr Mos.

By Theorem 2.7 we can find projections e, f € Z((Pp)’' N pMp) N Z((Pp)' N (pMp)*)
such that

e e+ f=np.
e ((Pp)' N (pMp)¥)e is completely atomic and ((Pp)’' N (pMp)“)e = ((Pp)' N (pMp))e.
e ((Pp) N (pMp)“)f is diffuse.
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Since p # 0, we have that either e # 0 or f # 0.

In the first case, let eg € ((Pp)’ N (pMp)*)e be a minimal non-zero projection. Then we
have that eq € p(P' N M*“)pNp(P' N M)p and eq(P’ N M*“)ey = Ceg. Therefore, Peg is a
von Neumann subalgebra of eg M ey such that (Peg)’ N (egMeg)“ = Ceyg.

Note that Peg C N ¢, nre, (Aeo)”. Also, we have that A and hence Aeq is diffuse. By
applying Theorem 1.6 (in the case B = C) we deduce that either Pey <,s M;, for some
i € {1,2}, or Pey is amenable. Since eg < p, Pey cannot be amenable. Thus, we must have
that Pey <ps M; and hence that Pp <), M;, for some ¢ € {1,2}.

In the second case, we have that f € p(P' N M*“)pNp(P' N M)p and that f(P'NM¥)fis
diffuse. Thus, P f is a von Neumann subalgebra of f M f such that (P f)' N(fM f)~ is diffuse.

By applying Theorem 6.3 (with B = C) we deduce that either Pf <, M;, for some i € {1,2},
or Pfj is amenable, for some non-zero projection fo € Z((Pf) N fMf). Since fo < p, the
latter is impossible. Thus we conclude that Pp <,; M;, for some ¢ € {1,2}, in this case as
well.

The moreover part now follows by repeating the proof of [32, Theorem 5.1 (2)]. O

9.3. Proof of Corollary 1.5

Assume by contradiction that M = M; x M, has a Cartan subalgebra A. Since
M, # C # M, and dim(M;) + dim(Ms3) > 5, by [59, Theorem 4.1] there exists a non-
zero central projection z € M such that Mz is a II; factor without property I', while
M (1 — z) is completely atomic. In particular, M is not amenable.

To derive a contradiction we treat separately two cases
Case 1. My and M, are completely atomic.
Case 2. Either M; or M, has a diffuse direct summand.

In the first case, since A s (A)” = M, Corollary 9.1 yields projections p1, ps,ps € Z(M)
such that p; + p2 + p3 = 1, Mpy <5, M1, Mpy, <3; Ms and Mps is amenable. Since
M, My are completely atomic, it follows that Mp;, M ps are completely atomic. Altogether,
we derive that M is amenable, a contradiction.

In the second case, we may assume for instance that M; has a diffuse direct sum-
mand. Hence, there exists a non-zero projection p € Z(M;y) such that M;p is diffuse.
Since M (1 — z) is completely atomic, we must have that p < z.

Define N = (Cp+ M;(1—p))V Ms. Then by [59, Lemma 2.2] we have that M;p and pNp
are free and together generate pMp, i.e., pMp = Myp « pNp. We also have that pNp # Cp.
Indeed, since M2 # C, there exists a projection g € My with ¢ # 0, 1. Then pgp € pNp and
pgp = 7(q)p + p(q — 7(q))p. This clearly implies that pgp ¢ Cp.

Now, note that Az is a Cartan subalgebra of Mz. Since Mz is a factor and p € Mz, it
follows that pMp also has a Cartan subalgebra. Since M z does not have property T', it follows
that pMp does not have property I' as well. On the other hand, since pMp = Mip * pNp
and M;p # Cp # pNp, by applying Theorem 1.3 (2) in the case B = Cp, we conclude that
pMp does not have a Cartan subalgebra. This leads to the desired contradiction. O
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9.4. Strongly solid von Neumann algebras

Our final aim is to prove Theorem 1.8. We begin by introducing some terminology moti-
vated by the proof of [48, Theorem 3.1].

DEerINITION 9.2 ([48]). — Let (M, 7) be a tracial von Neumann algebra and B C M
be a von Neumann subalgebra. We say that the inclusion B C M is mixing if for every
z,y € M ©B and any sequence b, € (B); such that b, — 0 weakly we have that
I1EB (xbay)ll2 — 0.

This notion has been considered in [33] and [7], where several examples of mixing inclu-
sions of von Neuman algebras were exhibited.

REMARK 9.3. — Let B C M be tracial von Neumann algebras.

1. It is easy to see that the inclusion B C M is mixing if and only if the B-B bimodule
L?(M) © L*(B) is mixing in the sense of [44, Definition 2.3].

