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CARTAN SUBALGEBRAS
OF AMALGAMATED FREE PRODUCT II1 FACTORS

 A IOANA
W    A IOANA  S VAES

Dedicated to Sorin Popa

A. – We study Cartan subalgebras in the context of amalgamated free product II1 factors
and obtain several uniqueness and non-existence results. We prove that if Γ belongs to a large class of
amalgamated free product groups (which contains the free product of any two infinite groups) then
any II1 factor L∞(X) o Γ arising from a free ergodic probability measure preserving action of Γ has
a unique Cartan subalgebra, up to unitary conjugacy. We also prove that if R = R1 ∗ R2 is the
free product of any two non-hyperfinite countable ergodic probability measure preserving equivalence
relations, then the II1 factor L( R) has a unique Cartan subalgebra, up to unitary conjugacy. Finally,
we show that the free product M = M1 ∗M2 of any two II1 factors does not have a Cartan subalgebra.
More generally, we prove that if A ⊂ M is a diffuse amenable von Neumann subalgebra and P ⊂ M

denotes the algebra generated by its normalizer, then either P is amenable, or a corner of P can be
unitarily conjugate into M1 or M2.

R. – Nous étudions les sous-algèbres de Cartan dans le contexte du produit amalgamé de
facteurs de type II1 et nous obtenons plusieurs résultats d’unicité et de non-existence. Nous démontrons
que, si Γ appartient à une grande classe de produits amalgamés de groupes (qui contient le produit libre
de deux groupes infinis), alors tout facteur de type II1 associé à une action libre ergodique de Γ a une
sous-algèbre de Cartan unique, à conjugaison unitaire. Nous démontrons aussi que, si R = R1∗ R2 est
le produit libre de toute relation d’équivalence ergodique non-hyperfinie dénombrable, alors le facteur
de type II1 L( R) a une sous-algèbre de Cartan unique, à conjugaison unitaire. Enfin, nous démontrons
que le produit libre M = M1 ∗M2 de tout facteur de type II1 n’a pas de sous-algèbre de Cartan. Plus
généralement, nous démontrons que, si A ⊂ M est une sous-algèbre de von Neumann amenable et non-
atomique et si P ⊂ M désigne l’algèbre engendrée par son normalisateur, alors soit P est amenable,
soit un coin de P peut être unitairement conjugué dans M1 ou M2.
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Fellowship.
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72 A. IOANA

1. Introduction

A Cartan subalgebra of a II1 factor M is a maximal abelian von Neumann subalgebra A
whose normalizer generates M . The study of Cartan subalgebras plays a central role in
the classification of II1 factors arising from probability measure preserving (pmp) actions.
If Γ y (X,µ) is a free ergodic pmp action of a countable group Γ, then the group measure
space II1 factor L∞(X) o Γ [38] contains L∞(X) as a Cartan subalgebra. In order to
classify L∞(X) o Γ in terms of the action Γ y X, one would ideally aim to show that
L∞(X) is its unique Cartan subalgebra (up to conjugation by an automorphism). Proving
that certain classes of group measure space II1 factors have a unique Cartan subalgebra is
useful because it reduces their classification, up to isomorphism, to the classification of the
corresponding actions, up to orbit equivalence. Indeed, following [58, 15], two free ergodic
pmp actions Γ y X and Λ y Y are orbit equivalent if and only if there exists an isomorphism
θ : L∞(X)o Γ→ L∞(Y )o Λ such that θ(L∞(X)) = L∞(Y ).

In the case of II1 factors coming from actions of amenable groups, both the classifica-
tion and uniqueness of Cartan problems have been completely settled since the early 1980’s.
A celebrated theorem of A. Connes [67] asserts that all II1 factors arising from free ergodic
pmp actions of infinite amenable groups are isomorphic to the hyperfinite II1 factor,R. Addi-
tionally, [13] shows that any two Cartan subalgebras ofR are conjugate by an automorphism
of R.

For a long time, however, the questions of classification and uniqueness of Cartan sub-
algebras for II1 factors associated with actions of non-amenable groups, were considered
intractable. During the last decade, S. Popa’s deformation/rigidity theory has led to spec-
tacular progress in the classification of group measure space II1 factors (see the surveys
[49, 62, 30]). This was in part made possible by several results providing classes of group
measure space II1 factors that have a unique Cartan subalgebra, up to unitary conjugacy.
The first such classes were obtained by N. Ozawa and S. Popa in their breakthrough work
[41, 42]. They showed that II1 factors L∞(X) o Γ associated with free ergodic profinite
actions of free groups Γ = Fn and their direct products Γ = Fn1

× Fn2
× · · · × Fnk

have
a unique Cartan subalgebra, up to unitary conjugacy. Recently, this result has been ex-
tended to profinite actions of hyperbolic groups [10] and of direct products of hyperbolic
groups [11]. The proofs of these results rely both on the fact that free groups (and, more
generally, hyperbolic groups, see [39, 40]) are weakly amenable and that the actions are
profinite.

In a very recent breakthrough, S. Popa and S. Vaes succeeded in removing the profinite-
ness assumption on the action and obtained wide-ranging unique Cartan subalgebra results.
They proved that if Γ is either a weakly amenable group with β(2)

1 (Γ) > 0 [55] or a hyperbolic
group [56] (or a direct product of groups in one of these classes), then II1 factors L∞(X)oΓ

arising from arbitrary free ergodic pmp actions of Γ have a unique Cartan subalgebra, up to
unitary conjugacy. Following [55, Definition 1.4], such groups Γ, whose every action gives
rise to a II1 factor with a unique Cartan subalgebra, are called C -rigid (Cartan rigid).

In this paper we study Cartan subalgebras of tracial amalgamated free product von
Neumann algebras M = M1 ∗B M2 (see [46, 66] for the definition). Our methods are best
suited to the case when M = L∞(X) o Γ comes from an action of an amalgamated free

4 e SÉRIE – TOME 48 – 2015 – No 1



CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II1 FACTORS 73

product group Γ = Γ1 ∗Λ Γ2. In this context, by imposing that the inclusion Λ < Γ satisfies
a weak malnormality condition [53], we prove that L∞(X) is the unique Cartan subalgebra
of M , up to unitary conjugacy, for any free ergodic pmp action Γ y X.

T 1.1. – Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product group such
that [Γ1 : Λ] > 2 and [Γ2 : Λ] > 3. Assume that there exist g1, g2, . . . , gn ∈ Γ such that⋂n
i=1 giΛg

−1
i is finite. Let Γ y (X,µ) be any free ergodic pmp action of Γ on a standard

probability space (X,µ).

Then the II1 factor M = L∞(X) o Γ has a unique Cartan subalgebra, up to unitary
conjugacy.

Moreover, the same holds if Γ is replaced with a direct product of finitely many such groups Γ.

This result provides the first examples of C -rigid groups Γ that are not weakly amenable
(take e.g., Γ = SL3(Z) ∗ Σ, where Σ is any non-trivial countable group).

Theorem 1.1 generalizes and strengthens the main result of [53]. Indeed, in the above
setting, assume further that Λ is amenable and that Γ2 contains either a non-amenable
subgroup with the relative property (T) or two non-amenable commuting subgroups. [53,
Theorem 1.1] then asserts that M has a unique group measure space Cartan subalgebra.

Theorem 1.1 provides strong supporting evidence for a general conjecture which predicts
that any group Γ with positive first `2-Betti number, β(2)

1 (Γ) > 0, is C -rigid. Thus, it implies
that the free product Γ = Γ1 ∗ Γ2 of any two countable groups satisfying |Γ1| > 2 and
|Γ2| > 3, is C -rigid.

Recently, there have been several results offering positive evidence for this conjecture.
Firstly, it was shown in [53] that if Γ = Γ1 ∗ Γ2, where Γ1 is a property (T) group and
Γ2 is a non-trivial group, then any II1 factor L∞(X)o Γ associated with a free ergodic
pmp action of Γ has a unique group measure space Cartan subalgebra, up to unitary con-
jugacy (see also [16, 24]). Secondly, the same has been proven in [9] under the assumption
that β(2)

1 (Γ) > 0 and Γ admits a non-amenable subgroup with the relative property (T). For a
common generalization of the last two results, see [63]. Thirdly, we proved that if β(2)

1 (Γ) > 0,
then L∞(X)o Γ has a unique group measure space Cartan subalgebra whenever the action
Γ y (X,µ) is either rigid [29] or compact [28]. As already mentioned above, the conjecture
has been very recently established in full generality for weakly amenable groups Γ with
β

(2)
1 (Γ) > 0 in [55].

As a consequence of Theorem 1.1 we obtain a new family of W∗-superrigid actions.
Recall that a free ergodic pmp action Γ y (X,µ) is called W∗-superrigid if whenever
L∞(X)o Γ ∼= L∞(Y )o Λ, for some free ergodic pmp action Λ y (Y, ν), the groups Γ and
Λ are isomorphic, and their actions are conjugate. The existence of virtually W∗-superrigid
actions was proven in [43]. The first concrete families of W∗-superrigid actions were found
in [53] where it was shown for instance that Bernoulli actions of many amalgamated free
product groups have this property. In [27] we proved that Bernoulli actions of icc property
(T) groups are W∗-superrigid. By combining Theorem 1.1 with the cocycle superrigidity
theorem [51] we derive the following.
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74 A. IOANA

C 1.2. – Let Γ = Γ1 ∗Λ Γ2 and Γ′ = Γ′1 ∗Λ′ Γ′2 be two amalgamated free
product groups satisfying the hypothesis of Theorem 1.1. Denote G = Γ× Γ′.

Then any free action of G which is a quotient of the Bernoulli action Gy [0, 1]G is
W∗-superrigid.

Next, we return to the study of Cartan subalgebras of general amalgamated free
product II1 factors M = M1 ∗B M2. Assuming that B is amenable and M satisfies some
rather mild conditions, we prove that any Cartan subalgebra A ⊂ M has a corner which
embeds into B, in the sense of S. Popa’s intertwining-by-bimodules [48] (see Theorem 2.1).
This condition, written in symbols as A ≺M B, roughly means that A can be conjugated
into B via a unitary element from M .

T 1.3. – Let (M1, τ1) and (M2, τ2) be two tracial von Neumann algebras with
a common amenable von Neumann subalgebra B such that τ1|B = τ2|B . Assume that
M = M1 ∗B M2 is a factor and that either:

1. M1 and M2 have no amenable direct summands, or
2. M does not have property Γ and pM1p 6= pBp 6= pM2p, for any non-zero projection
p ∈ B.

If A ⊂M is a Cartan subalgebra, then A ≺M B.

Recall that a tracial von Neumann algebra (M, τ) is a von Neumann algebra M endowed
with a normal faithful tracial state τ . As usual, we denote by ‖x‖2 = τ(x∗x)

1
2 the induced

Hilbert norm on M . Recall also that a II1 factor M has property Γ if there exists a se-
quence un ∈M of unitary elements such that τ(un) = 0, for all n, and ‖unx− xun‖2 → 0,
for every x ∈M [37].

Theorem 1.3 has two interesting applications.
Firstly, it yields a classification result for von Neumann algebras L( R) [15] arising from

the free product R = R1 ∗ R2 of two equivalence relations (see [19] for the definition).
For instance, it implies that if R1, R2 are ergodic and non-hyperfinite, then any countable
pmp equivalence relation S such that L( S) ∼= L( R) is necessarily isomorphic to R. More
generally, we have

C 1.4. – Let R be a countable ergodic pmp equivalence relation on a standard
probability space (X,µ). Assume that R = R1 ∗ R2, for two equivalence relations R1 and R2

on (X,µ). Additionally, suppose that either:

1. R1|Y and R2|Y are not hyperfinite, for any Borel set Y ⊂ X with µ(Y ) > 0, or
2. R is strongly ergodic, and R1 and R2 have infinite orbits, almost everywhere.

Then L∞(X) is the unique Cartan subalgebra of L( R), up to unitary conjugacy.
Thus, if L( R) ∼= L( S), for any ergodic countable pmp equivalence relation S, then R ∼= S.

Here, R|Y := R ∩ (Y × Y ) denotes the restriction of R to Y . Recall that an ergodic
countable pmp equivalence relation R on a probability space (X,µ) is called strongly ergodic
if there does not exist a sequence of Borel sets Yn ⊂ X such that µ(Yn) = 1

2 , for all n, and
µ(θ(Yn)∆Yn)→ 0, for any Borel automorphism θ of X satisfying (θ(x), x) ∈ R, for almost
every x ∈ X.
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Secondly, Theorem 1.3 allows us to show that the free product of any two diffuse tracial
von Neumann algebras does not have a Cartan subalgebra. By using the notion of free
entropy for von Neumann algebras, D. Voiculescu proved that the free group factors L(Fn)

do not have Cartan subalgebras [65]. This result was extended in [34, Lemma 3.7] to show
that the free productM = M1∗M2 of any two diffuse tracial von Neumann algebras (M1, τ1)

and (M2, τ2), which are embeddable into Rω, does not have a Cartan subalgebra. Here we
prove this result without requiring thatM1 andM2 embed intoRω. More generally, we have

C 1.5. – Let (M1, τ1), (M2, τ2) be tracial von Neumann algebras satisfying
M1 6= C1 6= M2 and dim(M1) + dim(M2) > 5.

Then their free product M = M1 ∗M2 does not have a Cartan subalgebra.

Corollary 1.5 shows that if M1 6= C1 6= M2 and (dim(M1), dim(M2)) 6= (2, 2), then
M has no Cartan subalgebra. On the other hand, if dim(M1) = dim(M2) = 2, then M is
of type I (see [14, Theorem 1.1]) and therefore has a Cartan subalgebra.

So far, our results only apply to Cartan subalgebras of amalgamated free product von
Neumann algebras M = M1 ∗BM2. From now on, we more generally study, in the spirit of
[41] and [55], normalizers of arbitrary diffuse amenable von Neumann subalgebras A ⊂M .
Recall that the normalizer ofA inM , denoted N M (A), is the group of unitaries u ∈M such
that uAu∗ = A. Assuming that the normalizer ofA satisfies a certain spectral gap condition,
we prove the following dichotomy: either a corner ofA embeds intoMi, for some i ∈ {1, 2},
or the algebra generated by the normalizer of A is amenable relative to B. More precisely,
we show

T 1.6. – Let (M1, τ1) and (M2, τ2) be two tracial von Neumann algebras with a
common von Neumann subalgebraB such that τ1|B = τ2|B . LetM = M1∗BM2 andA ⊂ pMp

be a von Neumann subalgebra which is amenable relative to B, for some projection p ∈ M .
Denote byP = N pMp(A)′′ the von Neumann algebra generated by the normalizer ofA in pMp.
Assume that P ′ ∩ (pMp)ω = C1, for a free ultrafilter ω on N.

Then one of the following conditions holds true:

1. A ≺M B.
2. P ≺M Mi, for some i ∈ {1, 2}.
3. P is amenable relative to B.

For the definition of relative amenability, see Section 2.2. For now, note that if B is
amenable, then P is amenable relative to B if and only if P is amenable.

We believe that Theorem 1.6 should hold without assuming that P ′ ∩Mω = C1, but we
were unable to prove this for general B. Nevertheless, in the case B = C, a detailed analysis
of the relative commutant P ′ ∩ Mω (see Section 6) enabled us to show that the condition
P ′ ∩Mω = C1 is indeed redundant.

C 1.7. – Let (M1, τ1), (M2, τ2) be two tracial von Neumann algebras. Let
M = M1 ∗M2 and A ⊂M be a diffuse amenable von Neumann subalgebra. Denote P = N M (A)′′.

Then either P ≺M Mi, for some i ∈ {1, 2}, or P is amenable.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



76 A. IOANA

For a more precise version of this result in the case M1 and M2 are II1 factors, see
Corollary 9.1.

Finally, we present a new class of strongly solid von Neumann algebras. Recall that a von
Neumann algebra M is called strongly solid if N M (A)′′ is amenable, whenever A ⊂ M is a
diffuse amenable von Neumann subalgebra [41]. N. Ozawa and S. Popa proved in [41] that
the free group factors L(Fn) are strongly solid. More generally, I. Chifan and T. Sinclair
recently showed that the von Neumann algebraL(Γ) of any icc hyperbolic group Γ is strongly
solid [10].

The class of strongly solid von Neumann algebras is not closed under taking amalgamated
free products. For instance, if F2 y (X,µ) is a pmp action on a non-atomic probability space (X,µ),
then the group measure space algebra L∞(X)o F2 = (L∞(X)o Z) ∗L∞(X) (L∞(X)o Z)

is not strongly solid, although the algebras involved in its amalgamated free product decom-
position are amenable and hence strongly solid.

However, as an application of Theorem 1.6, we prove that the class of strongly solid von
Neumann algebras is closed under free products (Corollary 9.6) More generally, we show that
if M1 and M2 are strongly solid von Neumann algebras, then the amalgamated free product
M = M1 ∗B M2 is strongly solid, provided that the inclusions B ⊂ M1 and B ⊂ M2 are
mixing, and B is amenable.

T 1.8. – Let (M1, τ1) and (M2, τ2) be strongly solid von Neumann algebras with
a common amenable von Neumann subalgebra B such that τ1|B = τ2|B . Assume that the
inclusions B ⊂M1 and B ⊂M2 are mixing. Denote M = M1 ∗B M2.

Then M is strongly solid.

For the definition of mixing inclusions of von Neumann algebras, see Section 9.4. For
now, let us point out that the inclusion B ⊂ M is mixing whenever the B-B bimodule
L2(M)	 L2(B) is contained in a multiple of the coarse B-B bimodule L2(B)⊗ L2(B).

Theorem 1.8 implies that if M1,M2, . . . ,Mn are amenable von Neumann algebras with
a common von Neumann subalgebra B such that the inclusions B ⊂M1, B ⊂M2, . . . ,

B ⊂Mn are mixing, then M = M1 ∗B M2 ∗B · · · ∗B Mn is strongly solid (Corollary 9.7).

Comments on the proofs. – The most general type of result that we prove is Theorem 1.6. Let
us say a few words about its proof. Assume therefore that A is a von Neumann subalgebra
of an amalgamated free product von Neumann algebra M = M1 ∗B M2 that is amenable
relative to B. We denote P = N M (A)′′ and assume that P ′ ∩Mω = C1.

Our goal is to show that either A ≺M Mi, for some i ∈ {1, 2}, or P is amenable relative
toB. This is enough to deduce the conclusion of Theorem 1.6, because by [32, Theorem 1.1]
the first case implies that either A ≺M B or P ≺M Mi, for some i ∈ {1, 2}.

The strategy of proof is motivated by a beautiful recent dichotomy theorem due to S. Popa
and S. Vaes. To state the particular case of [55, Theorem 1.6] that will be useful to us, let
F2 y (N, τ) be a trace preserving action of the free group F2 on a tracial von Neumann
algebra (N, τ). Denote M̃ = N o F2. Given a von Neumann subalgebra D ⊂ M̃ that is
amenable relative to N , it is shown in [55] that either D ≺M̃ N or N M̃ (D)′′ is amenable
relative to N .
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In order to apply this result in our context, we use the free malleable deformation intro-
duced in [32]. More precisely, define M̃ = M ∗B (B⊗̄L(F2)). Then M ⊂ M̃ and one con-
structs a 1-parameter group of automorphisms {θt}t∈R of M̃ as follows. Let u1, u2 ∈ L(F2)

be the canonical generating unitaries and h2, h2 ∈ L(F2) be hermitian elements such that
u1 = exp(ih1) and u2 = exp(ih2). For t ∈ R, define the unitary elements ut1 = exp(ith1)

and ut2 = exp(ith2). Then there exists an automorphism θt of M̃ such that

θt|M1
= Ad(ut1)|M1

, θt|M2
= Ad(ut2)|M2

and θt|L(F2) = idL(F2).

The starting point of the proof is the key observation that M̃ can be written as M̃ = N o F2,
whereN is the von Neumann subalgebra of M̃ generated by {ugMu∗g}g∈F2

and F2 acts onN
via conjugation with {ug}g∈F2

.

Now, let t ∈ (0, 1) and notice that θt(P ) ⊂ N M̃ (θt(A))′′. Since A is amenable relative
to B and θt(B) = B ⊂ N , we deduce that θt(A) is amenable relative to N . By applying the
dichotomy of [55], we conclude that either θt(A) ≺M̃ N or θt(P ) is amenable relative to N .
Since t ∈ (0, 1) is arbitrary, we are therefore in one of the following two cases:

1. θt(A) ≺M̃ N , for some t ∈ (0, 1).

2. θt(P ) is amenable relative to N , for any t ∈ (0, 1).

The core of the paper consists of analyzing what can be said about the von Neumann
subalgebrasA and P ofM which satisfy these conditions. Note that since θ1(M) ⊂ N , these
conditions are trivially satisfied for any subalgebra A ⊂M when t = 1.

Thus, we prove in Section 3 that if (1) holds thenA ≺M Mi, for some i ∈ {1, 2}. The proof
of this result has two main ingredients. To explain what they are, assume by contradiction
that A ⊀M Mi, for any i ∈ {1, 2}. Then [32, Theorem 3.1] provides a sequence of unitary
elements uk ∈ A which are asymptotically (i.e., as k → ∞) supported on words in M1 	 B
andM2	B of length> `, for every ` > 1. In the second part of the proof, we use a calculation
from the theory of random walks on groups to derive that the unitaries θt(uk) ∈ θt(A) are
asymptotically perpendicular to aNb, for any a, b ∈ M̃ . This contradicts the assumption that
(1) holds.

In Sections 4 and 5 we investigate which von Neumann subalgebras P ⊂M satisfy (2).

Our first result in this direction applies in the particular case whenP = M . More precisely,
we prove that if (2) holds for P = M , then either M1 or M2 must have an amenable direct
summand (see Theorem 4.1). In combination with the above, it follows that if A ⊂ M is
a Cartan subalgebra, then either A ≺M Mi or Mi has an amenable direct summand, for
some i ∈ {1, 2}. This readily implies Theorem 1.3 and Corollary 1.4 under the first sets of
conditions.

In general, however, we are only able to treat von Neumann subalgebras P ⊂M which in
addition to satisfying (2) also verify the spectral gap condition P ′ ∩Mω = C1. Under these
assumptions, we prove that either P ≺M Mi, for some i ∈ {1, 2}, or P is amenable relative
to B (see Theorem 5.1). It is clear that this result completes the proof of Theorem 1.6.

Note that if M = M1 ∗M2 is a plain free product and P ′ ∩Mω is diffuse, then we can
show that either P ≺M Mi, for some i ∈ {1, 2}, or P has an amenable direct summand (see
Theorem 6.3). It follows that, in the case of plain free products, Theorem 1.6 holds without
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the assumption P ′ ∩Mω = C1. This explains why Corollary 1.7 also does not require this
assumption.

Organization of the paper. – Besides the introduction this paper has eight other sections. In
Section 2 we recall the tools that are needed in the sequel as well as establish some new results.
For instance, we prove that if A ⊂ M = M1 ∗B M2 is a von Neumann subalgebra that is
amenable relative to M1, then either A is amenable relative to B, or a corner of N M (A)′′

embeds into M1 (see Corollary 2.12). We have described above the contents of Section 3-5.
In Section 6, motivated by the hypothesis of Theorem 1.6, we study the relative commutant
P ′ ∩Mω, where P is a von Neumann subalgebra of an amalgamated free product algebra
M = M1 ∗B M2. Finally, Sections 7-9 are devoted to the proofs of the results stated in the
introduction.

Dedication. – This paper is dedicated to Sorin Popa, with great affection and admiration.
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Added in the proof. – Since the first version of this paper has been posted on the arXiv,
there have been some related developments. Firstly, R. Boutonnet, C. Houdayer and S. Raum
generalized some of our results to the non-tracial setting [6]. In particular, they extended
Corollary 1.5 to arbitrary von Neumann algebras. More recently, S. Vaes was able to remove
the spectral gap assumption P ′ ∩ Mω = C1 from Theorem 1.6. This allowed him for
instance to prove an improved, optimal version of Corollary 1.4, where one only assumes
that almost every class of R1 has at least 2 elements and almost every class of R2 has at least
3 elements [64].