2. In particular, the inclusion B C M is mixing whenever the B-B bimodule
L*(M) © L?(B) is isomorphic to a sub-bimodule of @;°,(L*(B) ® L?(B)). This
is the case, for instance, if we can decompose M = B x C, for some von Neumann
subalgebra C C M (see the proof of [50, Lemma 2.2]).

3. Let A < T be an inclusion of countable groups. Then the inclusion of group von
Neumann algebras L(A) C L(T') is mixing if and only if gAg—! N A is finite, for every
g € T'\ A (see [33, Theorem 3.5] and the proof of Corollary 9.8).

4. Let (D, 7) be a tracial von Neumann algebra and I" ~ D be a mixing trace preserving
action. Then the inclusion L(T') C D x T is mixing (see the proof of [48, Lemma 3.4]).

In order to prove Theorem 1.8 we need two technical lemmas.

LEMMA 9.4 ([48]). — Let (M, 1) be a tracial von Neumann algebra and B C M be a von
Neumann subalgebra. Assume that the inclusion B C M is mixing. Let A C pMp be a diffuse
von Neumann subalgebra, for some projection p € M, and denote P = N,z (A)". Then we
have

1. IfAC B, then P C B.
2. IfA <um B, lhenP<M B.

Proof. — For the reader’s convenience let us briefly indicate how the lemma follows
from [48].

Recall that the quasi-normalizer of a von Neumann subalgebra Q C M, denoted gV 3/(Q),
consists of those elements z € M for which we can find z;,...,z, € M such that
2Q C Y, Qr;and Qz € Y, x;Q (see [47, Section 1.4.2]). Note that 4 3 (Q) C ¢V m(Q).

Let @ C rBr be a diffuse von Neumann subalgebra, for some projection » € B. Since
the inclusion B C M is mixing, the proof of [48, Theorem 3.1] shows that the quasi-
normalizer of @ in rMr is contained in rBr (see also the proof of [32, Theorem 1.1]). This
fact implies (1).

To prove (2), assume that A <j; B. Then we can find projections ¢ € A, r € B, a
non-zero partial isometry v € rMq and a x-homomorphism ¢ : gAg — rBr such that
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¢(x)v = vz, for all z € gAq. Since ¢p(gAq) C rBr is diffuse, the previous paragraph gives
that ¢V arr (¢(qAq)) C rBr.

Next, let u € N parp(A). Following the proof of [48, Lemma 3.5], let z € A be a central
projection such that z = E;”:l v;v}, for some partial isometries {v;}7, in pMp satisfying
vjv; < q. We claim that gzugz € ¢Mq belongs to the quasi-normalizer of gAq. Indeed, we

have

qzuqz(qAq) C qzuA = qzAu = qAzu C Z(quj)v;u c Z(qu)v;-‘u
j=1 j=1
and similarly (qAq)qzuqz C E;nzl uv;(qAq).

Now, it is clear that if € ¢V gaq(gAq), then vav* € ¢V rar(¢(gAg)). By combining
the last two paragraphs we derive that vqzugzv* € rBr. Since the central projections z
of the desired form approximate arbitrarily well the central support of ¢, we deduce that
vququ* € rBr. Thus, vuv* € rBr, for all u € N pump(A). Hence vPv* C rBr and so we
conclude that P <;; B. O]

LEMMA 9.5. — Let (M, 1) be a tracial von Neumann algebra and B C M be a von Neumann
subalgebra. Assume that the inclusion B C M is mixing.

Let P C pMp be a separable von Neumann subalgebra, for some projection p € M, and
w be a free ultrafilter on N. Assume that P' N (pMp)* is diffuse and P’ N (pMp)* <pre BY.

Then P <, B.

Proof. — We first prove the conclusion under the additional assumption that
P'NnpMp = Cp. We assume for simplicity that p = 1, the general case being treated simi-
larly. Denote P,, = P’ N M and let {y, },,>1 be a ||.||2 dense sequence in (P);.

Since P,, <y BY, we can find aq,as,...,a,,b1,b0,...,b, € M“ and § > 0 such that
©.1) > IEp-(azub)|3 > 6, forall ue %PR,).
i=1
Foreveryi € {1,2,...,n}, write a; = (a; ), and b; = (b; 1)k, for some a; 1., b; p € M.

CrLAM 1. — There exists k € N such that

9.2) > IEpe(aikubip)ll3 =6, forall we UP,).

=1

Proof of Claim 1. — Suppose that the claim is false and fix & € N. Then there is a unitary
ug € P, such that 37", [|[Epe (a; kurbik)||3 < 6. Write up = (ug,1), where ug; € U(M).
Then the last inequality rewrites as limy_, Y1, || Eg(ai xuk,1bik)||3 < 8. Also, we have that
limy—,, |[uk, y5lll2 = ll{uk, y;]ll2 = 0, for all j > 1. It altogether follows that we can find
! € N such that Uy, := uy; satisfies Y-, || E(a; xUkbix)||3 < 6 and Zle Uk, y5]ll2 < £

It is then clear that the wunitary U = (Uy)r belongs to P, and satisfies
> |Ege(a;Ub;)||3 < é. This contradicts inequality 9.1. O
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We next use an idea of S. Vaes (see the proof of [29, Theorem 3.1]).

Denote by KX the ||.||2 closure of the linear span of the set {axbla,b € M,z € B¥ © B}.
Then K is a Hilbert subspace of L?(M%) that is an M-M bimodule. Denote by e the
orthogonal projection from L?(M¥) onto K.

Since P, is diffuse we can find a unitary u € P, such that 7(u) = 0. Since Eps(u) € P'NM
and P’ N M = C1, it follows that Eps(u) = 7(En(u))1 = 0.

Let & = e(u).

We claim that £ # 0. Let k € Nasin Claim 1 and n = Y77, a7, Epe (a; pub; 1 )b} ;.. Note
that EB(EBw (ai,kubi,k)) = EB(aLkubi,k) = EB(EM(ai,kubi,k)) = EB(ai,kEM(u)bi,k) =0.
Thus Ep«(a; xub; ;) € BY © B, foralli € {1,2,...,n}, hence n € K. On the other hand,
inequality 9.2 rewrites as (u,n) > ¢. Combining the last two facts gives that £ # 0.

Since K is an M-M bimodule and u commutes with P it follows that y¢ = £y, for all
y € P. Thus (y&y*, &) = ||€]|2 > 0, for all y € %(P). To finish the proof we use a second
claim.

CrAaM 2. — Let vy, w, € (M)1 be two sequences such that |Eg(ajv,ai)||2 — 0, for all
ay,as € M. Then for all &1, &5 € K we have that (vp,€1wy, &) — 0, asn — 0.

Proof of Claim 2. — Tt suffices to prove the conclusion for & and & of the form
fl = a1x1b; and fg = asxaby, for some ay,a90,b1,b0 € M and xr1,Ty € (Bw S B)l. In
this case, we have

[(Un€1wn, &2)| = |T(z3a5vna121b1wRb5)| < || EBe (a5vpa121b1w,b3) 2.

Since the inclusion B C M is mixing, we have Eg.(cxd) = 0, for all ¢,d € M & B and
x € B¥ © B. Thus Epw(a3v,a121b1w,b3) = Ep(abvnar)z1 Ep(byw,b}). In combination
with the last inequality this implies that |(v,&1w,, &2) < ||[E(asvnai)|2 — 0. O

Now, if the conclusion P <), B is false, then we can find a sequence of unitary elements
yn € P such that | Eg(abyna1)|l2 — O, for all a;,aa € M. Claim 2 then implies that
(yn&yk, &) — 0, contradicting the fact that (y,&y,€) = ||€]|3 > 0, for all n. This finishes
the proof of Lemma 9.5 under the additional assumption that P’ N pMp = Cp.

In general, assume again for simplicity that p = 1. Then we can find projections
{Pn}n>0 € P' N M such that pg € Z(P' N M) and (P’ N M)py is diffuse, p, € PPN M isa
minimal projection, for all n > 1, and Zn>0pn = 1. Since P,, <pr» B“ we can find n such
that p,, # 0 and p,, P,p,, <ap~ B“. To derive the conclusion, we treat separately two cases.

Firstly, assume that n = 0. Since ((Ppo)’ NpoMpo)* C (Ppo)' N (poMpo)¥ = poP.po
and po P, po <am« BY, iteasily follows that (Ppg)’ N poMpg <ar B. Since (Ppo)' NpoMpo =
(P’ N M)py is diffuse, Lemma 9.4 readily gives that Ppy <»s B and hence P <, B.

Secondly, suppose that n > 1. Since p, € P’ N M is a minimal projection we get that
(Ppn) N pMp, = Cp,. Also, we have that (Pp,) N (p.Mp,)* = p,P.,p, is diffuse
and satisfies (Pp,)’ N (pnMp,)¥ <um- B“. By applying the first part of the proof to the
subalgebra Pp,, C p,Mp, we deduce that Pp,, <»; B and hence that P <,; B. O]
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Proof of Theorem 1.8. — Since the inclusions B C M7, B C M are mixing, it follows
easily that the inclusion B C M is mixing. We claim that the inclusion M; C M is also
mixing, for ¢ € {1, 2}.