Correction. – Theorem 2.5 from the initial version of this paper (posted on arXiv in July
2012) falsely asserted that the notions of spectral gap and w-spectral gap were equivalent for
arbitrary inclusions of tracial von Neumann algebras (see the Appendix for the definitions).
I am very grateful to Cyril Houdayer for pointing out this mistake. The false assertion was
only used in the proof of Theorem 5.1 to deduce spectral gap for an inclusionA ⊂ pMp that
was originally assumed to have w-spectral gap. However, the original proof of Theorem 5.1
still works if the inclusion A ⊂ pMp does not not necessarily have spectral gap, but instead
satisfies a certain weaker technical property. In the Appendix, written jointly with Stefaan
Vaes, we prove that this technical property, which, a priori, sits in between spectral gap and
w-spectral gap, is in fact equivalent to w-spectral gap.

2. Preliminaries

We start by recalling some of the terminology that we use in this paper.
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Throughout we work with tracial von Neumann algebras (M, τ), i.e., von Neumann
algebras M endowed with a faithful, normal, tracial state τ . We assume that M is separable,
unless it is an ultraproduct algebra or we specify otherwise.

We denote by Z(M) the center of M , by U(M) the group of unitaries of M and by (M)1

the unit ball of M . We say that a von Neumann subalgebra A ⊂M is regular in M if
N M (A)′′ = M .

For a free ultrafilter ω on N, the ultraproduct algebra Mω is defined as the quo-
tient `∞(N,M)/ I , where I ⊂ `∞(N,M) is the closed ideal of x = (xn)n such that
limn→ω ‖xn‖2 = 0. As it turns out,Mω is a tracial von Neumann algebra, with its canonical
trace given by τω((xn)n) = limn→ω τ(xn).

If M and N are tracial von Neumann algebras, then an M -N bimodule is a Hilbert
space H endowed with commuting normal ∗-homomorphisms π : M → B( H ) and
ρ : Nop → B( H ). For x ∈M,y ∈ N and ξ ∈ H we denote xξy = π(x)ρ(y)(ξ).

Next, let M,N,P be tracial von Neumann algebras. Let H and K be M -N and N -P
bimodules. Let K 0 be vector subspace of vectors η ∈ K that are left bounded, i.e., for which
there exists c > 0 such that ‖xη‖ 6 c‖x‖2, for all x ∈ N . The Connes tensor product
H⊗N K is defined as the separation/completion of the algebraic tensor product H ⊗ K 0

with respect to the scalar product 〈ξ ⊗N η, ξ′ ⊗N η′〉 = 〈ξy, ξ′〉, where y ∈ N satisfies
〈xη, η′〉 = τ(xy), for all x ∈ N . Note that H⊗N K carries anM -P bimodule structure given
by x(ξ ⊗N η)y = xξ ⊗N ηy.

In the following six subsections we present the tools we will use in the proofs of our main
results.

2.1. Intertwining-by-bimodules

We first recall from [48, Theorem 2.1 and Corollary 2.3] S. Popa’s powerful intertwining-
by-bimodules technique.

T 2.1 ([48]). – Let (M, τ) be a tracial von Neumann algebra andP,Q ⊂M be two
(not necessarily unital) von Neumann subalgebras. Then the following are equivalent:

• There exist non-zero projections p ∈ P, q ∈ Q, a ∗-homomorphism φ : pPp→ qQq and
a non-zero partial isometry v ∈ qMp such that φ(x)v = vx, for all x ∈ pPp.
• There is no sequence un ∈ U(P ) satisfying ‖EQ(xuny)‖2 → 0, for all x, y ∈M .

If one of these conditions holds true, then we say that a corner of P embeds into Q inside M
and write P ≺M Q.

Note that if M is not separable, then the same statement holds if the sequence {un}n is
replaced by a net.
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2.2. Relative amenability

A tracial von Neumann algebra (M, τ) is called amenable if there exists a net
ξn ∈ L2(M)⊗̄L2(M) such that 〈xξn, ξn〉 → τ(x) and ‖xξn − ξnx‖2 → 0, for every x ∈ M .
By A. Connes’ theorem [67], M is amenable iff it is approximately finite dimensional, i.e.,
M = (∪n>1Mn)′′, for an increasing sequence (Mn)n of finite dimensional subalgebras ofM .

Let Q ⊂ M be a von Neumann subalgebra. Jones’ basic construction 〈M, eQ〉 is de-
fined as the von Neumann subalgebra of B(L2(M)) generated by M and the orthogonal
projection eQ from L2(M) onto L2(Q). Recall that 〈M, eQ〉 has a faithful semi-finite
trace given by Tr(xeQyL) = τ(xy) for all x, y ∈ M . We denote by L2(〈M, eQ〉) the as-
sociated Hilbert space and endow it with the natural M -bimodule structure. Note that
L2(〈M, eQ〉) ∼= L2(M)⊗QL2(M), as M -M bimodules.

Now, let P ⊂ pMp be a von Neumann subalgebra, for some projection p ∈M . Following
[41, Definition 2.2] we say that P is amenable relative to Q inside M if there exists a net
ξn ∈ L2(p〈M, eQ〉p) such that 〈xξn, ξn〉 → τ(x), for every x ∈ pMp, and ‖yξn− ξny‖2 → 0,
for every y ∈ P . Note that when Q is amenable, this condition is equivalent to P being
amenable.

By [41, Theorem 2.1], relative amenability is equivalent to the existence of a P -central
state φ on p〈M, eQ〉p such that φ|pMp = τ|pMp. Recall that if S is a subset of a von Neumann
algebra M, then a state φ on M is said to be S-central if φ(xT ) = φ(Tx), for all x ∈ S
and T ∈ M.

R 2.2. – Let P ⊂ pMp and Q ⊂M be von Neumann subalgebras.

1. Suppose that there exists a non-zero projection p0 ∈ P such that p0Pp0 is amenable rel-
ative toQ insideM . Let p1 ∈ Z(P ) be the central support of p0. Then Pp1 is amenable
relative toQ. Indeed, let ξn ∈ L2(p0〈M, eQ〉p0) be a net such that 〈xξn, ξn〉 → τ(x), for
every x ∈ p0Mp0, and ‖yξn − ξny‖2 → 0, for every y ∈ p0Pp0. Also, let {vi}∞i=1 ⊂ P
be partial isometries such that p1 =

∑∞
i=1 viv

∗
i and v∗i vi 6 p0, for all i. It is easy to

see that the net ηn =
∑∞
i=1 viξnv

∗
i ∈ L2(p1〈M, eQ〉p1) witnesses the fact that Pp1 is

amenable relative to Q.
2. Suppose that there exists a non-zero projection p1 ∈ P ′ ∩ pMp such that Pp1 is

amenable relative to Q inside M . Let p2 ∈ Z(P ′ ∩ pMp) be the central support of p1.
By reasoning as in part (1) one deduces that Pp2 is amenable relative to Q inside M .

3. If P ≺M Q, then there is a non-zero projection p0 ∈ P such that p0Pp0 is amenable
relative toQ. Thus by (1) and (2) there is a non-zero projection p2 ∈ Z(P ′∩pMp) such
that Pp2 is amenable relative to Q inside M .

The following lemma, established in [41, Corollary 2.3] (see also [55, Section 2.5]), pro-
vides a very useful criterion for relative amenability.

L 2.3 ([41]). – Let (M, τ) be a tracial von Neumann algebra and Q ⊂ M be a von
Neumann subalgebra. LetP ⊂ pMp be a von Neumann subalgebra, for some projection p ∈M .
Assume that there exists a Q-M bimodule K and a net ξn ∈ pL2(M)⊗Q K such that

• lim supn ‖xξn‖2 6 ‖x‖2, for all x ∈ pMp,
• lim supn ‖ξn‖2 > 0, and
• ‖yξn − ξny‖2 → 0, for all y ∈ P .

4 e SÉRIE – TOME 48 – 2015 – No 1



CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II1 FACTORS 81

Then Pp′ is amenable relative toQ insideM , for some non-zero projection p′ ∈ Z(P ′ ∩ pMp).

Proof. – Let us first argue that we may additionally assume that lim infn ‖ξn‖2 > 0. To
see this, suppose that the net ξn is indexed by a directed set I and denote δ = lim supn ‖ξn‖2.
Let J be set of triples j = (X,Y, ε), where X ⊂ pMp, Y ⊂ P are finite sets and ε > 0. We
make J a directed set by putting (X,Y, ε) 6 (X ′, Y ′, ε′) if X ⊂ X ′, Y ⊂ Y ′ and ε′ 6 ε.

Fix j = (X,Y, ε) ∈ J . By the hypothesis we can find n ∈ I such that ‖xξm‖2 6 ‖x‖2 + ε

and ‖yξm − ξmy‖2 6 ε, for all x ∈ X, y ∈ Y and every m > n. Since supm>n ‖ξm‖2 >
lim supn ‖ξn‖2, we can find m > n such that ‖ξm‖2 > δ

2 . Define ηj = ξm. Then the net
(ηj)j∈J clearly satisfies lim supj ‖xηj‖2 6 ‖x‖2, for all x ∈ pMp, lim infj ‖ηj‖2 > 0, and
‖yηj − ηjy‖2 → 0, for all y ∈ P .

Now, choose a state, denoted limj , on `∞(J) extending the usual limit. Note that
π : 〈M, eQ〉 → B(L2(M)⊗̄Q K ) given by π(T )(ξ ⊗Q η) = T (ξ)⊗Q η is a normal ∗-homo-
morphism. Define ψ : 〈M, eQ〉 → C by letting

ψ(T ) = lim
j
‖ηj‖−2

2 〈π(T )ηj , ηj〉.

Then ψ is a state on 〈M, eQ〉 such that ψ(p) = 1, ψ is P -central and ψ|pMp is normal. By
choosing, as in the proof of [41, Corollary 2.3], the minimal projection p′ ∈ Z(P ′ ∩ pMp)

such that ψ(p′) = 1 and applying [41, Theorem 2.1], the conclusion follows.

L 2.4. – Let (M, τ) be a tracial von Neumann algebra andQ ⊂M be a von Neumann
subalgebra. Let P ⊂ pMp be a von Neumann subalgebra, for some projection p ∈M . Let ω be
a free ultrafilter on N.

Suppose that P ≺Mω Qω. More generally, assume that there exists a non-zero projection
p0 ∈ P ′ ∩ (pMp)ω such that Pp0 is amenable relative to Qω inside Mω.

ThenPp′ is amenable relative toQ insideM , for some non-zero projection p′ ∈ Z(P ′∩pMp).

Proof. – LetX ⊂ pMp, Y ⊂ P be finite subsets and ε > 0. SincePp0 is amenable relative
to Qω, we can find a vector ξ ∈ L2(p0〈Mω, eQω 〉p0) such that

(2.1) ‖xξ‖2 6 ‖x‖2 for all x ∈ X, ‖ξ‖2 >
‖p0‖2

2
, and

(2.2) ‖yξ − ξy‖2 < ε for all y ∈ Y.

By approximating ξ in ‖.‖2, we may assume that ξ is in the linear span of {aeQωb|a, b ∈Mω}.
Write ξ =

∑k
i=1 aieQωbi,where ai, bi ∈Mω. For every i ∈ {1, . . . , k}, represent ai = (ai,n)n

and bi = (bi,n)n, where ai,n, bi,n ∈M . For every n, define ξn =
∑
i=1 ai,neQbi,n ∈ 〈M, eQ〉.

Then for all z ∈ M , we have that ‖zξ‖2 = limn→ω ‖zξn‖2 and ‖ξz‖2 = limn→ω ‖ξnz‖2.
Using 2.1 and 2.2 it follows that we can find n such that η = ξn ∈ 〈M, eQ〉 satisfies
‖xη‖2 < ‖x‖2, for all x ∈ X, ‖η‖2 > ‖p0‖2

2 , and ‖yξ − ξy‖2 < ε, for all y ∈ Y . Con-
tinuing as in the proof of Lemma 2.3 gives the conclusion.
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2.3. Property Γ

A II1 factorM has property Γ of Murray and von Neumann [37] if there exists a sequence
of unitaries un ∈ M with τ(un) = 0 such that ‖xun − unx‖2 → 0, for all x ∈ M . If ω is a
free ultrafilter onN, then property Γ is equivalent toM ′∩Mω 6= C1. By a well-known result
of A. Connes [67, Theorem 2.1] property Γ is also equivalent to the existence of a net of unit
vectors ξn ∈ L2(M)	 C1 such that ‖xξn − ξnx‖2 → 0, for all x ∈M .

The following theorem is a joint result with S. Vaes (see the Appendix).

It shows in particular that if an inclusion P ⊂ M satisfies P ′ ∩Mω = C1, then it also
satisfies an, a priori, stronger spectral gap property. We will use this fact later on to prove
Theorem 5.1.

T 2.5. – Let (M, τ) be a von Neumann algebra with a faithful normal tracial state.
Let P ⊂M be a von Neumann subalgebra. The following two conditions are equivalent.

1. The inclusion P ⊂ M does not have w-spectral gap: there exists a net ui ∈ (M)1

in the unit ball of M satisfying limi ‖xui − uix‖2 = 0 for all x ∈ P and satisfying
lim infi ‖ui − EP ′∩M (ui)‖2 > 0.

2. There exist a Hilbert spaceH and a net of vectors ξi ∈ L2(M)⊗H satisfying the following
properties:
• limi ‖(x⊗ 1)ξi − ξi(x⊗ 1)‖2 = 0 for all x ∈ P ,
• lim infi ‖ξi − pL2(P ′∩M)⊗H(ξi)‖2 > 0,
• lim supi ‖(a⊗ 1)ξi‖2 ≤ ‖a‖2 and lim supi ‖ξi(a⊗ 1)‖2 ≤ ‖a‖2 for all a ∈M .

R 2.6. – In the initial version of this paper, it was falsely claimed that an in-
clusion P ⊂M satisfies P ′ ∩Mω = C1 if and only if it has spectral gap, i.e., every net
ξi ∈ L2(M)	 C1 of unit vectors that satisfy limi ‖xξi − ξix‖2 = 0, for all x ∈ P , must
verify limi ‖ξi‖2 = 0. For a discussion of the difference between these two spectral gap
properties, see the Appendix.

Next, we prove that the maximal central projection e of P ′ ∩Mω such that (P ′ ∩Mω)e is
diffuse, belongs to M . More precisely, we have:

L 2.7. – Let (M, τ) be a tracial von Neumann algebra and P ⊂ pMp a von
Neumann subalgebra, for a projection p ∈M . Let ω be a free ultrafilter on N and denote
Pω = P ′ ∩ (pMp)ω.

Then we can find a projection e ∈ Z(P ′ ∩ pMp) ∩ Z(Pω) such that

1. Pωe is completely atomic and Pωe = (P ′ ∩ pMp)e.
2. Pω(p− e) is diffuse.

Proof. – Let e ∈ Z(Pω) be the maximal projection such that Pωe is completely atomic.

Let us prove that e ∈ Z(P ′ ∩ pMp). To this end, write e = (en)n, where en ∈ pMp is a
projection, and let a be the weak limit of en, as n→ ω. We have the following:
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Claim. – Let f1, f2, . . . , fm ∈Mω. Then we can find a subsequence {kn}n>1 of N such that
the projection f = (ekn

)n ∈ (pMp)ω satisfies f ∈ Pω and

τω(ef) = τ(a2), τω(efa) = τ(a3) and τω(efjf) = τω(efja), for all j ∈ {1, 2, . . . ,m}.

Proof of the claim. Let {xi}i>1 be a ‖.‖2 dense sequence of (P )1 and write fj = (fj,n)n,
for j ∈ {1, 2, . . . ,m}. Recall that ‖xien − enxi‖2 → 0, for all i, and that en → a, weakly,
as n→ ω. Therefore, for every n > 1 we can find kn > 1 such that

‖xiekn
− ekn

xi‖2 6
1

n
, for all i ∈ {1, 2, . . . , n}, |τ(enekn)− τ(ena)| 6 1

n
,

|τ(enekn
a)− τ(ena

2)| 6 1

n
and |τ(enfj,nekn

)− τ(enfj,na)| 6 1

n
, for all j ∈ {1, 2, . . . ,m}.

These inequalities clearly imply that f = (ekn
)n satisfies the claim. �

Now, using the claim we can inductively construct a sequence of projections
{fm}m>1 ∈ Pω such that τω(efm) = τ(a2), τω(efma) = τ(a3) and τω(efjfm) = τω(efja),

for all j ∈ {1, 2, . . . ,m− 1} and m > 1. But then it follows that τ(efjfm) = τ(a3), for
all 1 6 j < m.

Next, for m > 1, let pm = efm. Since e belongs to the center of Pω, we deduce that
{pm}m>1 ∈ Pωe are projections such that τω(pm) = τ(a2) and τω(pjpm) = τ(a3), for
all 1 6 j < m.

Finally, since Pωe is completely atomic, its unit ball is compact in ‖.‖2. Thus we can find
a subsequence {pml

}l>1 of {pm}m>1 which is convergent in ‖.‖2. In particular, we have
that |τω(pml

pmk
) − τω(pml

)| 6 ‖pml
− pmk

‖2,ω → 0, as l, k → ∞. This implies that
τ(a2) = τ(a3). Since 0 6 a 6 1, a must be a projection. Thus we have that ‖en − a‖22 =

τ(en) + τ(a)− 2τ(ena)→ 0, as n→ ω. Hence e = (en)n = a ∈ pMp and so e ∈ P ′ ∩ pMp.
Since P ′ω ∩ pMp ⊂ (P ′ ∩ pMp)′ ∩ pMp, it follows that e ∈ Z(P ′ ∩ pMp).

Let P0 = Pe. Since e ∈M , we have that P0 is a subalgebra of eMe and P ′0 ∩ (eMe)ω = Pωe

is completely atomic. The proof of [67, Lemma 2.6] then gives that P ′0 ∩ (eMe)ω ⊂ eMe.
Thus Pωe ⊂ eMe and hence Pωe = (P ′ ∩ pMp)e. This proves that e satisfies the first asser-
tion. The second assertion is immediate by the maximality of e.

2.4. Normalizers in crossed products by free groups

Very recently, S. Popa and S. Vaes have established the following remarkable dichotomy.

T 2.8 ([55]). – Let Fn y (N, τ) be a trace preserving action of a free group on a
tracial von Neumann algebra (N, τ). DenoteM = NoFn and letA ⊂ pMp be a von Neumann
subalgebra that is amenable relative to N , for some projection p ∈M .

Then either A ≺M N or N pMp(A)′′ is amenable relative to N inside M .

More generally, it is proven in [55, Theorem 1.6] that the same holds when Fn is replaced
by a weakly amenable group Γ that admits a proper cocycle into an orthogonal representa-
tion that is weakly contained in the regular representation.
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2.5. Deformations of AFP algebras

Let (M1, τ1) and (M2, τ2) be two tracial von Neumann algebras with a common von
Neumann subalgebraB such that τ1|B = τ2|B . Denote byM = M1 ∗BM2 the amalgamated
free product algebra (abbreviated, AFP algebra) and by τ its trace extending τ1 and τ2. To
present the canonical decomposition of L2(M), let us fix some notations:

N 2.9. – Let n > 1

• We denote by Sn = {(1, 2, 1, . . .), (2, 1, 2, . . .)} the set consisting of the two alternating
sequences of 1’s and 2’s of length n.

• For I = (i1, i2, . . . , in) ∈ Sn, we denote H I = L2(Mi1 	B)⊗B · · ·⊗B L2(Min 	B).
• We also let H n =

⊕
I∈Sn

H I and H 0 = L2(B).

With these notations, we haveL2(M) =
⊕∞

n=0 H n. This decomposition easily implies the
following lemma that will be useful in the sequel:

L 2.10. – Let (M1, τ1), (M2, τ2), (M3, τ3) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that τ1|B = τ2|B = τ3|B . Then

1. We can find a B-M1 bimodule H and an M1-B bimodule K such that, as M1-M1

bimodules, we have L2(M1 ∗B M2)	 L2(M1) ∼= L2(M1)⊗B H ∼= K⊗BL2(M1).
2. We can find aB-B bimodule L such that L2(M1 ∗B M2 ∗B M3) ∼= L2(M1)⊗B L⊗BL2(M2),

as M1-M2 bimodules.

Let us recall from [32, Section 2.2] the construction of the free malleable deforma-
tion of M = M1 ∗B M2. Define M̃ = M ∗B (B⊗̄L(F2)). Denote u1 = ua1

, u2 = ua2
,

where a1, a2 are generators of F2. Note that we can decompose M̃ = M̃1 ∗B M̃2, where
M̃1 = M1 ∗B (B⊗̄L(Z)) and M̃2 = M2 ∗B (B⊗̄L(Z)), and the two copies of Z are the
cyclic groups generated by a1 and a2, respectively.

Consider the unique function f : T→ (−π, π] satisfying f(exp(it)) = t, for all t ∈ (−π, π].
Then α1 = f(u1) and α2 = f(u2) are hermitian operators such that u1 = exp(iα1) and
u2 = exp(iα2). For t ∈ R, define the unitary elements ut1 = exp(itα1) and ut2 = exp(itα2).

Since the restrictions of the automorphisms Ad(ut1) and Ad(ut2) of M̃1 and M̃2 to B are
equal (to idB), the formulae

θt(x) = ut1xu
t
1
∗
, for x ∈ M̃1, and θt(y) = ut2yu

t
2
∗
, for y ∈ M̃2,

define a 1-parameter group {θt}t∈R automorphisms of M̃ .

The following is the main technical result of [32].

T 2.11 ([32]). – Let A ⊂ pMp be a von Neumann subalgebra, for a projection
p ∈M . Assume that there exist c > 0 and t > 0 such that τ(θt(u)u∗) > c, for all u ∈ U(A).

Then either A ≺M B, or N pMp(A)′′ ≺M Mi, for some i ∈ {1, 2}.
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Theorem 2.11 is formulated in a different way and proved under an additional assumption
in [32, Theorem 3.1]. For the formulation given here, see [22, Section 5] and [53, Theorem 5.4].

Note that since τ(ut1) = τ(ut2) = sin(πt)
πt , we have that EM (θt(x)) = ( sin(πt)

πt )2nx, for
all x ∈ H n. Thus, if we write x ∈M as x =

∑
n>0 xn, where xn ∈ H n, then we have

(2.3) τ(θt(x)x∗) = τ(EM (θt(x))x∗) =
∑
n>0

(
sin(πt)

πt
)2n‖xn‖22.

We derive next a consequence of Theorem 2.11 that we will need in the proof of Theo-
rem 6.3.

C 2.12. – Let A ⊂ pMp be a von Neumann subalgebra, for some projec-
tion p ∈M .

If A is amenable relative to M1, then either A is amenable relative to B or N pMp(A)′′ ≺M M1.

Proof. – Assume thatA is amenable relative toM1. In the first part of the proof we show
that either Ap′ is amenable relative to B, for a non-zero projection p′ ∈ Z(A′ ∩ pMp), or
N pMp(A)′′ ≺M M1. To do this, we follow closely the strategy of proof of [41, Theorem 4.9].

SinceA is amenable relative toM1 we can find a net {ξn}n∈I ∈ L2(p〈M, eM1〉p) such that

(2.4) ‖xξn − ξnx‖2 → 0, for all x ∈ A, and

(2.5) 〈yξn, ξn〉 → τ(y), for all y ∈ pMp.

Moreover, the proof of [41, Theorem 2.1] shows that ξn can be chosen such that ξn = ζ
1
2
n , for

some ζn ∈ L1(〈M, eM1
〉)+. Thus, 〈ξny, ξn〉 = Tr(ζny) = 〈yξn, ξn〉 → τ(y), for all y ∈ pMp.

Next, for t ∈ R, we consider the automorphism αt of M̃ given by αt(x) = x, for
all x ∈ M̃1, and αt(y) = ut2yu

t
2
∗, for all y ∈ M̃2. Since αt is an automorphism of M̃

that leaves M1 invariant we can extend it to a trace preserving automorphism of 〈M̃, eM1
〉

by letting αt(eM1
) = eM1

.
We also let H be the ‖.‖2 closure of the span of MeM1

M̃ = {xeM1
y|x ∈M,y ∈ M̃} and

denote by e the orthogonal projection from L2(〈M̃, eM1
〉) onto H .