To this end, let j € {1,2} with j # 4. Let b, € (M;); be a sequence such that b, — 0
weakly. The claim is equivalent to showing that || Ey, (z*b,y)|2 — 0, forallz,y € M © M,.
We may assume that z, y are of the following form: x = z1z9-- -z, and y = Y192 - - Yn,
where z; € M;, xo € Mj@B,IITg e M;6B--- andy1 € Mi,yg S Mj@B,yg eM;6B---,
for some integers m,n > 2. We may also assume that ||zx|| < 1 and |y < 1, for all
1<k<mand1l <l <n.

A simple computation shows that

En, (2°bny) = En, (7, - 23 Ep (25 Ep(2100Y1)Y2)Y3  Yn)-
Thus, we get that | Epy, (*0,y)|2 < |Es(23EB(2ibny1)y2)|l2- Since b, — 0 weakly, we
have that Eg(zib,y1) — 0 weakly. Since z2,y2 € M; © B and the inclusion B C M; is
mixing, it follows that || Eg (23 Eg(23bny1)y2)|l2 — 0. This proves that || Epy, (*b,y)|l2 — 0
and implies the claim.

Now, to show that M is strongly solid, fix a diffuse amenable von Neumann subalgebra
A C M and denote P = A 5;(A)"”. Suppose by contradiction that P is not amenable and
let z € Z(P) be the largest projection such that Pz is amenable. Thenp =1 — z # 0.

By Theorem 2.7 we can find projections e, f € Z((Pp)’ N pMp) N Z((Pp)’ N (pMp)*)
such that

e e+ f=np.

e ((Pp)' N (pMp)¥)eis completely atomic and ((Pp)' N (pMp)“)e = ((Pp)' N (pMp))e.
e ((Pp) N (pMp)*)f is diffuse.
Since p # 0, we have that either e # 0 or f # 0.

In the first case, let eg € ((Pp)’ N (pMp)“)e be a minimal non-zero projection. Then we
have that eqg € p(P' N M“)pNp(P' N M)p and eq(P’' N M*“)eq = Ceq. Therefore, Pey is
a von Neumann subalgebra of eyMeg such that (Peg)’ N (egMep)¥ = Cey. Note that
Pey C N egnre,(Aeg)”’. Theorem 1.6 implies that either Aeg <y B, Peg < M;, for some
i € {1, 2}, or Peg is amenable relative to B. Moreover if, Aeg <5 B, then since the inclusion
B C M is mixing, Lemma 9.4 gives that Pey < B.

In the second case, we have that f € p(P' N M¥)p N p(P' N M)p and that f(P' N M%) f is
diffuse. Thus, Pf is a von Neumann subalgebra of fM f such that (Pf) N (fMf)* is
diffuse. By applying Theorem 6.3 to the subalgebra Pf of fMf, we get that either
(PHY N(fMf)” <pe BY, Pf <p M;, for some i € {1,2}, or Pfy is amenable relative
to B, for some non-zero projection fy € Z(P' N M) f. Moreover, if (Pf)' N (fMf)* <p B*
then since (Pf)’ N (fM f)* is diffuse, Lemma 9.5 implies that Pf <; B.

Altogether, since ey < p, f < pand B C M; N M, we get that either Pp <5; M;, for
some ¢ € {1,2}, or Pg is amenable relative to B, for some non-zero projection g € Z(P)p.
Since B is amenable, the second condition implies that Pp has an amenable direct summand,
which contradicts the maximality of z.

In order to finish the proof, assume that Pp <, M;, for some i € {1,2}. Since PN M C P,
it follows that we can find non-zero projections pg € Pp, ¢ € M;, a partial isometry v € M
such that v*v = pg and vv* < ¢, and a *-homomorphism ¢ : pgPpy — ¢M;q such that
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¢(x)v = vz, for all z € poPpy. Since ¢p(poPpo) C gM;q is a diffuse subalgebra and the
inclusion M; C M is mixing, Lemma 9.4 gives that ¢(poPpo)’ N ¢Mq C qM;q and thus
vt € M;.

Hence, after replacing P with wPu*, for some unitary u € M, we may assume that
po € M; and pgPpy C poM;po. Next, we can find a non-zero projection p; € pgPpy and
partial isometries vy, vs,...,v, € P such that v}v; = py, for all ¢ € {1,2,...,n}, and
p' =Y ,_, viv} is a central projection of P. Since p1 Pp; C p; M;p1, there exists an embed-
ding 0 : Pp" — M, (p1 Mip1).