C. – Let x ∈ A, y ∈ M̃ and t ∈ R. Then we have

1. limn ‖yαt(ξn)‖22 = τ(y∗yαt(p)) 6 ‖y‖22 and limn ‖αt(ξn)y‖22 = τ(yy∗αt(p)) 6 ‖y‖22.
2. lim supn ‖ye(αt(ξn))‖2 6 ‖y‖2.
3. lim supn ‖xαt(ξn)− αt(ξn)x‖2 6 2‖αt(x)− x‖2.

Proof of the claim. – (1) Since ξn ∈ pH , by using 2.5 we get that

‖yαt(ξn)‖22 = 〈α−1
t (y∗y)ξn, ξn〉 = 〈EM (α−1

t (y∗y))ξn, ξn〉

= 〈pEM (α−1
t (y∗y))pξn, ξn〉 −→ τ(pEM (α−1

t (y∗y))p) = τ(y∗yαt(p)).

The second inequality follows similarly using the fact that 〈ξny, ξn〉 → τ(y), for all
y ∈ pMp.

(2) Since (M̃ 	M) H ⊥ H and H is a left M -module, we derive that

‖ye(αt(ξn))‖22 = 〈y∗ye(αt(ξn)), e(αt(ξn)) = 〈EM (y∗y)e(αt(ξn), e(αt(ξn))〉

= ‖e(EM (y∗y)
1
2αt(ξn))‖22 6 ‖EM (y∗y)

1
2αt(ξn)‖22.
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On the other hand, by (1) we have that ‖EM (y∗y)
1
2αt(ξn)‖2 6 ‖EM (y∗y)

1
2 ‖2 = ‖y‖2.

(3) Since

‖xαt(ξn)− αt(ξn)x‖2 6 ‖(x− αt(x))αt(ξn)‖2 + ‖αt(ξn)(x− αt(x))‖2 + ‖xξn − ξnx‖2,

the inequality folows by combining (1) and 2.4.

Let J = (0,∞) × I. Given (t, n) ∈ J , we denote ηt,n = αt(ξn) − e(αt(ξn)) and
δt,n = ‖ηt,n‖2. For the rest of the proof we treat two separate cases.

Case 1. – We can find t > 0 such that lim supn δt,n <
‖p‖2

2 .

Case 2. – For all t > 0 we have that lim supn δt,n >
‖p‖2

2 .
In Case 1, fix x ∈ U(A). Since H is a left M -module and (M̃ 	M) H ⊥ H we get that

‖EM (αt(x))αt(ξn)‖2 > ‖e(EM (αt(x))αt(ξn))‖2 = ‖e(αt(x)e(αt(ξn)))‖2
> ‖e(αt(x)αt(ξn))‖2 − δt,n
> ‖e(αt(ξn)αt(x))‖2 − ‖xξn − ξnx‖2 − δt,n.

(2.6)

On the other hand, since H is a right M̃ -module we deduce that

(2.7) ‖e(αt(ξn)αt(x))‖2 = ‖e(αt(ξn))αt(x)‖2 > ‖αt(ξn)αt(x)‖2 − δt,n = ‖ξnx‖2 − δt,n.

By combining part (1) of the Claim with Equations 2.6, 2.7, 2.4 and 2.5 we derive that

‖EM (αt(x))‖2 > lim
n
‖EM (αt(x))αt(ξn)‖2

> lim inf
n

(‖ξnx‖2 − ‖xξn − ξnx‖2 − 2δt,n)

= ‖x‖2 − 2 lim sup
n

δt,n = ‖p‖2 − 2 lim sup
n

δt,n > 0, for all x ∈ U(A).

(2.8)

Now, recall from notations 2.9 that L2(M) = H 0

⊕
m>1(

⊕
I∈Sm

H I ). Thus, we can
write x = x0 +

∑
m>1
I∈Sm

x I , where x I ∈ H I . It is easy to see that if c I denotes the number

of times 2 appears in I , then EM (αt(x I )) = ( sin(πt)
πt )2c I x I . Therefore,

‖EM (αt(x))‖22 = ‖x0‖22 +
∑
m>1
I∈Sm

(
sin(πt)

πt
)4c I ‖x I ‖22.

On the other hand, by 2.3 we have

τ(θt(x)x∗) = ‖x0‖22 +
∑
m>1
I∈Sm

(
sin(πt)

πt
)2m‖x I ‖22.

Since every I ∈ Sm is an alternating sequence of 1’s and 2’s, we have that 2c I > m− 1.

By combining the last three facts, we conclude that τ(θt(x)x∗) > ( sin(πt)
πt )2‖EM (αt(x))‖22,

for every x ∈M . Together with 2.8 this implies that infx∈ U(A) τ(θt(x)x∗) > 0.
Thus, by Theorem 2.11 we get that eitherA ≺M M1 orA ≺M M2. IfA ≺M M1, then [32,

Theorem 1.1] gives that either A ≺M B or N M (A)′′ ≺M M1. Since by Remark 2.2, having
A ≺M B implies that there exists a non-zero projection p′ ∈ Z(A′ ∩ pMp) such that Ap′ is
amenable relative to B, the conclusion follows in this case.
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Therefore, in order to finish the proof of Case 1 we only need to analyze the case when
A ≺M M2. By Remark 2.2 we can find a non-zero projection p′ ∈ Z(A′ ∩ pMp) such that
Ap′ is amenable relative to M2. By the hypothesis we have that A and thus Ap′ is amenable
relative to M1.

We claim that Ap′ is amenable relative to B. To this end, denote

K = L2(〈M, eM1
〉)⊗ML2(〈M, eM2

〉).

Lemma 2.10 provides a B-B bimodule L such that L2(M) ∼= L2(M1)⊗B L⊗BL2(M2), as
M1-M2 bimodules. Thus, we have the following isomorphisms of M -M bimodules

K ∼= (L2(M)⊗M1L
2(M))⊗M (L2(M)⊗M2L

2(M)) ∼= L2(M)⊗M1L
2(M)⊗M2L

2(M)

∼= L2(M)⊗M1
(L2(M1)⊗B L⊗BL2(M2))⊗M2

L2(M) ∼= L2(M)⊗B L⊗BL2(M).

Since Ap′ is amenable relative to both M1 and M2, the first part of the proof of [55,
Proposition 2.7] implies that the p′Mp′-Ap′ bimodule L2(p′Mp′) is weakly contained in
the p′Mp′-Ap′ bimodule p′ Kp′. Thus the p′Mp′-Ap′ bimodule p′L2(M)⊗B L⊗BL2(M)p′

weakly contains the p′Mp′-Ap′ bimodule L2(p′Mp′). By Lemma 2.3 it follows that Ap′ is
amenable relative to B. This completes the proof of Case 1.

In Case 2, we claim that there exists a net (ηk) in H ⊥ such that ‖xηk − ηkx‖2 → 0, for
all x ∈ A, lim supk ‖yηk‖2 6 2‖y‖2, for all y ∈ pMp, and lim supk ‖pηk‖2 > 0.

Towards this, let k = (X,Y, ε) be a triple such that X ⊂ A, Y ⊂ pMp are finite sets
and ε > 0. Then we can find t > 0 such that

(2.9) ‖αt(x)− x‖2 <
ε

2
, for all x ∈ X, and ‖αt(p)− p‖2 <

‖p‖2
10

.

Let x ∈ X and y ∈ Y . Firstly, since ηt,n = (1 − e)(αt(ξn)) and x ∈ M we get that
‖xηt,n−ηt,nx‖2 6 ‖xαt(ξn)−αt(ξn)x‖2. This inequality together with part (3) of the Claim
and 2.9 implies that lim supn ‖xηt,n − ηt,nx‖2 6 2‖αt(x)− x‖2 < ε.

Secondly, by combining parts (1) and (2) of the Claim we get that lim supn ‖yηt,n‖2 6 2‖y‖2.

Thirdly, part (1) of the Claim gives that

lim sup
n
‖pηt,n‖2 > lim sup

n
(‖pαt(ξn)‖2 − ‖e(αt(ξn))‖2)

= ‖pαt(p)‖2 − lim inf
n
‖e(αt(ξn))‖2.

Also, since ‖ξn‖2 → ‖p‖2 we have that

lim inf
n
‖e(αt(ξn))‖2 =

√
‖p‖22 − lim sup

n
‖ηt,n‖22 6

√
3

2
‖p‖2.

Since 2.9 implies that ‖pαt(p)‖2 > 9
10‖p‖2, we altogether deduce that lim supn ‖pηt,n‖2 >

( 9
10 −

√
3

2 )‖p‖2.

The last three paragraphs imply that for some n ∈ I, ηk = ηt,n satisfies ‖xηk−ηkx‖2 < ε,
for all x ∈ X, ‖yηk‖2 6 2‖y‖2 + ε, for all y ∈ Y , and ‖pηk‖2 > ( 9

10 −
√

3
2 )‖p‖2. It is now

clear that the net (ηk) has the desired properties.

Finally, by the definition of H , the M -M bimodule L2(〈M̃, eM1〉)	 H is isomorphic
to the M -M bimodule (L2(M̃)	 L2(M))⊗M1L

2(M̃). Since M̃ = M ∗B (B⊗̄L(F2)),
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Lemma 2.10 (1) provides a B-M bimodule K such that L2(M̃)	 L2(M) ∼= L2(M)⊗B K .
Thus, we have the following isomorphism of M -M bimodules

L2(〈M̃, eM1
〉)	 H ∼= L2(M)⊗B( K⊗M1

L2(M̃)).

Since ηk ∈ L2(〈M̃, eM1〉) 	 H , for all k, by Lemma 2.3 there is a non-zero projection
p′ ∈ Z(A′ ∩ pMp) such that Ap′ is amenable relative to B. This finishes the proof of Case 3.

Now, to get the conclusion, let p0 ∈ Z(A′ ∩ pMp) be the maximal projection such that
Ap0 is amenable relative to B. It is easy to see that p0 ∈ N pMp(A)′ ∩ pMp.

Let p1 = p−p0. If p1 = 0, thenA is amenable relative toB. If p1 6= 0, thenAp1 is amenable
relative to M1. By the first part of the proof either Ap′ is amenable relative to B, for some
non-zero projection p′ ∈ Z(A′ ∩ pMp)p1, or N p1Mp1(Ap1)′′ ≺M M1. By the maximality
of p0, the former is impossible; since N pMp(A)p1 ⊂ N p1Mp1(Ap1), the latter implies that
N pMp(A)′′ ≺M M1.

2.6. Random walks on countable groups

We end this section with some facts from the theory of random walks on countable groups
that we will need in Section 3. Let µ and ν be probability measures on a countable group Γ.
The support of µ is the set of g ∈ Γ with µ(g) 6= 0. The convolution of µ and ν is the
probability measure on Γ given by (µ ∗ ν)(g) =

∑
h∈Γ µ(gh−1)ν(h). For n > 1, we denote

µ∗n = µ ∗ µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

.

The next lemma is well-known (see for instance [17, Theorems 2.2 and 2.28]). For the
reader’s convenience, we include a proof.

L 2.13. – Let Γ be a finitely generated group and denote by `S : Γ → N the word
length with respect to a finite set of generators S. Let µ be a probability measure on Γ whose
support generates a non-amenable subgroup and contains the identity element.

1. Then µ∗n(g)→ 0, for all g ∈ Γ.
2. Assume that

∑
g∈Γ `S(g)pµ(g) < +∞, for some p ∈ (0, 1]. If Σ < Γ is a finitely

generated nilpotent (e.g., cyclic) subgroup, then µ∗n(hΣk)→ 0, for all h, k ∈ Γ.

Proof. – (1) Let λ : Γ → U(`2(Γ)) be the left regular representation of Γ. Define the
operator T : `2(Γ)→ `2(Γ) by T =

∑
g∈Γ µ(g)λ(g). Since the support of µ generates a non-

amenable group, by Kesten’s characterization of amenability (see e.g., [4, Appendix G.4]) we
have that ‖T‖ <

∑
g∈Γ µ(g) = 1.

Denote by {δg}g∈Γ the canonical orthonormal basis of `2(Γ). Then for n > 1 and g ∈ Γ

we have
µ∗n(g) =

∑
g1,g2,...,gn∈Γ
g1g2···gn=g

µ(g1)µ(g2) · · ·µ(gn) = 〈Tn(δe), δg〉.

This implies that µ∗n(g) 6 ‖T‖n and since ‖T‖ < 1, we are done.

(2) Define the product probability space (Ω, ν) = (ΓN, µN) together with the shift
T : Ω→ Ω given by (Tω)n = ωn+1, for all ω = (ωn)n ∈ Ω. Then T is an ergodic, measure pre-
serving transformation of (Ω, ν). For n > 1, define Xn : Ω→ Γ by letting Xn(ω) = ω1ω2 · · ·ωn.
Note that µ∗n = (Xn)∗(ν).
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Further, let p ∈ (0, 1] as in the hypothesis and define Sn : Ω→ [0,∞) by Sn(ω) = lS(Xn(ω))p.
Since p ∈ (0, 1], we have that (a+b)p 6 ap+bp, for all a, b > 0. Recall that for every g, h ∈ Γ

we have that `S(gh) 6 `S(g) + `S(h). Also we have that Xn+m(ω) = Xn(ω)Xm(Tn(ω)),
for all n,m > 1 and ω ∈ Ω. By combining these three facts we deduce that

(2.10) Sn+m(ω) 6 Sn(ω) + Sm(Tn(ω)), for all ω ∈ Ω and n,m > 1.

Additionally, by using the hypothesis we get that

(2.11)
∫

Ω

S1(ω)dν(ω) =

∫
Ω

`S(X1(ω))pdν(ω) =

∫
Γ

`S(ω1)pdµ(ω1) < +∞.

Since T is ergodic, Equations 2.10 and 2.11 guarantee that we can apply Kingman’s sub-
additive ergodic theorem. Thus, we can find a constant α ∈ [0,∞) such that 1

nSn(ω)→ α,
for ν-almost every ω ∈ Ω. It follows that ν({ω ∈ Ω|Sn(ω) > (α+ 1)n})→ 0, as n→∞.

Hence, if we let f(n) = ((α+ 1)n)
1
p , then ν({ω ∈ Ω| `S(Xn(ω)) > f(n)})→ 0, as n→∞.

Since (Xn)∗(ν) = µ∗n, we deduce that

(2.12) εn := µ∗n({g ∈ Γ| `S(g) > f(n)})→ 0, as n→∞.

Now, since Σ is a finitely generated nilpotent group, it has polynomial growth. Thus, we
can find a, b > 0 such that |{g ∈ Σ| `S(g) 6 n}| 6 anb, for alln. Denoting c = `S(h)+`S(k),
we get that

(2.13) |{g ∈ hΣk| `S(g) 6 n}| 6 a(n+ c)b, for all n.

Recall from the proof of part (1) that µ∗n(g) 6 ‖T‖n, for all g ∈ Γ and n > 1. Combining
this fact with 2.12 and 2.13 yields that

µ∗n(hΣk) 6 εn + µ∗n({g ∈ hΣk| `S(g) 6 f(n)})

6 εn + a‖T‖n(f(n) + c)b, for all n > 1.

As εn → 0, ‖T‖ < 1 and f(n) grows polynomially in n, we conclude that µ∗n(hΣk)→ 0.

3. A conjugacy result for subalgebras of AFP algebras

Let (M1, τ1) and (M2, τ2) be two tracial von Neumann algebras with a common von Neumann
subalgebra B such that τ1|B = τ2|B . Denote M = M1 ∗B M2 and let M̃ = M ∗B (B⊗L(F2)).
For t ∈ R, we consider the automorphism θt : M̃ → M̃ defined in Section 2.11. We denote
by {ug}g∈F2 ⊂ L(F2) the canonical unitaries and consider the notations from 2.9.

In this context, we have

L 3.1. – Let I = (i1, i2, . . . , in) ∈ Sn and J = (j1, j2, . . . , jm) ∈ Sm, for some
n,m > 1. Let x1 ∈ Mi1 	 B, x2 ∈ Mi2 	 B, . . . , xn ∈ Min 	 B and y1 ∈ Mj1 	 B,
y2 ∈Mj2 	B, . . . , ym ∈Mjm 	B.
Let g1, g2, . . . , gn+1, h1, h2, . . . , hm+1 ∈ F2.
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Then
〈ug1x1ug2x2 · · ·ugnxnugn+1 , uh1y1uh2y2 · · ·uhmymuhm+1〉

=

{
〈x1x2 · · ·xn, y1y2 · · · ym〉, if n = m, I = J , and gk = hk, for all k ∈ {1, 2, . . . , n+ 1}, and

0, otherwise.

Proof. – Denote A0 = {ug}g∈F2\{e}, A1 = M1 	 B and A2 = M2 	 B. We say that
z = z1z2 · · · zn is an alternating product if for all iwe have that zi ∈ Aj , for some j ∈ {0, 1, 2}
and that zi and zi+1 belong to different Aj ’s. It is clear that τ(z) = 0, for any alternating
product z.

We proceed by induction on max{n,m}. Denote by α the quantity that we want to
compute. We have that

α = τ(u∗hm+1
y∗m · · · y∗2u∗h2

y∗1uh−1
1 g1

x1ug2x2 · · ·xnugn+1).

Assuming that α 6= 0, let us prove that the first alternative holds.
Firstly, we must have that g1 = h1 and i1 = j1, otherwise αwould be the trace of an alter-

nating product. Hence x1, y1 ∈Mi1 	B and α = τ(u∗hm+1
y∗m · · · y∗2u∗h2

(y∗1x1)ug2x2 · · ·xnugn+1).
Write y∗1x1 = b+ z, where b ∈ B and z ∈Mi1 	B. Since u∗hm+1

y∗m · · · y∗2u∗h2
zug2x2 · · ·xnugn+1

is an alternating product and b commutes with F2 we deduce that

α = τ(u∗hm+1
y∗m · · · y∗2u∗h2

bug2x2 · · ·xnugn+1
) = 〈ug2(bx2)ug3 · · ·xnugn+1

, uh2
y2uh3

· · · ymuhm+1
〉.

By induction we get that n = m, i2 = j2, . . . , in = jn and that g2 = h2, . . . , gn = hn. It
also follows that α = 〈bx2x3 · · ·xn, y2y3 · · · yn〉. Since the latter is equal to 〈x1x2 · · ·xn, y1y2 · · · yn〉,
we are done.

Next, we present a crossed product decomposition of M̃ (see [26, Remark 4.5]). Let N be
the subalgebra of M̃ generated by {ugMu∗g|g ∈ F2}. Then N is normalized by F2 = {ug}g∈F2

.
Since M̃ is generated by N and F2, and EN (ug) = 0, for all g ∈ F2 \ {e}, we conclude that
M̃ = N o F2, where F2 acts on N by conjugation.

Moreover, if Σ < F2 is a subgroup, then for all g1, g2, . . . , gn+1 ∈ F2 and every
x1, . . . , xn ∈M , we have that
(3.1)

ENoΣ(ug1x1ug2x2 · · ·ugnxnugn+1) =

{
ug1x1ug2x2 · · ·ugnxnugn+1 , if g1g2 · · · gn+1 ∈ Σ, and

0, if g1g2 · · · gngn+1 6∈ Σ.

Note that the subalgebras {ugMu∗g}g∈F2
of M̃ are freely independent over B. Therefore,

N is isomorphic to the infinite amalgamated free product algebra M ∗B ∗M ∗B · · · . If we
index the copies of M by F2, then the action of F2 on N ∼= M ∗B ∗M ∗B · · · is the free
Bernoulli shift.

We are now ready to state the main result of this section.

T 3.2. – LetA ⊂ pMp be a von Neumann subalgebra, for some projection p ∈M .
Let t ∈ (0, 1). Assume that θt(A) ≺M̃ N . More generally, assume that θt(A) ≺M̃ N o Σ,

where Σ = 〈a〉 is a cyclic subgroup of F2.
Then either A ≺M B or N M (A)′′ ≺M Mi, for some i ∈ {1, 2}.

Theorem 3.2 is an immediate consequence of Theorem 2.11 and the next lemma.
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L 3.3. – Let t ∈ (0, 1) and xk ∈ (M)1 be a sequence such that τ(θt(xk)x∗k)→ 0.
Then ‖EN (yθt(xk)z)‖2 → 0, for every y, z ∈ M̃ .
More generally, if Σ is a cyclic subgroup of F2, then ‖ENoΣ(yθt(xk)z)‖2 → 0, for every

y, z ∈ M̃ .

Proof of Theorem 3.2. – If θt(A) ≺M̃ N o Σ, then by Theorem 2.1 we can find v ∈ M̃ such
that infu∈ U(A) ‖ENoΣ(vθt(u)v∗)‖2 > 0. Lemma 3.3 then implies that infu∈ U(A) τ(θt(u)u∗) > 0.
Finally, the conclusion follows from Theorem 2.11.

Proof of Lemma 3.3. – Since M̃ = N o F2, by Kaplansky’s density theorem we may
assume that y = ug and z = uh, for some g, h ∈ F2. Thus, our goal is to prove that
‖ENoΣ(ugθt(xk)uh)‖2 → 0. Let us first show that this is a consequence of the next lemma
whose proof we postpone for now.

L 3.4. – Fix t ∈ (0, 1) and forn > 0, define cn = supx∈ H n, ‖x‖261 ‖ENoΣ(ugθt(x)uh)‖2.
Then cn → 0, as n→∞.

Assuming Lemma 3.4, let us finish the proof of Lemma 3.3. Write xk =
∑∞
n=0 xk,n,

with xk,n ∈ H n. By Equation 2.3 we have that τ(θt(xk)x∗k) =
∑∞
n=0( sin(πt)

πt )2n‖xk,n‖22.
Since τ(θt(xk)x∗k)→ 0 and sin(πt) > 0, we derive that ‖xk,n‖2 → 0, for all n > 0.

For n > 1 and I = (i1, i2, . . . , in) ∈ Sn, we let K I ⊂ L2(M̃) be the closure of the linear
span of

{uh1
x1uh2

x2 · · ·uhn
xnuhn+1

|h1, . . . , hn+1 ∈ F2, x1 ∈Mi1 	B, x2 ∈Mi2 	B, . . . , xn ∈Min 	B}.

By Lemma 3.1 we have that if I ∈ Sn and J ∈ Sm, then K I ⊥ K J , unless n = m

and I = J . Thus, denoting Kn =
⊕

I∈Sn
K I , we have that Kn ⊥ Km, for all n 6= m.

By using the definition of θt and Equation 3.1 we derive that θt( H I ) ⊂ K I and
ENoΣ( K I ) ⊂ K I . Since K I is an L(F2)-L(F2) bimodule, we deduce that

ENoΣ(ugθt( H I )uh) ⊂ K I .

From this we get that ENoΣ(ugθt( H n)uh) ⊂ Kn, for all n > 1.

Since the Hilbert spaces {Kn}n>1 are mutually orthogonal, the vectors

{ENoΣ(ugθt(xk,n)uh)}n>1

are mutually orthogonal, for all k > 1. By using this fact, the inequality ‖ξ + η‖22 6
2(‖ξ‖22 + ‖η‖22) and the definition of cn, we get that

‖ENoΣ(ugθt(xk)uh)‖22 6 2‖ENoΣ(ugθt(xk,0)uh)‖22 + 2‖
∞∑
n=1

ENoΣ(ugθt(xk,n)uh)‖22

= 2

∞∑
n=0

‖ENoΣ(ugθt(xk,n)uh)‖22 6 2

∞∑
n=0

c2n‖xk,n‖22.

Finally, let ε > 0. Since cn → 0 by Lemma 3.4, we can find n0 > 1 such that cn 6 ε, for
all n > n0. Since ‖xk,n‖2 → 0, for all n, we can also find k0 > 1 such that ‖xk,i‖2 6 ε

n0
, for

all k > k0 and all i ∈ {1, 2, . . . , n0 − 1}. Also, note that cn 6 1, for all n.
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By using the above equation and the inequality
∑∞
n=n0

‖xk,n‖22 6 ‖xk‖22 = 1, it follows
that

‖ENoΣ(ugθt(xk)uh)‖22 6 2(n0(
ε

n0
)2 + ε2

∞∑
n=n0

‖xk,n‖22) 6 4ε2, for all k > k0.