Since M; is strongly solid, [23, Proposition 5.2] gives that M, (p; M;p;) is also strongly
solid. Since the inclusion Ap’ C Pp’ is regular and Ap’ is a diffuse amenable von Neumann
algebra, we deduce that Pp’ is amenable. Since p’p # 0 (as we have 0 # p; < pAp’) we again
get a contradiction with the maximality of z. This completes the proof of the theorem. [

We end with several consequences of Theorem 1.8.

COROLLARY 9.6. — Let (My,711) and (Ma, 12) be strongly solid von Neumann algebras.
Then M = My * My is strongly solid.

COROLLARY 9.7. — Let (My,11), (M2, 72),...,(M,, ) be tracial amenable von Neu-
mann algebras with a common von Neumann subalgebra B such that Ty gp = To|p = -+ = Tn|B-
Assume  that the inclusions B C My,B C Ms,...,BC M, are mixing. Denote

M = M xg Mz *p -+ - g My,
Then M is strongly solid.

Proof. — Since the inclusions B € M,,B C M,,...,B C M, are mixing, it is easy to
see that the inclusion B C M xg My xp - - - xg M; is mixing, for all ¢ € {1,2,...,n}. The
conclusion then follows by using induction and Theorem 1.8. O

Corollary 9.7 provides two new classes of strongly solid von Neumann algebras.

COROLLARY 9.8. — LetT'y,..., Ty, be countable amenable groups with a common subgroup A.
Assume that gAg=—* N A is finite, for every g € (UT_,T;) \ A. DenoteT = Ty %y Ta*p -+ x4 T
Then L(T) is strongly solid.

Proof. — We claim that the inclusion L(A) C L(T;) is mixing, for every i € {1,2,...,n}.

To this end, let b,, € (L(A)); be a sequence converging weakly to 0. We aim to show that
| ELca)y(@bpy) |2 — 0, forevery z,y € L(T';)©L(A). By Kaplansky’s density theorem we may
assume that z = uy, and y = ug, for some h, k € T'; \ A. Then the set F = {g € Alhgk € A}
is finite. Since b,, — 0 weakly we get that

IEL ) (unbrun) |3 = [7(bau)> — 0.
geF

Corollary 9.7 now implies that L(T") = L(T'1) *(a) L(T'2) *,(a) - - - *£(a) L(I'n) s strongly

solid. O

Corollary 9.8 generalizes the main result of [23], where the same statement is proven under
the additional assumption that for every ¢ € {1,2,...,n} we can decompose I'; = T; x A,
for some abelian group ;.
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COROLLARY 9.9. — Let T be a countable amenable group and (D1, 71), (D2,72), ..., (Dn, )
be tracial amenable von Neumann algebras. Let T' ~\°* (D1, 11),I' "°2 (Ds,73),..., [ A"
(Dy, Tn) be mixing trace preserving actions. Denote D = Dy x Dy * - -+ x D,, and endow D
with its natural trace . Consider the free product action T ~° (D, 1) given by

o(g)(z122 - zn) = 01(9)(21)02(9)(22) - - 00(9)(@n), for z1 € D1,23 € Dy, ...,z € Dy
Then M = D x T is strongly solid.

Proof. — Denote M; = D, x T. Since the action I’ ~ (D,, ;) is mixing, the inclusion

L(T') c M; is mixing, for all 1 < i < n. Since I" as well as Dy, D, ..., D,, are amenable,

we have that My, My, ..., M, are amenable. Since M = My ) Mg * -+ ) My, the

conclusion follows from Corollary 9.7. O
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Appendix: Spectral gap for inclusions of von Neumann algebras
by Adrian Ioana and Stefaan Vaes()

Let (M, 7) be a von Neumann algebra equipped with a faithful normal tracial state.
Let P C M be a von Neumann subalgebra. In [70, Section 2], Popa introduced the following
two different notions of spectral gap for the inclusion P C M.

(a) P C M has spectral gap if every net of unit vectors & € L?(M) that asymptotically
commutes with P, meaning that lim; ||z&; — &z|2 = 0 for all z € P, must lie asymp-
totically in L2(P’ N M), namely lim; ||§; — Epraar(€:)]l2 = 0.

(b) P C M has w-spectral gap if every net & € (M), in the unit ball of M that asymp-
totically commutes with P, meaning that lim; ||z§; — &;z||2 = 0 for all z € P, must lie
asymptotically in P’ N M, namely lim; ||§; — Epnm(&:)|2 = 0.