Since ε > 0 was arbitrary, we are done.

Proof of Lemma 3.4. – For I ∈ Sn, let c I = supx∈ H I ,‖x‖2=1 ‖ENoΣ(ugθt(x)uh)‖2.
Recall that H n =

⊕
I∈Sn

H I . Since ugθt( H I )uh ⊂ K I and the Hilbert spaces {K I } I∈Sn

are mutually orthogonal by Lemma 3.1, it follows that cn = max I∈Sn
c I .

In the first part of the proof, we will find a formula for c I , for a fixed I = (i1, i2, . . . , in) ∈ Sn.
Recall that a1 and a2 denote the generators of F2. Let G1 = 〈a1〉 and G2 = 〈a2〉 be the

cyclic subgroups generated by a1 and a2.
Let g1, h1 ∈ Gi1 , g2, h2 ∈ Gi2 ,. . . ,gn, hn ∈ Gin . Then by Lemma 3.1, the map given by

(3.2) Vg1,h1,g2,h2,...,gn,hn
(x1x2 · · ·xn) = ug1x1u

∗
h1
ug2x2u

∗
h2
· · ·ugn

xnu
∗
hn
,

for all x1 ∈Mi1 	B, x2 ∈Mi2 	B, . . . , xn ∈Min 	B extends to an isometry

Vg1,h1,g2,h2,...,gn,hn : H I → L2(M̃).

Moreover, Lemma 3.1 implies that Vg1,h1,g2,h2,...,gn,hn
( H I ) ⊥ Vg′1,h′1,g′2,h′2,...,g′n,h′n( H I ), unless

we have that g1 = g′1, h
−1
1 g2 = h′−1

1 g′2, h
−1
2 g3 = h′−1

2 g′3, . . . , h
−1
n−1gn = h′−1

n−1g
′
n, h
−1
n = h′−1

n .
Since G1 ∩G2 = {e}, this implies that g1 = g′1, h1 = h′1, . . . , gn = g′n, hn = h′n.

Now, let β1 : G1 → C and β2 : G2 → C be given by β1(g1) = τ(ut1u
∗
g1) and β2(g2) = τ(ut2u

∗
g2).

Since ut1 ∈ L(G1) and ut2 ∈ L(G2), we can decompose

(3.3) ut1 =
∑
g1∈G1

β1(g1)ug1 and ut2 =
∑
g2∈G2

β2(g2)ug2

where the sums converge in ‖.‖2. Since ut1 and ut2 are unitaries, we have that

(3.4)
∑
g1∈G1

|β1(g1)|2 =
∑
g2∈G2

|β2(g2)|2 = 1.

If x = x1x2 · · ·xn, for some x1 ∈Mi1 	B, x2 ∈Mi2 	B, . . . , xn ∈Min 	B, then
by 3.3 we have

ugθt(x)uh = ugu
t
i1x1u

t
i1

∗
uti2x2u

t
i2

∗ · · ·utinxnu
t
in

∗
uh

=
∑

g1,h1∈Gi1
g2,h2∈Gi2

,...,gnhn∈Gin

βi1(g1)βi1(h1)βi2(g2)βi2(h2) · · ·βin(gn)βin(hn)

· · ·ugug1x1u
∗
h1
ug2x2u

∗
h2
· · ·ugnxnu

∗
hn
uh.

By using Equations 3.1 and 3.2, we further deduce that

(3.5) ENoΣ(ugθt(x)uh)

=
∑

g1,h1∈Gi1 ,g2,h2∈Gi2 ,...,gnhn∈Gin

gg1h1g2h2···gnhnh∈Σ

βi1(g1)βi1(h1)βi2(g2)βi2(h2) · · ·βin(gn)βin(hn)

· · ·ugVg1,h1,g2,h2,...,gn,hn
(x)uh.
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Since the linear span such elements x is dense in H I , this formula holds for every x ∈ H I .
Since the isometries Vg1,h1,g2,h2,...,gn,hn

have mutually orthogonal ranges, Formula 3.5 im-
plies that

‖ENoΣ(ugθt(x)uh)‖22
= ‖x‖22

∑
g1,h1∈Gi1

,g2,h2∈Gi2
,...,gnhn∈Gin

gg1h1g2h2···gnhnh∈Σ

|βi1(g1)|2|βi1(h1)|2|βi2(g2)|2|βi2(h2)|2

· · · |βin(gn)|2|βin(hn)|2,

for all x ∈ H I .

Thus,
(3.6)
c I =

∑
g1,h1∈Gi1 ,g2,h2∈Gi2 ,...,gnhn∈Gin

gg1h1g2h2···gnhnh∈Σ

|βi1(g1)|2|βi1(h1)|2|βi2(g2)|2|βi2(h2)|2 · · · |βin(gn)|2|βin(hn)|2.

In the second part of the proof, we use this formula for c I to conclude that cn → 0. By 3.4
we can define probability measures µ1 and µ2 on F2 by letting

(3.7) µi(g) =

{
|βi(g)|2, if g ∈ Gi, and

0, if g 6∈ Gi.

Denote µ = µ1 ∗ µ1 ∗ µ2 ∗ µ2. Then we have

C 3.1. – µ∗n(gΣh)→ 0, for all g, h ∈ F2.

Assuming the claim, let us show that cn → 0. Firstly, the claim gives that
(ν1 ∗ µ∗n ∗ ν2)(gΣh)→ 0, for any probability measures ν1, ν2 on F2 and all g, h ∈ F2.
Secondly, the Formula 3.6 rewrites as

c I = (µi1 ∗ µi1 ∗ µi2 ∗ µi2 · · · ∗ µin ∗ µin)(g
−1Σh−1).

Since i1 6= i2, i2 6= i3, . . . , in−1 6= in, we have that µi1 ∗ µi1 ∗ µi2 ∗ µi2 · · · ∗ µin ∗ µin ∈
{µ∗[ n

2 ], µ∗[
n
2 ] ∗ µ1 ∗ µ1, µ2 ∗ µ2 ∗ µ∗[

n
2 ], µ2 ∗ µ2 ∗ µ∗[

n−1
2 ] ∗ µ1 ∗ µ1}. By combining these

facts it follows that cn → 0, as claimed.

Proof of the claim. – Firstly, let us prove the claim in the case Σ = {e}. By Lemma 2.13 (1)
it suffices to show that the support of µ generates a non-amenable group.

Recall that ua1 = exp(iα1) and ut1 = exp(itα1). Thus if n ∈ Z, then

(3.8) µ1(an1 ) = |τ(ut1u
∗
an
1
)|2 = |τ(ut−n1 )|2 = (

sin(π(t− n))

π(t− n)
)2 =

(sin(πt))2

π2(n− t)2
.

Since t ∈ (0, 1), it follows that µ1(an1 ) 6= 0 and similarly that µ2(an2 ) 6= 0, for all n ∈ Z. As a
consequence the support of µ contains a1 and a2, and thus generates the whole F2.

In general, assume that Σ = 〈a〉, for some a ∈ F2. Let ` : F2 → N be the word length
on F2 with respect to the generating set S = {a1, a

−1
1 , a2, a

−1
2 }. Note that 3.8 also implies

that µ1(an1 ) = µ2(an2 ) 6 C
|n|2+1 , for all n ∈ Z, where C = 2

t2(1−t)2 .
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Let p ∈ (0, 1). Since |i+ j|p 6 |i|p + |j|p, for i, j > 0, we get that∑
n∈Z
|n|p(µ1 ∗ µ1)(an1 ) =

∑
n∈Z
|n|p(

∑
i+j=n

µ1(ai1)µ1(aj1)) 6 C2
∑
i,j∈Z

|i|p + |j|p

(|i|2 + 1)(|j|2 + 1)

= 2C2(
∑
i∈Z

|i|p

|i|2 + 1
)(
∑
j∈Z

1

|j|2 + 1
) <∞.

Now, the support of µ is {am1 an2 |m,n ∈ Z} and `(am1 a
n
2 ) = |m|+ |n|, for every m,n ∈ Z.

By using the last inequality and the analogous one for µ2 we derive that∑
g∈F2

`(g)pµ(g) =
∑
m,n∈Z

(|m|+ |n|)p(µ1 ∗ µ1)(am1 )(µ2 ∗ µ2)(an2 )

6
∑
m∈Z
|m|p(µ1 ∗ µ1)(am1 ) +

∑
n∈Z
|n|p(µ2 ∗ µ2)(an2 ) <∞.

Since Σ is a cyclic group, we can now apply Lemma 2.13 (2) to get the conclusion of the
claim. This finishes the proof of the lemma.

4. Relative amenability and subalgebras of AFP algebras, I

Assume the notations from Sections 2.5 and 3. Thus, (M1, τ1), (M2, τ2) are tracial von
Neumann algebras, M = M1 ∗B M2, M̃ = M ∗B (B⊗̄L(F2)) and N = {ugMu∗g|g ∈ F2}′′.

Our goal in the next two sections is to understand what subalgebras A ⊂ M have the
property that θt(A) is amenable relative to N , for some (or all) t ∈ (0, 1).

We start by considering the case A = M .

T 4.1. – Suppose that M = M1 ∗B M2 is a factor and let p ∈M be a projection.

If θt(pMp) is amenable relative to N inside M̃ , for some t ∈ (0, 1), then either

1. M1p1 is amenable relative to B inside M1, for some non-zero projection p1 ∈ Z(M1), or
2. M2p2 is amenable relative to B inside M2, for some non-zero projection p2 ∈ Z(M2).

In particular, if B is amenable and M1,M2 have no amenable direct summands, then
θt(pMp) is not amenable relative N , for any t ∈ (0, 1). It would be interesting to determine
whether the conclusion of Theorem 4.1 can be strengthened to “M is amenable relative toB”.

In preparation for the proof of Theorem 4.1, we establish a useful decomposition of
the M -M bimodule L2(〈M̃, eN 〉). Note that ugMu∗g ⊂ N , for all g ∈ F2. Equivalently,
[ugeNu

∗
g,M ] = 0, for every g ∈ F2. Therefore, L2(〈M̃, eN 〉) contains an infinite direct sum

of trivial M -M bimodules:

H =
⊕
g∈F2

L2(M)ugeNu
∗
g.

If we let H 2 = L2(〈M̃, eN 〉)	 H , then we have the following

L 4.2. – There is a B-M bimodule K such that H 2
∼= L2(M)⊗B K , as M -M

bimodules.
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Proof. – Since M̃ = N o F2, we have that

L2(〈M̃, eN 〉) =
⊕
g,h∈F2

L2(N)ugeNu
∗
h.

For g ∈ F2, let σg be the automorphism of N given by σg(x) = ugxu
∗
g, for x ∈ N . Then

theN -N bimodule L2(N)ugeNu
∗
h is isomorphic to L2(N) endowed with theN -N bimodule

structure given by x · ξ · y = xξσgh−1(y), for all x, y ∈ N and ξ ∈ L2(N). For simplicity, we
denote this bimodule by NL

2(N)σgh−1 (N).

Next, we define theM -M bimodules L = L2(N)	L2(M) and Lg =M L2(N)σg(M). The
first paragraph implies that H 2

∼=
⊕∞

i=1( L ⊕
⊕

g∈F2\{e} Lg), as M -M bimodules.

Now, denote P = (∪k∈F2\{e}ukMu∗k)′′ and Pg = (∪k∈F2\{e,g}ukMu∗k)′′, for g ∈ F2 \{e}.
Then N = M ∗B P and N = M ∗B σg(M) ∗B Pg. By using Lemma 2.10 we can
find a B-M bimodule L ′ and a B-σg(M) bimodule L ′g such that L = L2(M)⊗B L ′ and
Lg = L2(M)⊗B L ′g, for all g ∈ F2 \ {e}. In combination with the last paragraph this yields
the conclusion.

In the proof of Theorem 4.1 we will also need a technical result showing that for t ∈ (0, 1),
the angle between the Hilbert spaces ut1 H ut1

∗ and ut2 H ut2
∗ is positive.

L 4.3. – Let t ∈ (0, 1) and ut1, u
t
2 ∈ L(F2) be the unitaries defined in Section 2.5.

For i ∈ {1, 2}, we denote byPi the orthogonal projection fromL2(〈M̃, eN 〉) onto Li = uti H u
t
i
∗.

Then ‖P1P2‖ < 1.

Proof. – Let S = P1| L2
: L2 → L1. Since ‖P1P2‖ = ‖S‖ it suffices to prove that

‖S‖ < 1. We will achieve this by identifying S with the inflation of a certain contraction
from L(F2).

Given g ∈ F2, let αg = |τ(ut1
∗
ut2u
∗
g)|2. Note that

∑
g∈F2

αg = 1. If we define the operator
T =

∑
g∈F2

αgλ(g) ∈ L(F2), then it is clear that ‖T‖ 6 1.

We claim that ‖T‖ < 1. To see this, recall that a1 and a2 are generators of F2. By using the
same calculation as in 3.8 we get that ut1 =

∑
n∈Z

sin(π(t−n))
π(t−n) uan

1
and ut2 =

∑
n∈Z

sin(π(t−n))
π(t−n) uan

2
.

It follows that αg 6= 0 if and only if g ∈ {am1 an2 |m,n ∈ Z}. Thus, the support of α gener-
ates the whole F2. Since F2 is non-amenable and αg > 0, for all g ∈ F2, we deduce that
‖T‖ <

∑
g∈F2

αg = 1.

Next, for i ∈ {1, 2}, we define the unitary operator Ui : L2(M)⊗̄`2(F2)→ Li given by

Ui(ξ ⊗ δg) = utiugξeNu
∗
gu
t
i
∗
, for ξ ∈ L2(M) and g ∈ F2.

Let g, h ∈ F2. Since u∗hu
t
1
∗
ut2ug ∈ L(F2), we get that EN (u∗hu

t
1
∗
ut2ug) = τ(u∗hu

t
1
∗
ut2ug)1.

Thus, for every ξ, η ∈ L2(M) we get that

〈U∗1SU2(ξ ⊗ δg), η ⊗ δh〉 = 〈P1(ut2ugξeNu
∗
gu
t
2
∗
), ut1uhηeNu

∗
hu

t
1
∗〉

= 〈ut2ugξeNu∗gut2
∗
, ut1uhηeNu

∗
hu

t
1
∗〉 = |τ(u∗hu

t
1
∗
ut2ug)|2〈ξ, η〉

= αhg−1〈ξ, η〉 = 〈(1⊗ T )(ξ ⊗ δg), η ⊗ δh〉.

Therefore, S = U1(1⊗ T )U∗2 and since ‖T‖ < 1 we get that ‖S‖ < 1.
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Proof of Theorem 4.1. Assume that θt(pMp) is amenable relative toN , for some non-zero
projection p ∈M . SinceM is a II1 factor it follows that θt(M) is amenable relative toN (see
Remark 2.2). By [41, Definition 2.2] we can find a net of vectors ξn ∈ L2(〈M̃, eN 〉) such that
〈xξn, ξn〉 → τ(x), for all x ∈ M̃ , and ‖yξn − ξny‖2 → 0, for all y ∈ θt(M).

We denote ξ1,n = ut1
∗
ξnu

t
1 and ξ2,n = ut2

∗
ξnu

t
2. Since θt(y) = utiyu

t
i
∗, for all y ∈Mi and

i ∈ {1, 2}, we derive that

(4.1) ‖yξ1,n−ξ1,ny‖ → 0, for all y ∈M1, and ‖yξ2,n−ξ2,ny‖ → 0, for all y ∈M2.

We also clearly have that

(4.2) 〈xξ1,n, ξ1,n〉 → τ(x) and 〈xξ2,n, ξ2,n〉 → τ(x), for all x ∈ M̃.

Denote by e and f the orthogonal projections from L2(〈M̃, eN 〉) onto H 2 = L2(〈M̃, eN 〉)	 H
and onto H =

⊕
g∈F2

L2(M)ugeNu
∗
g, respectively. Since e+ f = 1, we are in one of the

following three cases:

Case 1. lim supn ‖e(ξ1,n)‖2 > 0.

Case 2. lim supn ‖eξ2,n)‖2 > 0.

Case 3. ‖ξ1,n − f(ξ1,n)‖2 → 0 and ‖ξ2,n − f(ξ2,n)‖2 → 0.

In Case 1, since H 2 is an M -M bimodule, Equations 4.2 and 4.1 imply that

lim sup
n
‖xe(ξ1,n)‖2 6 ‖x‖2,

for all x ∈ M̃ , and ‖ye(ξ1,n)− e(ξ1,n)y‖2 → 0, for all y ∈M1.

We claim that there is a B-M1 bimodule K 2 such that H 2
∼= L2(M1)⊗B K 2, as M1-M1

bimodules. Assume for now that the claim holds. Then, since lim supn ‖e(ξ1,n)‖2 > 0,
Lemma 2.3 implies that M1p1 is amenable relative to B inside M1, for some non-zero
projection p1 ∈ Z(M1).

Now, let us justify the claim. Firstly, Lemma 4.2 provides a B-M bimodule K such that
H 2
∼= L2(M)⊗B K , asM -M bimodules. SinceM = M1 ∗BM2, by Lemma 2.10 we can find

a B-M1 bimodule K 1 such that L2(M) ∼= L2(M1)⊗B K 1, as M1-M1 bimodules. Finally, it
is clear that the B-M1 bimodule K 2 = K 1⊗B K satisfies H 2

∼= L2(M1)⊗B K 2, as M1-M1

bimodules.

Similarly, in Case 2, we get thatM2p2 is amenable relative toB, for a non-zero projection
p2 ∈ Z(M2).

Finally, let us show that Case 3 is impossible. Indeed, in this case we would have that
‖ξn − ut1f(ξ1,n)ut1

∗‖2 → 0 and ‖ξn − ut2f(ξ2,n)ut2
∗‖2 → 0. Now, as in Lemma 4.3,

for i ∈ {1, 2}, we let Pi be the orthogonal projection from L2(〈M̃, eN 〉) onto Li = uti H u
t
i
∗.

Since utif(ξi,n)uti
∗ ∈ Li, we deduce that ‖ξn − P1(ξn)‖2 → 0 and ‖ξn − P2(ξn)‖2 → 0.

Thus, ‖ξn−P1P2(ξn)‖2 → 0. On the other hand, Lemma 4.3 shows that ‖P1P2‖ < 1. By
combining these two facts we derive that ‖ξn‖2 → 0, which is a contradiction.
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We end this section by noticing that Theorem 4.1 yields a particular case of Theorem 1.1:

Proof of Theorem 1.1 in the case Γ1 and Γ2 are non-amenable, and Λ is amenable. Therefore,
let Γ y (X,µ) be a free ergodic pmp action of Γ = Γ1∗ΛΓ2. Recall that

⋂n
i=1 giΛg

−1
i is finite,

for some g1, g2, . . . , gn ∈ Γ, and denote M = L∞(X)o Γ.

We claim that any Cartan subalgebra A of M is unitarily conjugate to L∞(X). To this
end, notice that M = M1 ∗B M2, where M1 = L∞(X) o Γ1,M2 = L∞(X) o Γ2 and
B = L∞(X)o Λ. Let M̃ , {θt}t∈R ⊂ Aut(M̃) and N be defined as above.

Let t ∈ (0, 1). Since M̃ = N o F2, by applying Theorem 2.8 to θt(A) ⊂ M̃ we have that
either θt(A) ≺M̃ N or θt(M) is amenable relative to N inside M̃ .

In the first case, Theorem 3.2 gives that either A ≺M B = L∞(X) o Λ or M ≺M Mi,
for some i ∈ {1, 2}. If the first condition holds, then since M is a factor, [24, Proposition 8]
implies that A ≺M L∞(X) o (

⋂n
i=1 giΛg

−1
i ). Thus, A ≺M L∞(X) and [47, Theorem A.1]

gives that A and L∞(X) are indeed unitarily conjugate. On the other hand, the second
condition cannot hold true. To see this, let g1 ∈ Γ1 \ Λ and g2 ∈ Γ2 \ Λ. Then the unitary
u = ug1g2 satisfies ‖EMi

(xuny)‖2 → 0, for every x, y ∈M .

In the second case, Theorem 4.1 implies that Mipi is amenable relative to B for some
pi ∈ Z(Mi) and some i ∈ {1, 2}. Since B is amenable, this would imply that Mipi is
amenable. Since L(Γi) ⊂Mi and Γi is non-amenable, this case is impossible. �

5. Relative amenability and subalgebras of AFP algebras, II

Let (M1, τ1) and (M2, τ2) be two tracial von Neumann algebras. Following the nota-
tions from Sections 2.5 and 3, we denote M = M1 ∗B M2, M̃ = M ∗B (B⊗̄L(F2)) and
N = {ugMu∗g | g ∈ F2}′′.

In this section we prove two structural results for subalgebras A ⊂ M with the property
that θt(A) is amenable relative to N , for any t ∈ (0, 1). Firstly, we show:

T 5.1. – LetA ⊂ pMp be a von Neumann subalgebra, for some projection p ∈M .
Let ω be a free ultrafilter on N and suppose that A′ ∩ (pMp)ω = Cp.

If θt(A) is amenable relative to N inside M̃ , for any t ∈ (0, 1), then either

1. A ≺M Mi, for some i ∈ {1, 2}, or
2. A is amenable relative to B inside M .

It seems to us that this theorem should hold without assuming that A′ ∩ (pMp)ω = Cp,
but we were unable to prove this. This assumption is verified for instance ifA = M andM is
a II1 factor without property Γ. By [8, Corollary 3.2] if B is amenable and M1 is a II1 factor
without property Γ, then M = M1 ∗BM2 is a II1 factor which does not have property Γ. In
the next section we will see more situations in which the above assumption holds.

Nevertheless, the condition A′ ∩ (pMp)ω = C is not satisfied in other situations to which
we would like to apply Theorem 5.1. For instance, let Γ = Γ1 ∗ Γ2 be a free product group
and Γ y (X,µ) be a free ergodic but not strongly ergodic action. Then the amalgamated free
product II1 factorM = L∞(X)oΓ = (L∞(X)oΓ1)∗L∞(X) (L∞(X)oΓ2) has property Γ.

In order to treat such situations, we prove the following variant of Theorem 5.1:
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T 5.2. – In the above setting, assume that we can decompose B = P ⊗̄Q0,
M1 = P ⊗̄Q1 and M2 = P ⊗̄Q2, for some tracial von Neumann algebras P,Q0, Q1 and Q2.
Note that M = P ⊗̄Q, where Q = Q1 ∗Q0

Q2.

Let A ⊂M be a von Neumann subalgebra. Suppose that there exist a subgroup U ⊂ U(P )

and a homomorphism ρ : U → U(Q) such that

• u⊗ ρ(u) ∈ A, for all u ∈ U, and
• the von Neumann subalgebraA0 ⊂ Q generated by {ρ(u)|u ∈ U} satisfiesA′0∩Qω = C.

If θt(A) is amenable relative to N inside M̃ , for any t ∈ (0, 1), then either

1. A0 ≺Q Qi, for some i ∈ {1, 2}, or
2. A0 is amenable relative to Q0 inside Q.

In the rest of this section, we first prove Theorem 5.1 and then use it to deduce Theo-
rem 5.2.

Proof of Theorem 5.1. – Suppose by contradiction that conditions (1) and (2) fail.

We begin by introducing the following notation:

• H 0 =
⊕

g∈F2
CugeNu∗g and H 1 =

⊕
g∈F2

(L2(M)	 C)ugeNu
∗
g.

• H = H 0 ⊕ H 1 =
⊕

g∈F2
L2(M)ugeNu

∗
g and H 2 = L2(〈M̃, eN 〉)	 H .

• K 0 =
⊕

g∈F2
Cp ugeNu∗g and K 1 =

⊕
g∈F2

(L2(pMp)	 Cp)ugeNu∗g.
• K = K 0 ⊕ K 1 =

⊕
g∈F2

L2(pMp)ugeNu
∗
g and K 2 = pL2(〈M̃, eN 〉)p	 K .

Note that L2(〈M̃, eN 〉) = H 0 ⊕ H 1 ⊕ H 2 and pL2(〈M̃, eN 〉)p = K 0 ⊕ K 1 ⊕ K 2.
For j ∈ {0, 1, 2}, we denote by ej the orthogonal projection from L2(〈M̃, eN 〉) onto K j .
We also denote by e = e0 + e1 the orthogonal projection onto K .