Here, Ep/ny; denotes the conditional expectation of M onto P’ N M, or its extension as the
orthogonal projection of L?(M) onto L2(P' N M).

In [70, Remark 2.2], the subtle difference between spectral gap and w-spectral gap is
explained: concrete examples of inclusions without spectral gap, but yet having w-spectral
gap are given, and the analogy with the difference between strong ergodicity and spectral
gap for a probability measure preserving group action I' ~ (X, p) is explained, yielding the
following example. Let I' = F,, be a free group, forn > 2,and letI' ~ (X, u) be a
measure preserving action on a standard probability space that is strongly ergodic but does
not have spectral gap (see [71, Example 2.7]). Denote A = L*®(X), M = A x T and
P = L(T). Since I is not inner amenable and I' ~ (X, u) is strongly ergodic, it follows

(M Supported by Research Programme G.0639.11 of the Research Foundation — Flanders (FWO) and KU Leuven
BOF research grant OT/13/079.
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that P C M has w-spectral gap. On the other hand, P C M does not have spectral gap.
Indeed, let &, € L?(A) © C1 be a sequence of unit vectors such that |Ju,&, — &,uyll2 — 0,

forallg € T. Letz € Pand writez = }___ 24uq, Where 24 € C. Then

llz€n — fnfL‘H% = Z |x9|2 ugén — §nug”g for all n.
ger
Since >° . |z4]* = [|z[|3 < oo, it follows that [|z€,, — &uzlls — O.
Finally note that if M is a II; factor and P = M, then both notions of spectral gap are
equivalent by [67, Theorem 2.1].
In the proof of Theorem 5.1 above, the following technical property is needed. This
property sits, a priori, in between spectral gap and w-spectral gap.

(c) Everynetof unit vectors §; € L?(M) ® £2(N) that asymptotically commutes with P®1
and that is asymptotically subtracial, meaning that lim sup;, ||(a ® 1)&;]|2 < ||al|2 and
limsup, [[§(a® 1)z < |lallz  for all a€ M, must lie asymptotically in
L*(P'N M) ® ¢£3(N).

In the theorem below, we prove that this property (c) is equivalent to w-spectral gap.

The difference between spectral gap and w-spectral gap arises when there do exist non-
trivial unit vectors & € L?(M) that asymptotically commute with P, but when these unit
vectors necessarily have their support in a smaller and smaller corner of M with the opera-
tor norm of §; becoming larger and larger. If now §; = 3, a; 1 ®dy isanet in L? (M) ® ¢2(N)
as in (c), then the subtraciality assumption guarantees that the small supports of the a; j are
evenly spread over M. Using a maximality argument, it should be possible to glue the a; ; to-
gether into a bounded net in M that asymptotically commutes with P, asin [69, Remark 2.4].
We follow a slightly different approach, taking random linear combinations ), (xa; , With
(x € T, very much inspired by [68, Proof of Lemma 4.3].

THEOREM. — Let (M, T) be a von Neumann algebra with a faithful normal tracial state.
Let P C M be a von Neumann subalgebra. The following two conditions are equivalent.

1. The inclusion P C M does not have w-spectral gap: there exists a net u; € (M),
in the unit ball of M satisfying lim; |zu; — w;z||2 = 0 for all x € P and satisfying
lim inf; ||’U/l — EP’(“,M(UZ')||2 > 0.

2. There exist a Hilbert space H and a net of vectors &; € L2(M)® H satisfying the following
properties:

o lim; [(z® 1) — &i(x®1)||2 =0 forallz € P,

o liminf; ||§; — pr2pramnem(&)ll2 > 0,
e limsup; ||(a ® 1)&||2 < ||lall2 and lim sup, ||€;(a ® 1)||2 < ||al|2 for all a € M.

Proof. — It is obvious that 1 implies 2 by taking H = C and &; = u;.
Assume that 2 holds. Write & =pr2piramen and p; = P(§;). Obviously
(z®1)p; = pi(z @ 1) forallz € P. Also,

l(a® )ulla = |2(Epam(a*a)/2 @ 1)&)|2 forall a € M andall .

Therefore, also lim sup; ||(a ® 1)p;||2 < ||a||2 for all @ € M, and similarly with ||u;(a ® 1)||2.
Replacing &; by (& — p)/2, we may from now on moreover assume that #(&;) = 0 for all 5.
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Define the normal positive functionals w;,w; € M, given by w;(a) = ((a ® 1)&;,&;)
and wi(a) = (¢&i(a ® 1),&;). After passage to a subnet, we may assume that w; — w and
w} — w’ weakly*, where w,w’ € M™* are nonzero positive functionals satisfying w,w’ < 7.
Convex combinations of the functionals w;, resp. w;, then converge in norm to w, resp. w'.
Such convex combinations are canonically implemented by vectors in H ® £2(N). Therefore,
replacing H by H ® £2(N), we may assume that lim; ||w; — w||; = lim; |Jw} — &’|l; = 0.

Write w = 7(-T) and w; = 7(-T;), where T, T; are positive elements in L' (M). We have
0 < T < 1andlim;||T; — T|ly = 0. Denote by p; € M the spectral projection of T;
corresponding to the interval [0, 2]. We claim that lim; w;(1 — p;) = 0. Write ¢; = 1 — p;.
Then, ¢;T;q; > 2¢;. Also, ¢;Tq; < g¢; because T' < 1. Therefore, ¢;(T; — T)gi > q;.
Since ||¢;(T; — T)gi|l1 — 0, it follows that ||¢;||s — 0. Then also ||¢;T¢;:||1 — 0, so that
llg:T3q:||1 — 0, proving the claim.

By the claim, we have that lim; ||£; — (p; ® 1)&||2 = 0. We similarly define p} and get that
lim; ||& — (p; ® 1)&(p; ® 1)|]]2 = 0. Replacing &; by p;&;p}/2, we now have the following
properties.

e lim; ||(SL'®].)£1—€1(ZL‘®1)H2ZOfOI‘allJIEP,
e [[(a®1)&]l2 < |lall2 and ||€;(a ® 1)||2 < ||a||2 for all i and all @ € M.

Define § > 0 such that lim inf; ||&;||2 > 46. Fix a finite subset ¥ C P satisfying ¥ = J*
and fixe > 0. We will construct an element W € M satisfying | W |2 < 8/8, Eprap (W) = 0,
[W]|3 > 6 and ||zW — Wz||2 < e for all z € &. Once we have done this for arbitrary finite
g C P and € > 0 (with the same fixed ¢ from the beginning), the net in 1 indeed exists.

Every vector ¢ € L?(M) ® H belongs to L?(M) ® H, for some separable subspace
Hy C H. We can therefore find a sequence of vectors &, € L?(M) ® £?(N) satisfying

o lim, [|[(z®1)é, — & (z®1)|]2 =0forallz € &,
e lim, | ?(£,)]l2 = 0 and lim inf,, ||£,]|3 > 46,
o [[(a®1)&]l2 < |lallz and ||€p(a ® 1)||2 < |la||2 foralln and all a € M.

By the last property, we have &, = >, an,x ® 0 Where a, ;, € M satisfies D, An,kay, < 1
and ), a;, yanr < 1. Approximating &, by a finite sum, we may assume that for every n,
there are only finitely many nonzero a,, .

Define £ C L?(M)®¢?(N) as the linear span of all a® . Define the standard probability
space X = TN as an infinite product of tori equipped with the Lebesgue measure. Write
M = L*®(X) ® M and define the linear map

O: K-> M:(0(@a®))(C)=Ca forall ae M,keN, (e X.

Write B = L*°(X) ® (P’ N M). By a direct computation, using that the functions ¢ — (;
are orthogonal for distinct ¢, we get that

e O((z@1)(y)=(1z)0¢)(loy) forallz,ye M, € X,
* 18]Iz = [I&]l2 forall§ € X,
e Ep(0(8)) =0(L(¢)) forall¢ € X.
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Finally we prove that, if ¢ € K is given by a finite sum & = 3, ax®Jy, satisfying ), aray <1
and ), ajar <1, then
9.3) T(16©) <2.

To prove (9.3), first note that [©(£)[*(¢) = X2, ; ., Gi ¢j Ck ¢ afajajar. The integral over ¢ is
zero, except in two cases: the case where ¢ = j and k = [, and the case where¢ =l and j = k.
Counting ‘twice’ the case where i = j = k = [, we find that

Eigm (1©(8) (Za a1) +Z (Zaj ])az—;(ajaif.

Using that 3° . aja} < 1and ), afa; < 1, it follows that B (|O(€)[*) < 2. Applying 7,
we find that (9.3) holds.

Define the sequence U,, € M given by U,, = O(&,,). Fix a free ultrafilter w on N. We claim
that (U,,) defines an element in L?(1“). For every n € N and A > 0, denote by p,, » the
spectral projection of |U, | corresponding to the interval [0, A]. Write g, » = 1 — p,, x. Using
(9.3) in the last inequality, we get that

N NUn gl = X 7(1UnlPgn,2) < 7(1Unl*gnn) < 7(1UIY) < 2

It follows that (U, pn ). belongs to M and converges in || - |2 to U = (U,) € L?*(M*)
as A — oo. We still have that 7(|U[*) < 2. The other properties of the sequence (&,) now
translate to: U commutes with 1 ® &, |U||2 > 46 and Ep. (U) = 0.