We denote by I the set of 4-tuples i = (X,Y, δ, t) where X ⊂ M̃ and Y ⊂ U(A) are finite
subsets, δ ∈ (0, 1) and t ∈ (0, 1). We make I a directed set by letting: (X,Y, δ, t) 6 (X ′, Y ′, δ′, t′)

if and only if X ⊂ X ′, Y ⊂ Y ′, δ′ 6 δ and t′ 6 t.

Let i = (X,Y, δ, t) ∈ I. Since θt(A) is amenable relative to N inside M̃ , by [41,
Definition 2.2] we can find a vector ξi ∈ L2(〈M̃, eN 〉) such that

|〈xξi, ξi〉 − τ(x)| 6 δ, for all x ∈ X,
|〈(θt(y)− y)∗(θt(y)− y)ξi, ξi〉 − τ((θt(y)− y)∗(θt(y)− y))| 6 δ and

‖θt(y)ξi − ξiθt(y)‖2 6 δ, for all y ∈ Y.

Moreover, following the proof of [41, Theorem 2.1] we may assume that ξi = η
1
2
i , for some

ηi ∈ L1(〈M̃, eN 〉)+. Thus, 〈xξi, ξi〉 = Tr(xηi) = 〈ξix, ξi〉, for all x ∈ M̃ and i ∈ I.

The first part of the proof consists of three claims.

C 1. – We have that 〈xξi, ξi〉 → τ(x), for all x ∈ M̃ , and ‖yξi − ξiy‖2 → 0, for all
y ∈ U(A).
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Proof of Claim 1. – The first assertion is clear. To prove the second assertion, let
i = (X,Y, δ, t) ∈ I and y ∈ Y . Then we have

‖(θt(y)− y)ξi‖22 = 〈(θt(y)− y)∗(θt(y)− y)ξi, ξi〉 6 δ + ‖θt(y)− y‖22.

Similarly, we have that ‖ξi(θt(y)−y)‖22 6 δ+‖θt(y)−y‖22. By combining these inequalities
we deduce that

‖yξi − ξiy‖2 6 ‖θt(y)ξi − ξiθt(y)‖2 + ‖(θt(y)− y)ξi‖2 + ‖ξi(θt(y)− y)‖2

6 δ + 2
√
δ + ‖θt(y)− y‖22.

Since ‖θt(y)− y‖2 → 0, as t→ 0, it follows that ‖yξi − ξiy‖2 → 0.

For i ∈ I, we denote ζi = pξip ∈ pL2(〈M̃, eN 〉)p. Note that ej(ξi) = ej(ζi), for all
j ∈ {0, 1, 2}.

C 2. – ‖ζi − e0(ζi)‖2 → 0.

Proof of Claim 2. – Since e0(ζ) + e1(ζ) + e2(ζ) = ζ, for every ζ ∈ pL2(〈M̃, eN 〉)p, it
suffices to show that ‖e1(ζi)‖2 → 0 and ‖e2(ζi)‖2 → 0.

Firstly, since K is a pMp-pMp bimodule, Claim 1 implies that the vectors e(ζi) = e(pξip) ∈ K
satisfy lim

i
‖xe(ζi)− e(ζi)x‖2 = 0, for all x ∈ A. Also, we get that lim sup

i
‖ye(ζi)‖2 6 ‖y‖2

for every y ∈M . Indeed, if y ∈M , then for all i we have that

‖ye(ζi)‖22 = 〈(py∗yp)e(ζi), e(ζi)〉 = ‖e((py∗yp) 1
2 pξip)‖22 6 ‖(py∗yp)

1
2 ξi‖22 = 〈(py∗yp)ξi, ξi〉.

Since lim
i
〈(py∗yp)ξi, ξi〉 = τ(py∗yp) 6 ‖y‖22, this proves our assertion. Similarly, it

follows that lim sup
i
‖e(ζi)y‖2 6 ‖y‖2, for all y ∈ M . Note that K ∼= L2(pMp) ⊗ `2,

as a Hilbert pMp-pMp bimodule. Since A′ ∩ (pMp)ω = Cp, the inclusion A ⊂ pMp has
w-spectral gap, and by applying Theorem 2.5 we get that lim

i
‖e(ζi) − e0(ζi)‖2 = 0. Thus,

lim
i
‖e1(ζi)‖2 = 0.

Secondly, since K 2 = pH 2p is a pMp-pMp bimodule, e2 is pMp-pMp bimodular and
therefore we have that

lim sup
i
‖xe2(ζi)‖2 = lim sup

i
‖xe2(ξi)‖2 = lim sup

i
‖e2(xξi)‖2 6 lim sup

i
‖xξi‖2

= lim sup
i

√
〈x∗xξi, ξi〉 = ‖x‖2, for all x ∈M,

and that ‖ye2(ζi)− e2(ζi)y‖2 = ‖e2(yξi − ξiy)‖2 6 ‖yξi − ξiy‖2 → 0, for all y ∈ U(A).

Now, recall that Lemma 4.2 shows that H 2
∼= L2(M)⊗B K , for some B-M bimodule K .

Thus, if lim supi ‖e2(ζi)‖2 > 0, then by Lemma 2.3 we could find a non-zero projection
z ∈ Z(A′ ∩ pMp) such that Az is amenable relative to B inside M . Since A′ ∩ pMp = C,
this would imply that A is amenable relative to B inside M , leading to a contradiction.

Before proving our third claim, let us state two lemmas whose proofs we postpone for now.
Denote by λ : F2 → U(`2(F2)) the left regular representation of F2. Then we have
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L 5.3. – Define the unitary operator U : H 0 → `2(F2) given by U(ugeNu
∗
g) = δg,

for g ∈ F2.

If η ∈ H 0 and y ∈ M̃ , then

‖yη − ηy‖22 =
∑
g∈F2

‖λ(g)(U(η))− U(η)‖2‖EN (yu∗g)‖22.

L 5.4. – There exists c > 0 such that if two elements g, h ∈ F2 satisfy
‖λ(g)(η)− η‖ 6 c‖η‖ and ‖λ(h)(η)− η‖ 6 c‖η‖, for some non-zero vector η ∈ `2(F2),
then g and h commute.

Going back to the proof of Theorem 5.1, recall that Claim 2 yields that ‖ζi−e0(ζi)‖2 → 0.
Moreover, Claim 1 gives that ‖ζi‖2 → ‖p‖2 and that ‖pξi − ξip‖2 → 0.

Thus, we can find i = (X,Y, δ, t) ∈ I such that for every i′ > i we have that

‖ζi′ − e0(ζi′)‖2 < min{c‖p‖2
128

,
‖p‖2

4
}, ‖ζi′‖2 >

‖p‖2
2

, and ‖pξi′ − ξi′p‖2 6
c‖p‖2

64
.

Note that ‖pθt(y)p‖2 > ‖p‖2 − 2‖θt(p)− p‖2, for all y ∈ U(pM̃p). Since limt→0 ‖θt(p)− p‖2 = 0,
after eventually shrinking t, we may also assume that

(5.1) ‖pθt(y)p‖2 >
‖p‖2

2
, for all y ∈ U(pM̃p).

Let i′ > i. Then ‖e0(ζi′)‖2 > ‖p‖24 . Since e0(ζi′) ∈ K 0 = pH 0, we can write e0(ζi′) = ηi′p = pηi′ ,

for some ηi′ ∈ H 0. Then ‖ηi′‖2 = ‖e0(ζi′ )‖2
‖p‖2 and therefore ‖ηi′‖2 > 1

4 .

Also, we have that ‖ζi′ − ξi′p‖2 = ‖pξi′p− ξi′p‖2 6 ‖pξi′ − ξi′p‖2 6 c‖p‖2
64 and similarly

that ‖ζi′ − pξi′‖2 6 c‖p‖2
64 . By using these inequalities we derive the following

C 3. – Let c be the constant provided by Lemma 5.4. Then for every finite set
F ⊂ U(A) we can find a unit vector η ∈ H 0 depending on F such that

‖(pθt(y)p)η − η(pθt(y)p)‖2 6
c‖p‖2

4
, for all y ∈ F.

Proof of Claim 3. – Let i′ = (X,Y ∪ F, t,min{δ, c‖p‖264 }) and define η := ηi′
‖ηi′‖2

∈ H 0.

Let y ∈ F . By the definition of ξi′ we have that ‖θt(y)ξi′−ξi′θt(y)‖2 6 c‖p‖2
64 . Since i′ > i,

by using the previous inequalities we derive that

‖(pθt(y)p)η − η(pθt(y)p)‖2 =
1

‖ηi′‖2
‖pθt(y)e0(ζi′)− e0(ζi′)θt(y)p‖2

6 4‖pθt(y)ζi′ − ζi′θt(y)p‖2 + 8‖ζi′ − e0(ζi′)‖2.
(5.2)

Additionally, we have that

‖pθt(y)ζi′ − ζi′θt(y)p‖2 6 ‖pθt(y)ξi′p− pξi′θt(y)p‖2 + ‖ζi′ − ξi′p‖2 + ‖ζi′ − pξi′‖2

6 ‖θt(y)ξi′ − ξi′θt(y)‖2 +
c‖p‖2

32
6

3c‖p‖2
64

.
(5.3)

Since ‖ζi′ − e0(ζi′)‖2 6 c‖p‖2
128 , by combining Equations 5.2 and 5.3 the claim follows.
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In the second part of the proof we combine Lemmas 5.3, 5.4 and Claim 3 to get a con-
tradiction. Since A ⊀M Mi, for all i ∈ {1, 2}, Theorem 3.2 implies that θt(A) ⊀M̃ N and
moreover that θt(A) ⊀M̃ N o Σ, for any cyclic subgroup Σ < F2.

Thus, we can find y ∈ U(A) such that ‖EN (pθt(y)p)‖2 6 ‖p‖2
4 . If we write pθt(y)p =∑

g∈F2
ygug, where yg ∈ N , then ‖ye‖2 6 ‖p‖24 . By applying Claim 3 to F = {y} we can find

a unit vector η ∈ H 0 such that ‖(pθt(y)p)η − η(pθt(y)p)‖2 6 c‖p‖2
4 .

Let S1 = {g ∈ F2|‖λ(g)(U(η))− U(η)‖ > c} and S2 = {g ∈ F2 \ {e}|‖λ(g)(U(η))− U(η)‖ 6 c}.
By using Lemma 5.3 we get that

c2‖p‖22
16

> ‖(pθt(y)p)η − η(pθt(y)p)‖22 =
∑
g∈F2

‖λ(g)(U(η))− U(η)‖2‖yg‖22 > c2
∑
g∈S1

‖yg‖22.

Hence, we derive that

(5.4)
∑

g∈S1∪{e}

‖yg‖22 = ‖ye‖22 +
∑
g∈S1

‖yg‖22 6
‖p‖22
16

+
‖p‖22
16

=
‖p‖22

8
.

Since
∑
g∈F2
‖yg‖22 = ‖pθt(y)p‖22 >

‖p‖22
4 by Equation 5.1, we get that S2 = F2 \ (S1 ∪ {e}) 6= ∅.

On the other hand, by Lemma 5.4, any two elements g, h ∈ S2 commute. If follows that we
can find k ∈ F2 \ {e} such that S2 ⊂ Σ, where Σ = {kn|n ∈ Z}. Moreover, we can pick k
such that if k′ ∈ F2 commutes with km, for some m ∈ Z \ {0}, then k′ ∈ Σ.

Further, since θt(A) ⊀M̃ N o Σ, we can find z ∈ U(A) such that ‖ENoΣ(pθt(z)p)‖2 6 ‖p‖24 .
Since y, z ∈ U(A), by applying Claim 3 to F = {y, z} we can find a unit vector ζ ∈ H 0 such
that ‖(pθt(y)p)ζ − ζ(pθt(y)p)‖2 6 c‖p‖2

4 and ‖(pθt(z)p)ζ − ζ(pθt(z)p)‖2 6 c‖p‖2
4 .

Let T1 = {g ∈ F2|‖λ(g)(U(ζ))− U(ζ)‖ > c} and T2 = {g ∈ F2 \ {e}|‖λ(g)(U(ζ))− U(ζ)‖ 6 c}.
Write pθt(z)p =

∑
g∈F2

zgug, where zg ∈ N . The same calculation as above then shows that

(5.5)
∑
g∈T1

‖yg‖22 6
‖p‖22
16

and
∑
g∈T1

‖zg‖22 6
‖p‖22
16

.

By combining inequalities 5.4 and 5.5 it follows that
∑
g∈T1∪(S1∪{e}) ‖yg‖

2
2 6

3‖p‖22
16 . Since

we also have that
∑
g∈F2
‖yg‖22 = ‖pθt(y)p‖22 >

‖p‖22
4 , we get that T1 ∪S1 ∪{e} 6= F2. Hence

S2 ∩ T2 6= ∅.

Fix k′ ∈ S2 ∩ T2. If k′′ ∈ T2, then Lemma 5.4 implies that k′′ commutes with k′. Since
k′ ∈ S2 ⊂ Σ \ {e}, we get that k′′ ∈ Σ and therefore T2 ⊂ Σ.

Thus, T2 ∪ {e} ⊂ Σ and so
∑
g∈T2∪{e} ‖zg‖

2
2 6 ‖ENoΣ(pθt(z)p)‖22 6

‖p‖22
16 . Since

T1 ∪ T2 ∪ {e} = F2, combining this inequality with 5.5 yields that
∑
g∈F2
‖zg‖22 6

‖p‖22
8 .

This however contradicts the fact that ‖pθt(z)p‖2 > ‖p‖22 and finishes the proof.

Proof of Lemma 5.3. – Write η =
∑
g∈F2

ηgugeNu
∗
g, where ηg ∈ C, and y =

∑
k∈F2

ykuk,

where yk ∈ N . Recall that the canonical semi-finite trace on 〈M̃, eN 〉 is given by
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Tr(xeNy) = τ(xy). If we denote by (σg)g∈F2
the conjugation action of F2 on N (i.e.,

σg(x) = ugxu
∗
g), then we have

〈yη, ηy〉 =
∑

g,h,k,l∈F2

〈ykukηgugeNu∗g, ηhuheNu∗hylul〉

=
∑

g,h,k,l∈F2

ηgηhTr(ykukug eN u∗gu
∗
l y
∗
l uh eN u∗h)

=
∑

g,h,k,l∈F2

ηgηhτ(EN (u∗hykukug)EN (u∗gu
∗
l y
∗
l uh)).

If g, k are fixed and the expression τ(EN (u∗hykukug)EN (u∗gu
∗
l y
∗
l uh)) is non-zero, then h = kg

and l = k. Moreover, in this case this expression is equal to τ(σ(kg)−1(yk)σ(kg)−1(y∗k)) = ‖yk‖22.
Thus, we deduce that

〈yη, ηy〉 =
∑
g,k∈F2

ηgηkg‖yk‖22 =
∑
k∈F2

(
∑
g∈F2

ηk−1gηg)‖yk‖22

=
∑
k∈F2

〈λ(k)(U(η)), U(η)〉 ‖EN (yu∗k)‖22.

Since we also have that ‖yη‖2 = ‖ηy‖2 = ‖y‖2‖η‖2, the lemma follows.

Proof of Lemma 5.4. – Let a and b be generators of F2. Since F2 is non-amenable, there
exists c > 0 such that any non-zero vector η ∈ `2(F2) satisfies

‖λ(a)(η)− η‖2 + ‖λ(b)(η)− η‖2 > 2c2‖η‖2.

Now, let g, h ∈ F2 such that ‖λ(g)(η) − η‖ 6 c‖η‖ and ‖λ(h)(η) − η‖ 6 c‖η‖, for some
non-zero vector η ∈ `2(F2). From this we get that ‖λ(g)(η)−η‖2+‖λ(h)(η)−η‖2 6 2c2‖η‖2.

Let ∆ < F2 be the subgroup generated by g and h, and γ : ∆ → U(`2(∆)) be its left
regular representation. Since F2 = tg∈S∆g, for a set S of representatives, the restriction λ|∆
is a subrepresentation of

⊕∞
n=1 γ : ∆ → U(

⊕∞
n=1 `

2(∆)). If we write η = (ηn)∞n=1, where
ηn ∈ `2(∆), then we can find n such that ‖γ(g)(ηn)− ηn‖2 + ‖γ(h)(ηn)− ηn‖2 6 2c2‖ηn‖2
and ηn 6= 0.

If g and h do not commute, then they generate a copy of F2. In other words, there exists an
isomorphism ρ : ∆→ F2 such that ρ(g) = a and ρ(h) = b. In combination with the above,
this leads to a contradiction.

Proof of Theorem 5.2. – Recall thatB = P ⊗̄Q0,M1 = P ⊗̄Q1 andM2 = P ⊗̄Q2. There-
fore, M = P ⊗̄Q, where Q = Q1 ∗Q0

Q2. Also, recall that M̃ = M ∗B (B⊗̄L(F2)) and that
N = {ugeMu∗g|g ∈ F2}′′. We define Q̃ = Q ∗Q0

(Q0⊗̄L(F2)) and N0 = {ugQu∗g|g ∈ F2}′′ ⊂ Q̃.
Note that M̃ = P ⊗̄Q̃ and that N = P ⊗̄N0.

We denote by {αt}t∈R ⊂ Aut(Q̃) the free malleable deformation associated to the AFP
decomposition Q = Q1 ∗Q0

Q2 (see Section 2.11). Then for every x ∈ P and y ∈ Q̃ we have
that θt(x⊗ y) = x⊗ αt(y).

Let t ∈ (0, 1). We claim that αt(A0) is amenable relative toN0 inside Q̃. Once this claim is
proven the conclusion follows by applying Theorem 5.1 to the inclusion A0 ⊂ Q = Q1 ∗Q0 Q2.

Since θt(A) is amenable relative to N inside M̃ , by [41, Definition 2.2] we can find a
θt(A)-central state Φ : 〈M̃, eN 〉 → C such that Φ|M̃ = τ .
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Since M̃ = P ⊗̄Q̃ and that N = P ⊗̄N0, we have that 〈M̃, eN 〉 = P ⊗̄〈Q̃, eN0
〉. Define a

state Ψ : 〈Q̃, eN0
〉 → C by Ψ(T ) = Φ(1⊗T ) and let u ∈ U. Since u⊗ ρ(u) ∈ A we have that

u⊗ αt(ρ(u)) = θt(u⊗ ρ(u)) ∈ θt(A). Thus for every T ∈ 〈Q̃, eN0
〉 we have that

Ψ(αt(ρ(u))Tαt(ρ(u))∗) = Φ(1⊗ αt(ρ(u))Tαt(ρ(u))∗)

= Φ((u⊗ αt(ρ(u))(1⊗ T )(u⊗ αt(ρ(u))∗) = Φ(1⊗ T ) = Ψ(T ).

Thus, Ψ(αt(ρ(u))T ) = Ψ(Tαt(ρ(u)), for every u ∈ U and T ∈ 〈Q̃, eN0〉. Since
{αt(ρ(u))|u ∈ U} generates αt(A0) and Ψ|Q̃ = τ , we get that Ψ is αt(A0)-central. Thus

αt(A0) is amenable relative to N0 inside Q̃. This proves the claim and finishes the proof.

6. Property Γ for subalgebras of AFP algebras

Let Q be a von Neumann subalgebra of an amalgamated free product algebra
M = M1 ∗B M2. In this section we study the position of the relative commutant Q′ ∩Mω

inside Mω. We start by considering the case Q = M .

L 6.1. – Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a common
von Neumann subalgebraB such that τ1|B = τ2|B . DenoteM = M1 ∗B M2. Assume that there
exist unitary elements u ∈M1 and v, w ∈M2 such that EB(u) = EB(v) = EB(w) = EB(w∗v) = 0.

If ω is a free ultrafilter on N, then M ′ ∩Mω ⊂ Bω.

In the caseB = C1 this result was proved in [3, Theorem 11]. The proof of Theorem 6.1 is
a straightforward adaptation of the proof of [3, Theorem 11] to the case whenB is arbitrary.

Proof. – We denote by S1 ⊂ M the set of alternating words in M1 	 B and M2 	 B

that begin in M1 	 B. Concretely, x ∈ S1 if we can write x = x1x2 · · ·xn, for some
x1 ∈ M1 	 B, x2 ∈ M2 	 B, x3 ∈ M1 	 B · · · . Similarly, we denote by S2 ⊂ M the set
of alternating words inM1	B andM2	B that begin inM2	B. For i ∈ {1, 2}, we denote
by H i ⊂ L2(M) the ‖.‖2 closure of the linear span of Si and by Pi the orthogonal projection
onto H i.

Note that if x ∈ M1 	 B and y ∈ M2 	 B, then xH 2x
∗ ⊂ H 1 and y H 1y

∗ ⊂ H 2. The
hypothesis therefore implies that

(6.1) uH 2u
∗ ⊂ H 1, v H 1v

∗ ⊂ H 2, w H 1w
∗ ⊂ H 2 and v H 1v

∗ ⊥ w H 1w
∗.

The last fact holds because (w∗v) H 1(w∗v)∗ ⊂ H 2 and hence (w∗v) H 1(w∗v)∗ ⊥ H 1.
Now, let ξ ∈ L2(M). Notice that ifPK is the orthogonal projection onto a closed subspace

K ⊂ L2(M) and u ∈ U(M), then PuKu∗(ξ) = uPK (u∗ξu)u∗ and therefore ‖PuKu∗(ξ)‖2 =

‖PK (u∗ξu)‖2. By combining this fact with Equation 6.1 we get that

(6.2) ‖P2(u∗ξu)‖2 6 ‖P1(ξ)‖2 and ‖P1(v∗ξv)‖22 + ‖P1(w∗ξw)‖22 6 ‖P2(ξ)‖22.

Let x = (xn)n ∈M ′ ∩Mω. Then ‖u∗xnu− xn‖2, ‖v∗xnv − xn‖2, ‖w∗xnw − xn‖2 → 0,

as n → ω. Using this fact and applying 6.2 to ξ = xn we get that limn→ω ‖P2(xn)‖2 6
limn→ω ‖P1(xn)‖2 and

√
2 limn→ω ‖P1(xn)‖2 6 limn→ω ‖P2(xn)‖2.Therefore, we have that

‖P1(xn)‖2 → 0 and ‖P2(xn)‖2 → 0, as n→ ω.
Since L2(M) = L2(B)⊕ H 1⊕ H 2, it follows that limn→ω ‖xn−EB(xn)‖2 = 0 and thus

x ∈ Bω.
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Lemma 6.1 implies that a large class of AFP groups give rise to II1 factors without
property Γ.

C 6.2. – Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product group such
that [Γ1:Λ] > 2 and [Γ2:Λ] > 3. Assume that there exist g1, g2, . . . , gm ∈ Γ such that⋂m
i=1 giΛg

−1
i = {e}.

Then L(Γ) is a II1 factor without property Γ.

Moreover, Γ is not inner amenable, i.e., the unitary representation π : Γ → U(`2(Γ \ {e}))
given by π(g)(δh) = δghg−1 , for g ∈ Γ and h ∈ Γ \ {e}, does not have almost invariant vectors.

Proof. – Let x = (xn)n ∈ L(Γ)′ ∩ L(Γ)ω. Firstly, by Lemma 6.1 we get that x ∈ L(Λ)ω.

Secondly, for i ∈ {1, 2, . . . ,m}, denote byEi the conditional expectation ontoL(giΛg
−1
i ).

Then Ei(x) = ugi
EL(Λ)(u

∗
gi
xugi

)u∗gi
, for every x ∈ L(Γ). Since (xn)n ∈ L(Γ)′ ∩ L(Λ)ω it

follows that ‖Ei(xn)− xn‖2 → 0, as n→ ω, for every i ∈ {1, 2, . . . ,m}.
On the other hand, since

⋂m
i=1 giΛg

−1
i = {e}, we derive that E1E2 · · ·Em(x) = τ(x)1,

for all x ∈ L(Γ). Altogether, it follows that ‖τ(xn)1−xn‖2 → 0, as n→ ω, i.e., (xn)n ∈ C1.

We leave it to the reader to modify the above proof to show that Γ is indeed non-inner
amenable.

Next, we show that if a von Neumann subalgebra Q ⊂M = M1 ∗B M2 is “large” (i.e., if
conditions (2) and (3) below are not satisfied) then a corner of Q′ ∩Mω embeds into Bω.
Thus, the phenomenon from Theorem 6.1 extends in some sense to arbitrary subalge-
bras Q ⊂M .

T 6.3. – Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a com-
mon von Neumann subalgebraB such that τ1|B = τ2|B . LetM = M1 ∗BM2 andQ ⊂ pMp be
a von Neumann subalgebra, for some projection p ∈M . Let ω be a free ultrafilter onN. Denote
by P the von Neumann subalgebra of Mω generated by M and Bω.

Then one of the following conditions holds true:

1. Q′ ∩ (pMp)ω ⊂ P and Q′ ∩ (pMp)ω ≺P Bω.
2. N pMp(Q)′′ ≺M Mi, for some i ∈ {1, 2}.
3. Qp′ is amenable relative to B, for some non-zero projection p′ ∈ Z(Q′ ∩ pMp).

To prove Theorem 6.3 we will need the following result.

T 6.4 ([8]). – Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a
common von Neumann subalgebraB such that τ1|B = τ2|B . LetM = M1∗BM2 andQ ⊂ pMp

be a von Neumann subalgebra, for some projection p ∈M .

Then one of the following conditions holds:

1. Q′ ∩ pMp ≺M B.
2. N pMp(Q)′′ ≺M Mi, for some i ∈ {1, 2}.
3. Qp′ is amenable relative to B, for some non-zero projection p′ ∈ Z(Q′ ∩ pMp).

4 e SÉRIE – TOME 48 – 2015 – No 1



CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II1 FACTORS 105

In the case when B is amenable and Q has no amenable direct summand this result was
proved by I. Chifan and C. Houdayer [8, Theorem 1.1]. The argument that we include below
follows closely their proof.

Note that part (1) of Theorem 6.3 implies part (1) of Theorem 6.4. Indeed, if
Q′ ∩ (pMp)ω ≺P Bω, then (Q′ ∩ pMp)ω ≺Mω Bω. This readily implies that Q′ ∩ pMp ≺M B.
Therefore Theorem 6.3 is stronger than Theorem 6.4.

Before proceeding to the proofs of Theorems 6.3 and 6.4, let us fix some notations.
Let M̃ = M ∗ (B⊗̄L(F2)) and {θt}t∈R be the automorphisms of M̃ defined in Section 2.11.
We extend θt to an automorphism of M̃ω by putting θt((xn)n) = (θt(xn))n. For x ∈ M̃ω,
we denote

δt(x) = θt(x)− EMω (θt(x)) ∈ M̃ω 	Mω.

Note that if x ∈ M̃ , then δt(x) ∈ M̃ 	M .
Let β be the automorphism of M̃ satisfying β(x) = x if x ∈M , β(ua1

) = u∗a1
and

β(ua2
) = u∗a2

, where a1, a2 are the generators of F2 chosen in Section 2.11. We still denote
by β the extension of β to M̃ω. It is easy to check that β2 = idM̃ω and βθtβ = θ−t, for
all t ∈ R.

By [51, Lemma 2.1], the existence of β implies that

(6.3) ‖θ2t(x)− x‖2 6 2‖δt(x)‖2, for all x ∈M and every t ∈ R.

In the proofs of Theorems 6.3 and 6.4 we assume for simplicity that p = 1, the general case
being treated similarly. We continue with the following lemma which is key in both proofs.

L 6.5. – Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a com-
mon von Neumann subalgebra B such that τ1|B = τ2|B . Let Q ⊂M = M1 ∗B M2 be a von
Neumann subalgebra such that Qp′ is not amenable relative to B, for any non-zero projection
p′ ∈ Z(Q′ ∩M).

Then we have that supx∈(Q′∩Mω)1 ‖δt(x)‖2 → 0, as t→ 0.

Proof. – It is easy to see that the map R 3 t→ ‖δt(x)‖2 ∈ [0,∞) is even on R, and
decreasing on [0,∞), for every x ∈ M̃ω. Thus, if the lemma is false, then there exists c > 0

such that supx∈(Q′∩Mω)1 ‖δt(x)‖2 > c, for every t ∈ R \ {0}.
For m > 1, put tm = 2−m. Let xm ∈ (Q′ ∩Mω)1 such that ξm = δtm(xm) satisfies

‖ξm‖2 > c.
Fix y ∈M and z ∈ (Q)1. Then we have that

‖yξm‖2 = ‖(1− EMω )(yθtm(xn))‖2 6 ‖yθtm(xm)‖2 6 ‖y‖2.

Also, since zxm = xmz, by using S. Popa’s spectral gap argument [50] we get that

‖zξm − ξmz‖2 = ‖(1− EM )(zθtm(xm)− θtm(xm)z)‖2 6 ‖zθtm(xm)− θtm(xm)z‖2
= ‖θ−tm(z)xm − xmθ−tm(z)‖2 6 2‖θ−tm(z)− z‖2 −→ 0.

By writing ξm = (ξm,n)n, where ξm,n ∈ M̃ 	M , we find a net ηk ∈ M̃ 	M such
that ‖ηk‖2 > c, lim supk ‖yηk‖2 6 ‖y‖2, for every y ∈M , and ‖zηk − ηkz‖2 → 0, for
every z ∈ Q.

Now, since M̃ = M ∗ (B⊗̄L(F2)), by Lemma 2.10 we have that L2(M̃)	 L2(M) ∼=
L2(M)⊗B K , for some B-M bimodule K . We may therefore apply Lemma 2.3 to conclude
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that Qp′ is amenable relative to B, for a non-zero projection p′ ∈ Z(Q′ ∩M), which gives a
contradiction.

Proof of Theorem 6.4. – Assuming that condition (3) is false, we prove that either (1) or
(2) holds.

Since Q′ ∩ M ⊂ Q′ ∩ Mω, Lemma 6.5 implies that supx∈(Q′∩M)1 ‖δt(x)‖2 → 0, as
t → 0. Together with inequality 6.3 this yields t > 0 such that ||θt(x) − x||2 6 1

2 , for all
x ∈ (Q′ ∩M)1.

Thus, τ(θt(u)u∗) > 1
2 , for every u ∈ U(Q′ ∩ M). Applying Theorem 2.11 gives

that either Q′ ∩ M ≺M B or N M (Q′ ∩ M)′′ ≺M Mi, for some i ∈ {1, 2}. Since
N M (Q) ⊂ N M (Q′ ∩M), this finishes the proof.

In the proof of Theorem 6.3 we will also use the following technical result:

L 6.6. – Let P̃ be the von Neumann subalgebra of M̃ω generated by M̃ and Bω.

Then we have

1. Mω
1 and Mω

2 are freely independent over Bω,
2. Mω ⊥ (P̃ 	 P ) and
3. (M̃ 	M)(Mω 	 P ) ⊥Mω(M̃ 	M).

Proof. – Let x1 ∈Mω
i1
	Bω, x2 ∈Mω

i2
	Bω, . . . , xm ∈Mω

im
	Bω, for some in-

dices i1, i2, . . . , im ∈ {1, 2} such that ik 6= ik+1, for all 1 6 k 6 m− 1. Then we can
represent xk = (xk,n)n, where xk,n ∈Mik 	B, for all n and every 1 6 k 6 m. Since
EBω (x1x2 · · ·xm) = limn→ω EB(x1,nx2,n · · ·xm,n) = 0, the first assertion follows.

Towards the second assertion, define P1 = {M1, B
ω}′′, P2 = {M2, B

ω}′′ and
P3 = {B⊗̄L(F2), Bω}′′. All of these algebras contain Bω and we have that P1 ⊂Mω

1 ,
P2 ⊂Mω

2 and P3 ⊂ (B⊗̄L(F2))ω. Now, the first assertion implies that Mω
1 , Mω

2 and
(B⊗̄L(F2))ω are freely independent over Bω. Since P = {P1, P2}′′ and P̃ = {P1, P2, P3}′′,
we deduce that P̃ = P ∗Bω P3.

This implies that P̃ 	 P is contained in the ‖.‖2-closure of the linear span of ele-
ments of the form x = v0w1v1 · · · vm−1wmvm, where v0, vm ∈ P3, v1, . . . , vm−1 ∈ P3 	Bω,
and w1, . . . , wm ∈ P 	Bω, for some m > 1. Since P 	Bω ⊂Mω 	Bω and
P3 	Bω ⊂ (B⊗̄L(F2))ω 	Bω, we can represent vi = (vi,n)n and wi = (wi,n)n, where
v0,n, vm,n ∈ B⊗̄L(F2), v1,n, . . . , vm−1,n ∈ (B⊗̄L(F2))	B, and w1,n, . . . , wm,n ∈M 	B,
for all n. It is now clear that x = (v0,nw1,nv1,n · · · vm−1,nwm,nvm,n)n belongs to M̃ω 	Mω.
This shows that P̃ 	 P ⊂ M̃ω 	Mω, thereby proving (2).

Finally, let z1, z2 ∈ M̃ 	 M , y1 ∈ Mω 	 P and y2 ∈ Mω such that ‖y1‖, ‖y2‖ 6 1.
Write y1 = (y1,n)n, y2 = (y2,n)n, where y1,n, y2,n ∈ (M)1. Our goal is to prove that
〈z1y1, y2z2〉 = 0 or, equivalently, that limn→ω〈z1y1,n, y2,nz2〉 = 0.

Since M̃ = M ∗B (B⊗̄L(F2)), by Lemma 2.10 we can find an M -B bimodule K such
that L2(M̃) 	 L2(M) = K⊗BL2(M). Viewing z1, z2 as vectors in L2(M̃) 	 L2(M) and
using approximations in ‖.‖2, we may assume that z1 = ξ1 ⊗B η1, z2 = ξ2 ⊗B η2, where
ξ1, ξ2 ∈ K and η1, η2 ∈ M . Moreover, we may take ξ1 to be right bounded, i.e., such that
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‖ξ1y‖2 6 C‖y‖2, for all y ∈M , for some constantC > 0. By using the definition of Connes’
tensor product we get that

|〈z1y1,n, y2,nz2〉| = |〈y∗2,nξ1 ⊗B η1y1,n, ξ2 ⊗B η2〉|
= |〈y∗2,nξ1EB(η1y1,nη

∗
2), ξ2〉| 6 C‖EB(η1y1,nη

∗
2)‖2‖ξ2‖2.

Since y1 ⊥ P and η∗1B
ωη2 ⊂ P , we get that y1 ⊥ η∗1Bωη2. Hence, limn→ω ‖EB(η1y1,nη

∗
2)‖2 =

‖EBω (η1y1η
∗
2)‖2 = 0, which proves the last assertion.

To prove Theorem 6.3 we adapt the proof of [27, Lemma 3.3] (see also the proof of [5,
Theorem 3.8]) to the case of AFP algebras. In the proof of Theorem 6.3 we apply Theorem 6.4
and [32, Theorems 1.1 and 3.1] to non-separable tracial von Neumann algebras. While these
results are only stated for separable algebras, their proofs can be easily modified to handle
non-separable algebras. We leave the details to the reader.

Proof of Theorem 6.3. – For simplicity, we assume that p = 1. Assuming that (2) and (3)
are false, we will deduce that (1) holds. The proof is divided between two claims, each proving
one assertion from (1).

C 1. – Q′ ∩Mω ⊂ P .

Proof of Claim 1. – Assume by contradiction that there exists x ∈ Q′ ∩ Mω such that
x 6∈ P and put y = x− EP (x) 6= 0. Fix z ∈ (Q)1 and t ∈ R.

Since EMω (θt(z)) = (EMω ◦ EM̃ )(θt(z)) = EM (θt(z)) and y ∈Mω we get that

‖δt(z)y − yδt(z)‖2 = ‖(1− EM )(θt(z))y − y(1− EM )(θt(z))‖2
= ‖(1− EMω )(θt(z)y − yθt(z))‖2 6 ‖θt(z)y − yθt(z)‖2.

(6.4)

Since zx = xz and z ∈M ⊂ P , we get that zy = yz. Thus, we derive that

(6.5) ‖θt(z)y − yθt(z)‖2 = ‖zθ−t(y)− θ−t(y)z‖2 6 2‖θ−t(y)− y‖2 = 2‖θt(y)− y‖2.

On the other hand, since x ∈ Mω, Lemma 6.6 (2) gives that EP̃ (x) = EP (x). Since θt
leaves P̃ globally invariant we conclude that θt(EP (x)) = θt(EP̃ (x)) = EP̃ (θt(x)). As a
consequence, we have

(6.6) ‖θt(y)− y‖2 = ‖(1− EP̃ )(θt(x)− x)‖2 6 ‖θt(x)− x‖2.

By combining 6.4, 6.5 and 6.6 we get that ‖δt(z)y − yδt(z)‖2 6 2‖θt(x)− x‖2.

Since δt(z) ∈ M̃ 	M and y ∈ Mω 	 P , Lemma 6.6 (3) implies that δt(z)y ⊥ yδt(z).
Therefore we derive that ‖δt(z)y‖2 6 2‖θt(x)− x‖2. Since

‖δt(z)y − δt(zy)‖2 6 ‖θt(z)y − θt(zy)‖2 6 ‖θt(y)− y‖2,

we altogether deduce that ‖δt(zy)‖2 6 3‖θt(x)− x‖2, for every z ∈ (Q)1 and t ∈ R.

By using this inequality together with 6.3 and 6.6 we derive that

‖θt(z)y − zy‖2 6 ‖θt(zy)− zy‖2 + ‖θt(y)− y‖2
6 2‖δ t

2
(zy)‖2 + ‖θt(y)− y‖2 6 6‖θ t

2
(x)− x‖2 + ‖θt(x)− x‖2

6 12‖δ t
4
(x)‖2 + 2‖δ t

2
(x)‖2, for all z ∈ (Q)1 and t ∈ R.

(6.7)
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Now, since (3) is assumed false, Lemma 6.5 implies that supx∈(Q′∩Mω)1 ‖δt(x)‖2 → 0, as t→ 0.

In combination with 6.7 it follows that we can find t > 0 such that ‖θt(z)y − zy‖2 6 ‖y‖22 ,

for all z ∈ (Q)1. Thus, if we let w = EM̃ (yy∗), then

< τ(θt(z)wz
∗) = < τ(θt(z)yy

∗z∗) >
‖y‖22

2
, for all z ∈ U(Q).

By using a standard averaging argument we can find 0 6= v ∈ M̃ such that θt(z)v = vz, for
all z ∈ Q. By [32, Theorem 3.1] we would conclude that Q ≺M Mi, for some i ∈ {1, 2}.

If we denote N = N M (Q)′′, then [32, Theorem 1.1] would imply that either N ≺M M1,
N ≺M M2 or Q ≺M B. Since the last condition implies that there is a non-zero projection
p′ ∈ Z(Q′∩M) such thatQp′ is amenable relative toB, we altogether get a contradiction.

To end the proof we are left with showing:

C 2. – Q′ ∩Mω ≺P Bω.

Proof of Claim 2. – Recall from the proof of Lemma 6.6 that P1 = {M1, B
ω}′′ and

P2 = {M,Bω}′′ are freely independent over Bω, and that P = P1 ∗Bω P2.

By applying Theorem 6.4 to the inclusion Q ⊂ P it follows that we are in one of the
following three cases: (a) Q′ ∩P ≺P Bω, (b) N P (Q)′′ ≺P Pi, for some i ∈ {1, 2}, or (c) Qz
is amenable relative to Bω inside P , for some non-zero projection z ∈ Z(Q′ ∩ P ).

In case (a), Claim 1 implies thatQ′∩Mω = Q′∩P ≺P Bω and thus (1) is satisfied. Let us
show that cases (b) and (c) contradict our assumption that conditions (2) and (3) are false.

Firstly, since N = N M (Q)′′ ⊂ N P (Q)′′, Pi ⊂ Mω
i and P ⊂ Mω, case (b) implies that

N ≺Mω Mω
i . By Remark 2.2 it follows that N p0 is amenable relative to Mω

i inside Mω, for
some non-zero projection p0 ∈ N ′ ∩Mω. Lemma 2.4 further implies that N p′ is amenable
relative toMi insideM , for some non-zero projection p′ ∈ N ′∩M . By Corollary 2.12 we get
that either (b1) N p′ is amenable relative toB insideM or (b2) N ≺M Mi. In the case (b1) we
get in particular that Qp′′ is amenable relative to B inside M , contradicting the assumption
that (3) is false. In turn, case (b2) contradicts the assumption that (2) does not hold.

Finally, in case (c), Lemma 2.4 implies that Qp′ is amenable relative to B, for some non-
zero projection p′ ∈ Z(Q′ ∩M). In other words, (3) holds, a contradiction.

7. Uniqueness of Cartan subalgebras for II1 factors
arising from actions of AFP groups

The main goal of this section is to prove Theorem 1.1 and derive several consequences.

7.1. Uniqueness of Cartan subalgebras

Towards proving Theorem 1.1 we first establish a general technical result.

T 7.1. – Let Γ1 and Γ2 be two countable groups with a common subgroup Λ such
that [Γ1:Λ] > 2 and [Γ2:Λ] > 3. Denote Γ = Γ1 ∗Λ Γ2 and suppose that there exist
g1, g2, . . . , gn ∈ Γ such that

⋂n
i=1 giΛg

−1
i is finite.
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Let Γ y (D, τ) be any trace preserving action of Γ on a tracial von Neumann algebra (D, τ).
Denote M = D o Γ and suppose that M is a factor.

If A is a regular amenable von Neumann subalgebra of M , then A ≺M D.

Before proceeding to the proof of Theorem 7.1, let us introduce some notations that will
essentially allow us to reduce to the case when

⋂n
i=1 giΛg

−1
i is trivial and not only finite.

Since
⋂n
i=1 giΛg

−1
i is finite, Σ =

⋂
g∈Γ gΛg−1 is a finite group and there exist h1, h2, . . . , hm ∈ Γ

such that Σ =
⋂m
j=1 hjΛh

−1
j . Since Σ < Λ is a normal subgroup of Γ, we can define the

following groups Γ′ = Γ/Σ, Γ′1 = Γ1/Σ, Γ′2 = Γ2/Σ and Λ′ = Λ/Σ. Note that Γ′ = Γ′1∗Λ′Γ′2
and let ρ : Γ → Γ′ be the quotient homomorphism. Note also that

⋂m
j=1 kjΛ

′k−1
j = {e},

where kj = ρ(hj).
Denote M = M⊗̄L(Γ′) and let ∆ : M → M be the comultiplication [53] defined by

∆(aug) = aug ⊗ uρ(g), for every a ∈ D and all g ∈ Γ.

We next record a property of ∆ that will be of later use.

L 7.2. – Let Q ⊂M be a von Neumann subalgebra and Γ0 < Γ be a subgroup.
If ∆(Q) ≺M M⊗̄L(ρ(Γ0)), then Q ≺M D o Γ0.

Proof of Lemma 7.2. – Assume by contradiction that Q ⊀M D o Γ0. Then we can find
a sequence of unitaries un ∈ Q such that ‖EDoΓ0(xuny)‖2 → 0, for all x, y ∈ M . We
claim that ‖EM⊗̄L(ρ(Γ0))(v∆(un)w)‖2 → 0, for all v, w ∈ M. This will provide the desired
contradiction.

To prove the claim, by Kaplansky’s density theorem, we may assume that v = 1 ⊗ uρ(h)

andw = 1⊗uρ(k), for some h, k ∈ Γ. For every n, write un =
∑
g∈Γ xn,gug, where xn,g ∈ D.

Then ∆(un) =
∑
g∈Γ xn,gug ⊗ uρ(g). Since ker(ρ) = Σ, it follows that

EM⊗̄L(ρ(Γ0))(v∆(un)w) =
∑
g∈Γ

xn,gug⊗EL(ρ(Γ0))(uρ(hgk)) =
∑

g∈h−1Γ0Σk−1

xn,gug⊗uρ(hgk).

Further, since Σ is finite we deduce that

‖EM⊗̄L(ρ(Γ0))(v∆(un)w)‖22 =
∑

g∈h−1Γ0Σk−1

‖xn,g‖22 6
∑
l∈Σ

‖EDoΓ0
(uhunukl)‖22.

Since ‖EDoΓ0(uhunukl)‖2 → 0, as n→∞, the lemma is proven.

Proof of Theorem 7.1. – Define M1 = M⊗̄L(Γ′1), M2 = M⊗̄L(Γ′2) andB = M⊗̄L(Λ′).
Then we have that M = M1 ∗B M2.

Define M̃ = M ∗B (B⊗̄L(F2)) and let {θt}t∈R ⊂ Aut( M̃) be the deformation de-
fined in Section 2.11. Also, let N be the von Neumann subalgebra of M̃ generated
by {ug Mu∗g|g ∈ F2}. Recall from Section 3 that M̃ = N o F2, where F2 = {ug}g∈F2

acts
on N by conjugation.

Let t ∈ (0, 1) and consider the amenable von Neumann subalgebra θt(∆(A)) ⊂ M̃.
By S. Popa and S. Vaes’ dichotomy (Theorem 2.8) we get that either θt(∆(A)) ≺ M̃ N or
N M̃(θt(∆(A)))′′ is amenable relative to N inside M̃.

Since A is regular in M , we have that θt(∆(M)) ⊂ N M̃(θt(∆(A))′′. Therefore, we are in
one of the following two cases:

C 1. – There exists t ∈ (0, 1) such that θt(∆(A)) ≺ M̃ N .
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C 2. – For every t ∈ (0, 1) we have that θt(∆(M)) is amenable relative toN inside M̃.

In Case 1, Theorem 3.2 gives that either ∆(A) ≺M B or N M(∆(A))′′ ≺M Mi, for some
i ∈ {1, 2}. Since A is regular in M , the latter condition implies that ∆(M) ≺M Mi.

By using Lemma 7.2 we derive that either A ≺M D o Λ or M ≺M D o Γi, for some
i ∈ {1, 2}. If A ≺M D o Λ, then as M is a factor, [24, Proposition 8] implies that
A ≺M D o (

⋂n
i=1 giΛg

−1
i ). Since

⋂n
i=1 giΛg

−1
i is finite, we conclude that A ≺M D, as

claimed.
Now, since [Γ1 : Λ] > 2 and [Γ2 : Λ] > 2, we can find g1 ∈ Γ1 \ Λ and g2 ∈ Γ2 \ Λ.

Let u = ug1g2 ∈ U(L(Γ)). Then we have that ‖EDoΓi(xu
ny)‖2 → 0, for every x, y ∈M and

i ∈ {1, 2}. Thus, L(Γ) ⊀M D o Γi and hence M ⊀M D o Γi. This shows that the second
alternative is impossible and finishes the proof of Case 1.

In Case 2, since [Γ′1 : Λ′] > 2, [Γ′2 : Λ′] > 3 and
⋂m
j=1 kjΛ

′k−1
j = {e}, Corollary 6.2

implies that L(Γ′)′ ∩ L(Γ′)ω = C1.
Note that ug ⊗ uρ(g) ∈ ∆(M), for every g ∈ Γ. Moreover, the von Neumann alge-

bra A0 generated by {uρ(g)}g∈Γ is equal to L(Γ′) and satisfies A′0 ∩ L(Γ′)ω = C1. Since
θt(∆(M)) is amenable relative toN , for any t ∈ (0, 1), by Theorem 5.2 we deduce that either
L(Γ′) ≺L(Γ′) L(Γ′i), for some i ∈ {1, 2}, or L(Γ′) is amenable relative L(Λ′) inside L(Γ′).

Since [Γ′1 : Λ′] > 2 and [Γ′2 : Λ′] > 2, we can choose g1 ∈ Γ′1 \ Λ′ and g2 ∈ Γ′2 \ Λ′.
Then u = ug1g2 ∈ L(Γ′) satisfies ‖EL(Γ′1)(xu

ny)‖2 → 0 and ‖EL(Γ′2)(xu
ny)‖2 → 0, for all

x, y ∈ L(Γ′), showing that the first alternative is impossible.
Finally, if L(Γ′) is amenable relative to L(Λ′) inside L(Γ′), then Λ′ is co-amenable in Γ′,

i.e., there exists a Γ′-invariant state Φ : `∞(Γ′/Λ′)→ C (see [2, Proposition 3.5]). Let us show
that is impossible as well.