Put A = 4/2/6 and denote by p, the spectral projection of |U| corresponding to the
interval [0, A]. Write ¢y = 1 — py. Then, p) € M* N (1 ® F) and, as above,
2
ITaxllz < 55 = 9.
Define V = Upy. Then, V € U* N (1® &) and ||[V| < A. Also,
IV = Ep-(W)[3 = VI = 1 Ez-(W)I3 = IVIIz = | Ep~(U) — Ep-(Ugy)ll3
= VI3 = 1Bz« Ua)l3 = U3 = IUallz = 1 Ep (Ugn)ll3
> ||U|I% - 26 > 26.

Represent V by a sequence V = (V,,) with V,, € M and ||V,,|| < ||V]| < A. Since V commutes
with 1 ® &, we fix n close enough to w such that

2
5
(9.4) S laen)V, - Viles) < ﬁ and
eSS
9.5) IV — E(V)|I3 > 26.

From now on, we view V,, as a measurable function from X to M, with ||V,,(¢)|| < A for all
¢ € X. Define the sets

Xo={ceX | X aVa(©) = Va(Q)al} < &},

€S
= {ce X [ IVa(0) = Brron (V)13 > 5}
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Because of (9.4), we have that u(Xg) > 1 —6/A2. We claim that also p(X7) > §/A%. Indeed,
if p(X1) < §/A%, using that [[Va () = Epan(Va ()2 < [IVa(Q)ll2 < [Va(C)Il < A for all
¢ € X, it follows that

|V — Es(V2)|I3

— [ V€)= Eross Va(OIE dis©) + [ V) = Brrrar (Val€)IB du0)
X, X\ X1

< (XA 4 p(X )\ X1)6 < 20.

This contradicts (9.5) and the claim follows. But then u(XoN X;) >0 and we pick
¢e€XonNX;. Define W=V,(()— Epnm(Vn(¢)). By construction, we have that
[W]1?2 < (20?2 =8/8, Eprap (W) =0, ||W]2 > dand ||[aW — Wzl < eforallz € F. O

COROLLARY. — Let (M, 7) and (N, 1) be von Neumann algebras with a faithful normal
tracial state. Let P C M be a von Neumann subalgebra. If P C M has w-spectral gap, then
also P®1 C M ® N has w-spectral gap.

Proof. — Tt suffices to put H = L?(N) and to view unitary operators in M ® N as vectors
in L2(M)® H. O

BIBLIOGRAPHY

[11 A. Connes, Classification of injective factors. Cases 11y, I, I1Iy, A\ # 1, Ann. of
Math. 104 (1976), 73-115.

[2] U. HAAGERUP, A new proof of the equivalence of injectivity and hyperfiniteness for
factors on a separable Hilbert space, J. Funct. Anal. 62 (1985), 160-201.

[3] M. PIMSNER & S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup.
19 (1986), 57-106.

[4] S. Pora, On the classification of inductive limits of II; factors with spectral gap, Trans.
Amer. Math. Soc. 364 (2012), 2987-3000.
[5] K. ScaMmIDT, Amenability, Kazhdan’s property T, strong ergodicity and invariant

means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), 223~
236.

(Manuscrit regu le 21 septembre 2012 ;
accepté, aprés révision, le 10 octobre 2013.)

Adrian IoANA
Mathematics Department
University of California
San Diego, CA 90095-1555, USA
E-mail: aioana@ucsd.edu

Stefaan VAES
KU Leuven
Department of Mathematics
Celestijnenlaan 200B
B-3001 Leuven, Belgium
E-mail: stefaan.vaes@wis.kuleuven.be

4¢ SERIE - TOME 48 —2015—N° 1


http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_1.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_1.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_1.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_1.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_1.html#5

	1. Introduction
	2. Preliminaries
	3. A conjugacy result for subalgebras of AFP algebras
	4. Relative amenability and subalgebras of AFP algebras, I
	5. Relative amenability and subalgebras of AFP algebras, II
	6. Property  for subalgebras of AFP algebras
	7. Uniqueness of Cartan subalgebras for II1 factors  arising from actions of AFP groups
	8. Cartan subalgebras of AFP algebras and classification of II1 factors  arising from free product equivalence relations
	9. Normalizers of amenable subalgebras of AFP algebras
	Bibliography
	Appendix: Spectral gap for inclusions of von Neumann algebrasby Adrian Ioana and Stefaan Vaes
	Bibliography