Let g1 ∈ Γ′1\Λ′ and g2, g3 ∈ Γ′2\Λ′ such that g−1
3 g2 6∈ Λ′. LetS1 andS2 be the set of words

in Γ′1 \Λ′ and Γ′2 \Λ′ beginning in Γ′1 \Λ′ and in Γ′2 \Λ′, respectively. Then Γ′ = S1tS2tΛ′

and we have Λ′ ⊂ g1S1, g1S2 ⊂ S1, g2S1 ⊂ S2, g3S1 ⊂ S2.

Now, let q : Γ′ → Γ′/Λ′ be quotient map and define T1 = q(S1), T2 = q(S2). Then we
have Γ′/Λ′ = T1 t T2 t {eΛ′} and eΛ′ ∈ g1T1, g1T2 ⊂ T1, g2T1 ⊂ T2, g3T1 ⊂ T2. Moreover,
since g−1

3 g2T1 ⊂ T2, we get that g2T1 ∩ g3T1 = ∅. Hence, g2T1 t g3T1 ⊂ T2.
For a subset T ⊂ Γ′/Λ′, let m(T ) = Φ(1T ) ∈ [0, 1]. Then m is a finitely additive Γ′-in-

variant probability measure on Γ′/Λ′. The relations from the last paragraph therefore
imply that m(eΛ′) 6 m(T1),m(T2) 6 m(T1) and 2m(T1) 6 m(T2). This would imply that
m(eΛ′) = m(T1) = m(T2) = 0, contradicting the fact that m(eΛ′) +m(T1) +m(T2) =

m(Γ′/Λ′) = 1.

Proof of Theorem 1.1. – Assume that Γ = Γ1 × Γ2 × · · · × Γn, where Γi = Γi,1 ∗Λi
Γi,2 is

an amalgamated free product group satisfying the hypothesis of Theorem 1.1, for every
i ∈ {1, 2, . . . , n}. We denote by Gi < Γ the product of all Γj with j ∈ {1, 2, . . . , n} \ {i}.

Let Γ y (X,µ) be a free ergodic pmp action. Let A be a Cartan subalgebra of
M = L∞(X)o Γ. For a subset S ⊂ Γ, we denote by eS the orthogonal projection from
L2(M) onto the ‖.‖2 closed linear span of {L∞(X)ug|g ∈ S}.

For i ∈ {1, 2, . . . , n}, we decompose M = (L∞(X)oGi)oΓi. By applying Theorem 7.1
we deduce that A ≺M L∞(X)oGi. Since A ⊂M is maximal abelian, it follows that we can
find a non-zero projection p ∈ A and v ∈M such that Ap ⊂ v(L∞(X)oGi)v∗. By possibly
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shrinking p, we may assume that τ(p) = 1
m , for somem > 1. SinceA is a Cartan subalgebra

we can find unitaries u1, u2, . . . , um ∈ N M (A) such that
∑m
j=1 ujpu

∗
j = 1. Thus, we get that

A ⊂
∑m
j=1 uj(Ap)u

∗
j ⊂

∑m
j=1 ujv(L∞(X) o Gi)v

∗u∗j . By using ‖.‖2-approximations, we
conclude that for every ε > 0 we can find a finite set S ⊂ Γ such that ‖x− eSGiS(x)‖2 6 ε,
for all x ∈ (A)1.

Thus, we can find finite sets S1, S2, . . . , Sn ⊂ Γ such that

‖x− eSiGiSi
(x)‖2 6

1

n+ 1
, for all x ∈ (A)1 and every i ∈ {1, 2, . . . , n}.

Let S =
⋂n
i=1 SiGiSi. Then S is a finite subset of Γ and ‖x− eS(x)‖2 6 n

n+1 , for every
x∈(A)1. Thus, ‖eS(u)‖2 > 1

n+1 , for every u ∈ U(A). Since ‖eS(u)‖22 =
∑
g∈S ‖EL∞(X)(uu

∗
g)‖22,

Theorem 2.1 gives that A ≺M L∞(X). Since A and L∞(X) are Cartan subalgebras, [47,
Theorem A.1] implies that they are unitarily conjugate.

7.2. Applications to W∗-superrigidity

Next, we combine Theorem 1.1 with S. Popa’s cocycle superrigidity [51] to provide a new
class of W∗-superrigid actions. In particular, we will deduce Corollary 1.2.

A free ergodic pmp action Γ y (X,µ) is called W∗-superrgid if whenever L∞(X)o Γ ∼=
L∞(Y ) o Λ, for a free ergodic pmp action Λ y (Y, ν), the groups Γ and Λ are isomorphic
and their actions are conjugate. This means that we can find a group isomorphism δ : Γ→ Λ

and a measure space isomorphism θ : X → Y such that θ(g · x) = δ(g) · θ(x), for all g ∈ Γ

and µ-almost every x ∈ X.
Recall that any orthogonal representation π : Γ → O( H R) onto a real Hilbert space H R

gives rise to a pmp action Γ y (Xπ, µπ), called the Gaussian action associated to π (see for
instance [18, Section 2.g]).

T 7.3. – Let Γ = Γ1 ∗Λ Γ2 and Γ′ = Γ′1 ∗Λ′ Γ′2 be amalgamated free product
groups such that [Γ1:Λ] > 2, [Γ2:Λ] > 3, [Γ′1:Λ′] > 2 and [Γ′2:Λ′] > 3. Suppose that
there exist g1, g2, . . . , gn ∈ Γ and g′1, g

′
2, . . . , g

′
n ∈ Γ′ such that

⋂n
i=1 giΛg

−1
i = {e} and⋂n

i=1 g
′
iΛ
′g′i
−1

= {e}.
Let G = Γ× Γ′ and π : G→ O( H R) be an orthogonal representation such that

• the representation π|Γ has stable spectral gap, i.e., π|Γ ⊗ π̄|Γ has spectral gap, and
• the representation π|Γ′ is weakly mixing, i.e., π|Γ′ ⊗ π̄|Γ′ has no invariant vectors.

Then any free ergodic pmp actionGy (X,µ) which can be realized as a quotient of the Gaussian
action Gy (Xπ, µπ), is W∗-superrigid.

S. Popa and S. Vaes have very recently proven that the same holds when Γ and Γ′ are
icc weakly amenable groups that admit a proper 1-cocycle into a representation with stable
spectral gap [55, Theorem 12.2].

Proof. – Denote M = L∞(X)oG and let Λ y (Y, ν) be a free ergodic pmp action such
that we have an isomorphism θ : L∞(Y )oΛ→M . Then θ(L∞(Y )) is a Cartan subalgebra
ofM . Thus, by Theorem 1.1 we can find a unitary u ∈M such that θ(L∞(Y )) = uL∞(X)u∗.

This implies that the actions Gy (X,µ) and Λ y (Y, ν) are orbit equivalent. Therefore,
in order to show that the actions are actually conjugate, it suffices to argue that Gy (X,µ)

is orbit equivalent superrigid.
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Let us show that we can apply [51, Theorem 1.3] to Gy X. Firstly, by Corollary 6.2,
Γ and Γ′ have no finite normal subgroup. Thus,G has no finite normal subgroups. Secondly,
by [18, Theorem 1.2] the action Gy X is s-malleable.

Thirdly, consider the unitary representation ρ : Gy L2(Xπ)	 C1. Then ρ is a sub-
representation of π ⊗ σ, where σ =

⊕
n>0 π⊗n . Since π|Γ has stable spectral gap and π|Γ′

is weakly mixing, the same properties hold for ρ|Γ and ρ|Γ′ . Thus, the action Γ y Xπ has
stable spectral gap and the action Γ′ y Xπ is weakly mixing.

Thus, we can apply [51, Theorem 1.3] to deduce that the action Gy X is OE superrigid.

Proof of Corollary 1.2. – Note that the Bernoulli action Gy [0, 1]G can be identified
with the Gaussian action associated to the left regular representation λ : G→ U(`2(G)).
Since Γ and Γ′ are non-amenable, the corollary follows from Theorem 7.3.

R 7.4. – In [35, Theorem 1.1], Y. Kida proved the following: let Mod∗(S) be the
extended mapping class group of a surface of genus g with p boundary components. Suppose
that 3g + p > 5 and (g, p) 6= (1, 2), (2, 0). Let ∆ < Mod∗(S) be a finite index subgroup and
A < ∆ be an infinite, almost malnormal subgroup (i.e., hAh−1∩A is finite, for all h ∈ ∆\A)
and denote Γ = ∆ ∗A ∆. Then any free ergodic pmp action Γ y (X,µ) whose restriction
to A is aperiodic is OE-superrigid.

Since A < Γ is weakly malnormal, Theorem 1.1 implies that all such actions of Γ are
moreover W∗-superrigid.

7.3. An application to W∗-rigidity

In combination with the orbit equivalence rigidity results of N. Monod and Y. Shalom,
Theorem 1.1 implies the following.

T 7.5. – Let Γ1,Γ2,Γ3 and Γ4 be any non-trivial torsion-free countable groups and
define Γ = (Γ1∗Γ2)×(Γ3∗Γ4). Let Γ y (X,µ) be a free ergodic pmp action whose restrictions
to Γ1 ∗ Γ2, Γ3 ∗ Γ4 and any finite index subgroup Γ′ < Γ are also ergodic.

Let Λ y (Y, ν) be an arbitrary free mildly mixing pmp action.

IfL∞(X)oΓ ∼= L∞(Y )oΛ, then Γ ∼= Λ and the actions Γ y X and Λ y Y are conjugate.

Following [36, Definition 1.8], a measure preserving action Λ y (Y, ν) is called mildly
mixing if for any measurable set A ⊂ Y and any sequence λn ∈ Λ with λn →∞, one has
ν(λnA ∆ A)→ 0 if and only if ν(A) ∈ {0, 1}.

Proof of Theorem 7.5. – By [36, Theorem 1.3] the groups Γ1 ∗ Γ2 and Γ3 ∗ Γ4 belong to
the class C reg. Applying [36, Theorem 1.10] then gives the conclusion.
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7.4. W∗ Bass-Serre rigidity

We next combine Theorem 1.1 with results of A. Alvarez and D. Gaboriau [1] to generalize
part of [32, Theorem 7.7] and [8, Theorem 6.6].

T 7.6. – Let m,n > 2 be integers and Γ1,Γ2, . . . ,Γm,Λ1,Λ2, . . . ,Λn be non-
amenable groups with vanishing first `2-Betti numbers. Define Γ = Γ1 ∗ Γ2 ∗ · · · ∗ Γm and
Λ = Λ1 ∗ Λ2 ∗ · · · ∗ Λn. Let Γ y (X,µ) and Λ y (Y, ν) be free pmp actions such that the
restrictions Γi y X and Λj y Y are ergodic, for every i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.

Let θ : L∞(X)o Γ→ (L∞(Y )o Λ)t be an isomorphism, for some t > 0.

Then t = 1, m = n and there exists a permutation α of {1, 2, . . . ,m} such that the actions
Γi y X and Λα(i) y Y are orbit equivalent, for every i ∈ {1, 2, . . . ,m}.

Moreover, for every i ∈ {1, 2, . . . ,m}, there exists a unitary element ui ∈ L∞(Y )oΛ such
that θ(L∞(X)) = uiL

∞(Y )u∗i and θ(L∞(X)o Γi) = ui(L
∞(Y )o Λα(i))u

∗
i .

Proof. – By Theorem 1.1, the II1 factor L∞(X)o Γ has a unique Cartan subalge-
bra, up to unitary conjugacy. Thus, we can find a unitary u ∈ (L∞(Y )o Λ)t such that
θ(L∞(X)) = u(L∞(Y ))tu∗. Denoting by R(Γ y X) the equivalence relation induced
by the action Γ y X, it follows that R(Γ y X) ∼= R(Λ y Y )t. By using [20] to cal-
culate the first `2-Betti number of both sides of this equation (see the end of the proof
of [32, Theorem 7.7]) we deduce that t = 1. Now, by [1, Corollary 4.20], non-amenable
groups with vanishing first `2-Betti number are measurably freely indecomposable. Since
R(Γ y X) = ∗mi=1 R(Γi y X) and R(Λ y Y ) = ∗nj=1 R(Λj y Y ), by applying [1, Theo-
rem 5.1], the conclusion follows.

7.5. II1 factors with trivial fundamental group

Theorem 1.6 also leads to a new class of groups whose actions give rise to II1 factors with
trivial fundamental groups.

T 7.7. – Let Γ1, Γ2 be two finitely generated, countable groups with |Γ1| > 2 and
|Γ2| > 3. Denote Γ = Γ1 ∗ Γ2 and let Γ y (X,µ) be any free ergodic pmp action.

Then the II1 factor M = L∞(X)o Γ has trivial fundamental group, F (M) = {1}.

Proof. – By Theorem 1.6, L∞(X) o Γ has a unique Cartan subalgebra, up to unitary
conjugacy. Therefore, we have that F (M) = F ( R(Γ y X)). Since β(2)

1 (Γ) ∈ (0,∞), a
well-known result of D. Gaboriau [20] implies that F ( R(Γ y X)) = {1}.

R 7.8. – Theorem 7.7 generalizes [54, Theorem 1.2]. Thus, it was shown in [54]
that the conclusion of Theorem 7.7 holds, for instance, if Γ1 is an icc property (T) group and
Γ2 is an infinite group. Note that Theorem 7.7 fails if the groups involved are not finitely
generated. Indeed, by [54, Theorem 1.1] if Λ1 is a non-trivial group and Λ2 is an infinite
amenable group, then Γ = Λ∗∞1 ∗ Λ2 does not satisfy the conclusion of Theorem 7.7. In
fact, as shown in [54], there are free ergodic pmp actions Γ y X such that F (L∞(X) o Γ)

is uncountable.
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7.6. Absence of Cartan subalgebras

Finally, Theorem 7.1 allows us to provide a new class of II1 factors without Cartan
subalgebras:

C 7.9. – Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product group such
that [Γ1:Λ] > 2 and [Γ2:Λ] > 3. Assume that there exist g1, g2, . . . , gn ∈ Γ such that⋂n
i=1 giΛg

−1
i = {e}.

Then N⊗̄L(Γ) does not have a Cartan subalgebra, for any II1 factor N .

Proof of Corollary 7.9. – Let N be a II1 factor and denote M = N⊗̄L(Γ). Assume by
contradiction that M has a Cartan subalgebra A. Since M = N o Γ, where Γ acts trivially
on N , Theorem 7.1 implies A ≺M N . By taking relative commutants (see [61, Lemma 3.5])
we get that L(Γ) ≺M A′ ∩M = A. Since A is abelian, while Γ is non-amenable, we derive a
contradiction.

8. Cartan subalgebras of AFP algebras and classification of II1 factors
arising from free product equivalence relations

In this section we prove Theorem 1.3 and Corollary 1.4.

8.1. Proof of Theorem 1.3

Let A be a Cartan subalgebra of M = M1 ∗B M2. Recall that B is amenable, pM1p 6=
pBp 6= pM2p, for any non-zero projection p ∈ B, and that either

1. M1 and M2 have no amenable direct summands, or
2. M does not have property Γ.

We claim thatM ⊀M Mi, for any i ∈ {1, 2}. Assume by contradiction thatM ≺M Mi, for
some i ∈ {1, 2}. By Theorem 2.1 we can find projections p ∈M, q ∈Mi, a non-zero partial
isometry v ∈ qMp such that v∗v = p, and a ∗-homomorphism φ : pMp → qMiq such that
φ(x)v = vx, for all x ∈ pMp. Since M is a non-amenable factor and B is amenable, we have
that M ⊀M B. Thus, by [61, Remark 3.8] we can moreover assume that φ(pMp) ⊀Mi

B.
Then [32, Theorem 1.1] implies that φ(pMp)′ ∩ qMq ⊂ qMiq. In particular, q0 := vv∗ ∈ qMiq.

From this we get that q0Mq0 = q0Miq0. Let j ∈ {1, 2}\{i} andx ∈Mj	B. Then the orthog-
onal projection of q0xq0 onto (L2(Mi)	L2(B))⊗B (L2(Mj)	L2(B))⊗B (L2(Mi)	L2(B))

is equal to (q0−EB(q0))x(q0−EB(q0)). Since q0xq0 ∈Mi, we deduce that q0−EB(q0) = 0.
Thus, q0 ∈ B and q0Mjq0 ⊂ q0Miq0 ∩ q0Mjq0 = q0Bq0. This contradicts our assumption
that q0Mjq0 6= q0Bq0.

Next, consider M̃ = M ∗B (B⊗̄L(F2)) and the free malleable deformation {θt}t∈R⊂Aut(M̃).
Let N = {ugMu∗g|g ∈ F2}′′. Since M̃ = N o F2, by applying Theorem 2.8 we have two
cases:

Case a. θt(A) ≺M̃ N , for some t ∈ (0, 1).
Case b. θt(M) is amenable relative to N inside M̃ , for any t ∈ (0, 1).
In Case a, Theorem 3.2 gives that either A ≺M B or M ≺M Mi, for some i ∈ {1, 2}.

Since the latter is impossible by the above, the conclusion holds in this case.
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To finish the proof it is enough to argue that Case b contradicts each of the above assump-
tions (1) and (2). Indeed, by applying Theorem 4.1 we get thatMipi is amenable relative toB,
for some non-zero projection pi ∈ Z(Mi) and some i ∈ {1, 2}. Since B is amenable, this
would imply that either M1 or M2 has an amenable direct summand, contradicting assump-
tion (1).

Also, by applying Theorem 5.1 we would get that either M has property Γ, M ≺M Mi,
for some i ∈ {1, 2}, or M is amenable relative to B (hence M is amenable and therefore
isomorphic to the hyperfinite II1 factor). Since the hyperfinite II1 factor has property Γ, this
contradicts assumption (2).

R 8.1. – Theorem 1.3 requires that M = M1 ∗B M2 is a factor. Note that when
B is a type I von Neumann algebra, [25, Theorem 5.8] and [60, Theorem 4.3] provide general
conditions which guarantee that M is a factor.

8.2. Proof of Corollary 1.4

DenoteM = L( R),M1 = L( R1),M2 = L( R2) andB = L∞(X). ThenM = M1∗BM2.
Since the restrictions of R1 and R2 to any set of positive measure have infinite orbits, we get
that pM1p 6= pBp 6= pM2p, for any non-zero projection p ∈ B.

Now, if the restrictions of R1 and R2 to any set of positive measure are non-hyperfinite,
then M1 and M2 have no amenable direct summand [13].

Next, let us show that if R is strongly ergodic, thenM does not have property Γ. Since the
restrictions of R1 and R2 to any set of positive measure have infinite orbits, [31, Lemma 2.6]
provides θ1 ∈ [ R1] and θ2, θ3 ∈ [ R2] such that θ1(x) 6= x, θ2(x) 6= x, θ3(x) 6= x and
θ2(x) 6= θ3(x), for µ-almost every x ∈ X. Thus the unitaries u = uθ1 ∈ M1, v = uθ2 ∈ M2

and w = uθ3 ∈ M2 satisfy EB(u) = EB(v) = EB(w) = EB(w∗v) = 0. By Lemma 6.1 we
get that M ′ ∩Mω ⊂ Bω.

Since R is strongly ergodic, we have that M ′ ∩ Bω = C, which shows that M does not
have property Γ.

Altogether by applying Theorem 1.3 we deduce that if A is a Cartan subalgebra of M ,
then A ≺M B. Hence, by [47, Theorem A.1] it follows that A and B are unitarily conjugate.

Finally, let S be a countable measure preserving equivalence relation on a probability
space (Z, ν) and θ : L( S)→M be an isomorphism. Then θ(L∞(Z)) is a Cartan subalgebra
of M and so it must be conjugate to B. This shows that the inclusions L∞(X) ⊂ L( R) and
L∞(Z) ⊂ L( S) are isomorphic, hence R ∼= S. �

Note that, as one of the referees pointed out, one can alternatively use [60, Theorem 4.8]
to deduce that M = L( R) does not have property Γ.

R 8.2. – This proof moreover shows that if v ∈ H2( R,T) is any 2-cocycle, then
L∞(X) is the unique Cartan subalgebra of the II1 factor L( R, v), up to unitary conjugacy.
Thus, if L( R, w) ∼= L( S, v), for any ergodic countable measure preserving equivalence rela-
tion S on a standard probability space (Y, ν) and any 2-cocycle w ∈ H2( S,T), then R ∼= S
and the cocycles v and w are cohomologous. More precisely, there exists an isomorphism of
probability spaces θ : X → Y such that (θ × θ)( R) = S and [v ◦ (θ × θ × θ)] = [w] in
H2( R,T) (see [15]).
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9. Normalizers of amenable subalgebras of AFP algebras

In the first part of this section we prove Theorem 1.6 and Corollary 1.7, and then deduce
Corollary 1.5.

9.1. Proof of Theorem 1.6

For simplicity of notation, we assume that p = 1, and leave the details of the general
case to the reader. LetA ⊂M = M1 ∗B M2 be a von Neumann subalgebra that is amenable
relative to B. Suppose that P = N M (A)′′ satisfies P ′ ∩Mω = C1.

Let M̃ = M ∗B (B⊗̄L(F2)) and {θt}t∈R ⊂ Aut(M̃) the associated free malleable defor-
mation. Let N = {ugMu∗g|g ∈ F2}′′ and recall that M̃ = N o F2. Since A is amenable rela-
tive toB and θt(B) = B ⊂ N , we deduce that θt(A) is amenable relative toN , for any t ∈ R.

By Theorem 2.8 either there exists t ∈ (0, 1) such that θt(A) ≺M̃ N or else θt(P ) is
amenable relative to N inside M̃ , for every t ∈ (0, 1).

In the first case, Theorem 3.2 gives that eitherA ≺M B or P ≺M Mi, for some i ∈ {1, 2}.
In the second case, Theorem 5.1 implies that either P ≺M Mi, for some i ∈ {1, 2}, or P is
amenable relative to B inside M . Altogether, the conclusion follows. �

9.2. Proof of Corollary 1.7

We establish the following more precise version of Corollary 1.7. If P ⊂ pMp andQ ⊂M
are von Neumann subalgebras then we write P ≺sM Q if Pp′ ≺M Q, for any non-zero
projection p′ ∈ P ′ ∩ pMp.

C 9.1. – Let (M1, τ1), (M2, τ2) be two tracial von Neumann algebras. Let
M = M1 ∗M2 and A ⊂M be a diffuse amenable von Neumann subalgebra. Denote P = N M (A)′′.

Then we can find projections p1, p2, p3 ∈ Z(P ) satisfying p1 + p2 + p3 = 1 and

1. Pp1 ≺sM M1,
2. Pp2 ≺sM M2, and
3. Pp3 is amenable.

Moreover, ifM1 andM2 are factors, then we can find unitary elements u1, u2 ∈M such that
u1Pp1u

∗
1 ⊂M1 and u2Pp2u

∗
2 ⊂M2.

Proof. – If a non-zero projection p ∈ Z(P ) = P ′ ∩M satisfies Pp ≺M Mi, for some
i ∈ {1, 2}, then there exists a non-zero projection p′ ∈ Z(P )p such that Pp′ ≺sM Mi. Thus,
in order to get the first part of the conclusion, it suffices to argue that if p ∈ Z(P ) is a
non-zero projection such that Pp has no amenable direct summand, then either Pp ≺M M1

or Pp ≺M M2.

By Theorem 2.7 we can find projections e, f ∈ Z((Pp)′ ∩ pMp) ∩ Z((Pp)′ ∩ (pMp)ω)

such that

• e+ f = p.
• ((Pp)′ ∩ (pMp)ω)e is completely atomic and ((Pp)′ ∩ (pMp)ω)e = ((Pp)′ ∩ (pMp))e.
• ((Pp)′ ∩ (pMp)ω)f is diffuse.
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Since p 6= 0, we have that either e 6= 0 or f 6= 0.

In the first case, let e0 ∈ ((Pp)′ ∩ (pMp)ω)e be a minimal non-zero projection. Then we
have that e0 ∈ p(P ′ ∩Mω)p ∩ p(P ′ ∩M)p and e0(P ′ ∩Mω)e0 = Ce0. Therefore, Pe0 is a
von Neumann subalgebra of e0Me0 such that (Pe0)′ ∩ (e0Me0)ω = Ce0.

Note that Pe0 ⊂ N e0Me0(Ae0)′′. Also, we have that A and hence Ae0 is diffuse. By
applying Theorem 1.6 (in the case B = C) we deduce that either Pe0 ≺M Mi, for some
i ∈ {1, 2}, or Pe0 is amenable. Since e0 6 p, Pe0 cannot be amenable. Thus, we must have
that Pe0 ≺M Mi and hence that Pp ≺M Mi, for some i ∈ {1, 2}.

In the second case, we have that f ∈ p(P ′ ∩Mω)p∩ p(P ′ ∩M)p and that f(P ′ ∩Mω)f is
diffuse. Thus, Pf is a von Neumann subalgebra of fMf such that (Pf)′∩(fMf)ω is diffuse.

By applying Theorem 6.3 (with B = C) we deduce that either Pf ≺M Mi, for some i ∈ {1, 2},
or Pf0 is amenable, for some non-zero projection f0 ∈ Z((Pf)′ ∩ fMf). Since f0 6 p, the
latter is impossible. Thus we conclude that Pp ≺M Mi, for some i ∈ {1, 2}, in this case as
well.

The moreover part now follows by repeating the proof of [32, Theorem 5.1 (2)].

9.3. Proof of Corollary 1.5

Assume by contradiction that M = M1 ∗M2 has a Cartan subalgebra A. Since
M1 6= C 6= M2 and dim(M1) + dim(M2) > 5, by [59, Theorem 4.1] there exists a non-
zero central projection z ∈ M such that Mz is a II1 factor without property Γ, while
M(1− z) is completely atomic. In particular, M is not amenable.

To derive a contradiction we treat separately two cases

Case 1. M1 and M2 are completely atomic.

Case 2. Either M1 or M2 has a diffuse direct summand.

In the first case, since N M (A)′′ = M , Corollary 9.1 yields projections p1, p2, p3 ∈ Z(M)

such that p1 + p2 + p3 = 1, Mp1 ≺sM M1, Mp2 ≺sM M2 and Mp3 is amenable. Since
M1,M2 are completely atomic, it follows thatMp1,Mp2 are completely atomic. Altogether,
we derive that M is amenable, a contradiction.

In the second case, we may assume for instance that M1 has a diffuse direct sum-
mand. Hence, there exists a non-zero projection p ∈ Z(M1) such that M1p is diffuse.
Since M(1− z) is completely atomic, we must have that p 6 z.

DefineN = (Cp+M1(1−p))∨M2. Then by [59, Lemma 2.2] we have thatM1p and pNp
are free and together generate pMp, i.e., pMp = M1p ∗ pNp. We also have that pNp 6= Cp.
Indeed, since M2 6= C, there exists a projection q ∈ M2 with q 6= 0, 1. Then pqp ∈ pNp and
pqp = τ(q)p+ p(q − τ(q))p. This clearly implies that pqp /∈ Cp.

Now, note that Az is a Cartan subalgebra of Mz. Since Mz is a factor and p ∈Mz, it
follows that pMp also has a Cartan subalgebra. SinceMz does not have property Γ, it follows
that pMp does not have property Γ as well. On the other hand, since pMp = M1p ∗ pNp
and M1p 6= Cp 6= pNp, by applying Theorem 1.3 (2) in the case B = Cp, we conclude that
pMp does not have a Cartan subalgebra. This leads to the desired contradiction. �
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9.4. Strongly solid von Neumann algebras

Our final aim is to prove Theorem 1.8. We begin by introducing some terminology moti-
vated by the proof of [48, Theorem 3.1].

D 9.2 ([48]). – Let (M, τ) be a tracial von Neumann algebra and B ⊂M
be a von Neumann subalgebra. We say that the inclusion B ⊂M is mixing if for every
x, y ∈M 	B and any sequence bn ∈ (B)1 such that bn → 0 weakly we have that
‖EB(xbny)‖2 → 0.

This notion has been considered in [33] and [7], where several examples of mixing inclu-
sions of von Neuman algebras were exhibited.

R 9.3. – Let B ⊂M be tracial von Neumann algebras.

1. It is easy to see that the inclusion B ⊂ M is mixing if and only if the B-B bimodule
L2(M)	 L2(B) is mixing in the sense of [44, Definition 2.3].

2. In particular, the inclusion B ⊂M is mixing whenever the B-B bimodule
L2(M)	 L2(B) is isomorphic to a sub-bimodule of

⊕∞
i=1(L2(B) ⊗ L2(B)). This

is the case, for instance, if we can decompose M = B ∗ C, for some von Neumann
subalgebra C ⊂M (see the proof of [50, Lemma 2.2]).

3. Let Λ < Γ be an inclusion of countable groups. Then the inclusion of group von
Neumann algebras L(Λ) ⊂ L(Γ) is mixing if and only if gΛg−1 ∩ Λ is finite, for every
g ∈ Γ \ Λ (see [33, Theorem 3.5] and the proof of Corollary 9.8).

4. Let (D, τ) be a tracial von Neumann algebra and Γ y D be a mixing trace preserving
action. Then the inclusion L(Γ) ⊂ DoΓ is mixing (see the proof of [48, Lemma 3.4]).

In order to prove Theorem 1.8 we need two technical lemmas.

L 9.4 ([48]). – Let (M, τ) be a tracial von Neumann algebra and B ⊂ M be a von
Neumann subalgebra. Assume that the inclusion B ⊂M is mixing. Let A ⊂ pMp be a diffuse
von Neumann subalgebra, for some projection p ∈ M , and denote P = N pMp(A)′′. Then we
have

1. If A ⊂ B, then P ⊂ B.
2. If A ≺M B, then P ≺M B.

Proof. – For the reader’s convenience let us briefly indicate how the lemma follows
from [48].

Recall that the quasi-normalizer of a von Neumann subalgebra Q ⊂M , denoted q N M (Q),
consists of those elements x ∈M for which we can find x1, . . . , xn ∈M such that
xQ ⊂

∑n
i=1Qxi and Qx ⊂

∑n
i=1 xiQ (see [47, Section 1.4.2]). Note that N M (Q) ⊂ q N M (Q).

Let Q ⊂ rBr be a diffuse von Neumann subalgebra, for some projection r ∈ B. Since
the inclusion B ⊂ M is mixing, the proof of [48, Theorem 3.1] shows that the quasi-
normalizer of Q in rMr is contained in rBr (see also the proof of [32, Theorem 1.1]). This
fact implies (1).

To prove (2), assume that A ≺M B. Then we can find projections q ∈ A, r ∈ B, a
non-zero partial isometry v ∈ rMq and a ∗-homomorphism φ : qAq → rBr such that
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φ(x)v = vx, for all x ∈ qAq. Since φ(qAq) ⊂ rBr is diffuse, the previous paragraph gives
that q N rMr(φ(qAq)) ⊂ rBr.

Next, let u ∈ N pMp(A). Following the proof of [48, Lemma 3.5], let z ∈ A be a central
projection such that z =

∑m
j=1 vjv

∗
j , for some partial isometries {vj}mj=1 in pMp satisfying

v∗j vj 6 q. We claim that qzuqz ∈ qMq belongs to the quasi-normalizer of qAq. Indeed, we
have

qzuqz(qAq) ⊂ qzuA = qzAu = qAzu ⊂
m∑
j=1

(qAvj)v
∗
ju ⊂

m∑
j=1

(qAq)v∗ju

and similarly (qAq)qzuqz ⊂
∑m
j=1 uvj(qAq).

Now, it is clear that if x ∈ q N qMq(qAq), then vxv∗ ∈ q N rMr(φ(qAq)). By combining
the last two paragraphs we derive that vqzuqzv∗ ∈ rBr. Since the central projections z
of the desired form approximate arbitrarily well the central support of q, we deduce that
vquqv∗ ∈ rBr. Thus, vuv∗ ∈ rBr, for all u ∈ N pMp(A). Hence vPv∗ ⊂ rBr and so we
conclude that P ≺M B.

L 9.5. – Let (M, τ) be a tracial von Neumann algebra andB ⊂M be a von Neumann
subalgebra. Assume that the inclusion B ⊂M is mixing.

Let P ⊂ pMp be a separable von Neumann subalgebra, for some projection p ∈ M , and
ω be a free ultrafilter on N. Assume that P ′ ∩ (pMp)ω is diffuse and P ′ ∩ (pMp)ω ≺Mω Bω.

Then P ≺M B.

Proof. – We first prove the conclusion under the additional assumption that
P ′ ∩ pMp = Cp. We assume for simplicity that p = 1, the general case being treated simi-
larly. Denote Pω = P ′ ∩Mω and let {yn}n>1 be a ‖.‖2 dense sequence in (P )1.

Since Pω ≺Mω Bω, we can find a1, a2, . . . , an, b1, b2, . . . , bn ∈Mω and δ > 0 such that

(9.1)
n∑
i=1

‖EBω (aiubi)‖22 > δ, for all u ∈ U(Pω).

For every i ∈ {1, 2, . . . , n}, write ai = (ai,k)k and bi = (bi,k)k, for some ai,k, bi,k ∈M .

C 1. – There exists k ∈ N such that

(9.2)
n∑
i=1

‖EBω (ai,kubi,k)‖22 > δ, for all u ∈ U(Pω).

Proof of Claim 1. – Suppose that the claim is false and fix k ∈ N. Then there is a unitary
uk ∈ Pω such that

∑n
i=1 ‖EBω (ai,kukbi,k)‖22 < δ. Write uk = (uk,l)l, where uk,l ∈ U(M).

Then the last inequality rewrites as liml→ω
∑n
i=1 ‖EB(ai,kuk,lbi,k)‖22 < δ. Also, we have that

liml→ω ‖[uk,l, yj ]‖2 = ‖[uk, yj ]‖2 = 0, for all j > 1. It altogether follows that we can find
l ∈ N such that Uk := uk,l satisfies

∑n
i=1 ‖EB(ai,kUkbi,k)‖22 < δ and

∑k
j=1 ‖[Uk, yj ]‖2 6

1
k .

It is then clear that the unitary U = (Uk)k belongs to Pω and satisfies∑n
i=1 ‖EBω (aiUbi)‖22 6 δ. This contradicts inequality 9.1.
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We next use an idea of S. Vaes (see the proof of [29, Theorem 3.1]).

Denote by K the ‖.‖2 closure of the linear span of the set {axb|a, b ∈M,x ∈ Bω 	B}.
Then K is a Hilbert subspace of L2(Mω) that is an M -M bimodule. Denote by e the
orthogonal projection from L2(Mω) onto K .

SincePω is diffuse we can find a unitary u ∈ Pω such that τ(u) = 0. SinceEM (u) ∈ P ′∩M
and P ′ ∩M = C1, it follows that EM (u) = τ(EM (u))1 = 0.

Let ξ = e(u).

We claim that ξ 6= 0. Let k ∈ N as in Claim 1 and η =
∑n
i=1 a

∗
i,kEBω (ai,kubi,k)b∗i,k. Note

that EB(EBω (ai,kubi,k)) = EB(ai,kubi,k) = EB(EM (ai,kubi,k)) = EB(ai,kEM (u)bi,k) = 0.
Thus EBω (ai,kubi,k) ∈ Bω 	 B, for all i ∈ {1, 2, . . . , n}, hence η ∈ K . On the other hand,
inequality 9.2 rewrites as 〈u, η〉 > δ. Combining the last two facts gives that ξ 6= 0.

Since K is an M -M bimodule and u commutes with P it follows that yξ = ξy, for all
y ∈ P . Thus 〈yξy∗, ξ〉 = ‖ξ‖22 > 0, for all y ∈ U(P ). To finish the proof we use a second
claim.

C 2. – Let vn, wn ∈ (M)1 be two sequences such that ‖EB(a∗2vna1)‖2 → 0, for all
a1, a2 ∈M . Then for all ξ1, ξ2 ∈ K we have that 〈vnξ1wn, ξ2〉 → 0, as n→∞.

Proof of Claim 2. – It suffices to prove the conclusion for ξ1 and ξ2 of the form
ξ1 = a1x1b1 and ξ2 = a2x2b2, for some a1, a2, b1, b2 ∈ M and x1, x2 ∈ (Bω 	 B)1. In
this case, we have

|〈vnξ1wn, ξ2〉| = |τ(x∗2a
∗
2vna1x1b1wnb

∗
2)| 6 ‖EBω (a∗2vna1x1b1wnb

∗
2)‖2.

Since the inclusion B ⊂ M is mixing, we have EBω (cxd) = 0, for all c, d ∈ M 	 B and
x ∈ Bω 	 B. Thus EBω (a∗2vna1x1b1wnb

∗
2) = EB(a∗2vna1)x1EB(b1wnb

∗
2). In combination

with the last inequality this implies that |〈vnξ1wn, ξ2〉 6 ‖EB(a∗2vna1)‖2 → 0. �

Now, if the conclusion P ≺M B is false, then we can find a sequence of unitary elements
yn ∈ P such that ‖EB(a∗2yna1)‖2 → 0, for all a1, a2 ∈ M . Claim 2 then implies that
〈ynξy∗n, ξ〉 → 0, contradicting the fact that 〈ynξy∗n, ξ〉 = ‖ξ‖22 > 0, for all n. This finishes
the proof of Lemma 9.5 under the additional assumption that P ′ ∩ pMp = Cp.

In general, assume again for simplicity that p = 1. Then we can find projections
{pn}n>0 ∈ P ′ ∩M such that p0 ∈ Z(P ′ ∩M) and (P ′ ∩M)p0 is diffuse, pn ∈ P ′ ∩M is a
minimal projection, for all n > 1, and

∑
n>0 pn = 1. Since Pω ≺Mω Bω we can find n such

that pn 6= 0 and pnPωpn ≺Mω Bω. To derive the conclusion, we treat separately two cases.

Firstly, assume that n = 0. Since ((Pp0)′ ∩ p0Mp0)ω ⊂ (Pp0)′ ∩ (p0Mp0)ω = p0Pωp0

and p0Pωp0 ≺Mω Bω, it easily follows that (Pp0)′ ∩ p0Mp0 ≺M B. Since (Pp0)′∩p0Mp0 =

(P ′ ∩M)p0 is diffuse, Lemma 9.4 readily gives that Pp0 ≺M B and hence P ≺M B.

Secondly, suppose that n > 1. Since pn ∈ P ′ ∩ M is a minimal projection we get that
(Ppn)′ ∩ pnMpn = Cpn. Also, we have that (Ppn)′ ∩ (pnMpn)ω = pnPωpn is diffuse
and satisfies (Ppn)′ ∩ (pnMpn)ω ≺Mω Bω. By applying the first part of the proof to the
subalgebra Ppn ⊂ pnMpn we deduce that Ppn ≺M B and hence that P ≺M B.
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Proof of Theorem 1.8. – Since the inclusions B ⊂ M1, B ⊂ M2 are mixing, it follows
easily that the inclusion B ⊂ M is mixing. We claim that the inclusion Mi ⊂ M is also
mixing, for i ∈ {1, 2}.

To this end, let j ∈ {1, 2} with j 6= i. Let bn ∈ (Mi)1 be a sequence such that bn → 0

weakly. The claim is equivalent to showing that ‖EMi
(x∗bny)‖2 → 0, for all x, y ∈M 	Mi.

We may assume that x, y are of the following form: x = x1x2 · · ·xm and y = y1y2 · · · yn,
where x1 ∈Mi, x2 ∈Mj	B, x3 ∈Mi	B · · · and y1 ∈Mi, y2 ∈Mj	B, y3 ∈Mi	B · · · ,
for some integers m,n > 2. We may also assume that ‖xk‖ 6 1 and ‖yl‖ 6 1, for all
1 6 k 6 m and 1 6 l 6 n.

A simple computation shows that

EMi
(x∗bny) = EMi

(x∗m · · ·x∗3EB(x∗2EB(x∗1bny1)y2)y3 · · · yn).

Thus, we get that ‖EMi
(x∗bny)‖2 6 ‖EB(x∗2EB(x∗1bny1)y2)‖2. Since bn → 0 weakly, we

have that EB(x∗1bny1) → 0 weakly. Since x2, y2 ∈ Mj 	 B and the inclusion B ⊂ Mj is
mixing, it follows that ‖EB(x∗2EB(x∗1bny1)y2)‖2 → 0. This proves that ‖EMi

(x∗bny)‖2 → 0

and implies the claim.
Now, to show that M is strongly solid, fix a diffuse amenable von Neumann subalgebra

A ⊂ M and denote P = N M (A)′′. Suppose by contradiction that P is not amenable and
let z ∈ Z(P ) be the largest projection such that Pz is amenable. Then p = 1− z 6= 0.

By Theorem 2.7 we can find projections e, f ∈ Z((Pp)′ ∩ pMp) ∩ Z((Pp)′ ∩ (pMp)ω)

such that

• e+ f = p.
• ((Pp)′ ∩ (pMp)ω)e is completely atomic and ((Pp)′ ∩ (pMp)ω)e = ((Pp)′ ∩ (pMp))e.
• ((Pp)′ ∩ (pMp)ω)f is diffuse.

Since p 6= 0, we have that either e 6= 0 or f 6= 0.
In the first case, let e0 ∈ ((Pp)′ ∩ (pMp)ω)e be a minimal non-zero projection. Then we

have that e0 ∈ p(P ′ ∩Mω)p ∩ p(P ′ ∩M)p and e0(P ′ ∩Mω)e0 = Ce0. Therefore, Pe0 is
a von Neumann subalgebra of e0Me0 such that (Pe0)′ ∩ (e0Me0)ω = Ce0. Note that
Pe0 ⊂ N e0Me0(Ae0)′′. Theorem 1.6 implies that either Ae0 ≺M B, Pe0 ≺M Mi, for some
i ∈ {1, 2}, orPe0 is amenable relative toB. Moreover if,Ae0 ≺M B, then since the inclusion
B ⊂M is mixing, Lemma 9.4 gives that Pe0 ≺M B.

In the second case, we have that f ∈ p(P ′ ∩Mω)p ∩ p(P ′ ∩M)p and that f(P ′ ∩Mω)f is
diffuse. Thus, Pf is a von Neumann subalgebra of fMf such that (Pf)′ ∩ (fMf)ω is
diffuse. By applying Theorem 6.3 to the subalgebra Pf of fMf , we get that either
(Pf)′ ∩ (fMf)ω ≺Mω Bω, Pf ≺M Mi, for some i ∈ {1, 2}, or Pf0 is amenable relative
to B, for some non-zero projection f0 ∈ Z(P ′ ∩M)f . Moreover, if (Pf)′ ∩ (fMf)ω ≺Mω Bω

then since (Pf)′ ∩ (fMf)ω is diffuse, Lemma 9.5 implies that Pf ≺M B.
Altogether, since e0 6 p, f 6 p and B ⊂ M1 ∩M2, we get that either Pp ≺M Mi, for

some i ∈ {1, 2}, or Pg is amenable relative to B, for some non-zero projection g ∈ Z(P )p.
SinceB is amenable, the second condition implies that Pp has an amenable direct summand,
which contradicts the maximality of z.

In order to finish the proof, assume that Pp ≺M Mi, for some i ∈ {1, 2}. Since P ′ ∩M ⊂ P ,
it follows that we can find non-zero projections p0 ∈ Pp, q ∈ Mi, a partial isometry v ∈ M
such that v∗v = p0 and vv∗ 6 q, and a ∗-homomorphism φ : p0Pp0 → qMiq such that
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φ(x)v = vx, for all x ∈ p0Pp0. Since φ(p0Pp0) ⊂ qMiq is a diffuse subalgebra and the
inclusion Mi ⊂ M is mixing, Lemma 9.4 gives that φ(p0Pp0)′ ∩ qMq ⊂ qMiq and thus
vv∗ ∈Mi.

Hence, after replacing P with uPu∗, for some unitary u ∈M , we may assume that
p0 ∈Mi and p0Pp0 ⊂ p0Mip0. Next, we can find a non-zero projection p1 ∈ p0Pp0 and
partial isometries v1, v2, . . . , vn ∈ P such that v∗i vi = p1, for all i ∈ {1, 2, . . . , n}, and
p′ =

∑
i=1 viv

∗
i is a central projection of P . Since p1Pp1 ⊂ p1Mip1, there exists an embed-

ding θ : Pp′ →Mn(p1Mip1).
Since Mi is strongly solid, [23, Proposition 5.2] gives that Mn(p1Mip1) is also strongly

solid. Since the inclusion Ap′ ⊂ Pp′ is regular and Ap′ is a diffuse amenable von Neumann
algebra, we deduce that Pp′ is amenable. Since p′p 6= 0 (as we have 0 6= p1 6 p∧p′) we again
get a contradiction with the maximality of z. This completes the proof of the theorem.

We end with several consequences of Theorem 1.8.

C 9.6. – Let (M1, τ1) and (M2, τ2) be strongly solid von Neumann algebras.
Then M = M1 ∗M2 is strongly solid.

C 9.7. – Let (M1, τ1), (M2, τ2), . . . , (Mn, τn) be tracial amenable von Neu-
mann algebras with a common von Neumann subalgebraB such that τ1|B = τ2|B = · · · = τn|B .
Assume that the inclusions B ⊂M1, B ⊂M2, . . . , B ⊂Mn are mixing. Denote
M = M1 ∗B M2 ∗B · · · ∗B Mn.

Then M is strongly solid.

Proof. – Since the inclusions B ⊂ M1, B ⊂ M2, . . . , B ⊂ Mn are mixing, it is easy to
see that the inclusion B ⊂ M1 ∗B M2 ∗B · · · ∗B Mi is mixing, for all i ∈ {1, 2, . . . , n}. The
conclusion then follows by using induction and Theorem 1.8.

Corollary 9.7 provides two new classes of strongly solid von Neumann algebras.

C 9.8. – Let Γ1, . . . ,Γn be countable amenable groups with a common subgroup Λ.
Assume that gΛg−1∩Λ is finite, for every g ∈ (∪ni=1Γi)\Λ. Denote Γ = Γ1 ∗Λ Γ2 ∗Λ · · · ∗Λ Γn.

Then L(Γ) is strongly solid.

Proof. – We claim that the inclusion L(Λ) ⊂ L(Γi) is mixing, for every i ∈ {1, 2, . . . , n}.
To this end, let bn ∈ (L(Λ))1 be a sequence converging weakly to 0. We aim to show that

‖EL(Λ)(xbny)‖2 → 0, for every x, y ∈ L(Γi)	L(Λ). By Kaplansky’s density theorem we may
assume that x = uh and y = uk, for some h, k ∈ Γi \ Λ. Then the set F = {g ∈ Λ|hgk ∈ Λ}
is finite. Since bn → 0 weakly we get that

‖EL(Λ)(uhbnuh)‖22 =
∑
g∈F
|τ(bnu

∗
g)|2 → 0.

Corollary 9.7 now implies that L(Γ) = L(Γ1)∗L(Λ)L(Γ2)∗L(Λ) · · · ∗L(Λ)L(Γn) is strongly
solid.

Corollary 9.8 generalizes the main result of [23], where the same statement is proven under
the additional assumption that for every i ∈ {1, 2, . . . , n} we can decompose Γi = Υi o Λ,
for some abelian group Υi.
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C 9.9. – Let Γ be a countable amenable group and (D1, τ1), (D2, τ2), . . . , (Dn, τn)

be tracial amenable von Neumann algebras. Let Γ yσ1 (D1, τ1),Γ yσ2 (D2, τ2), . . . ,Γ yσn

(Dn, τn) be mixing trace preserving actions. Denote D = D1 ∗ D2 ∗ · · · ∗ Dn and endow D

with its natural trace τ . Consider the free product action Γ yσ (D, τ) given by

σ(g)(x1x2 · · ·xn) = σ1(g)(x1)σ2(g)(x2) · · ·σn(g)(xn), for x1 ∈ D1, x2 ∈ D2, . . . , xn ∈ Dn.

Then M = D o Γ is strongly solid.

Proof. – Denote Mi = Di o Γ. Since the action Γ y (Di, τi) is mixing, the inclusion
L(Γ) ⊂ Mi is mixing, for all 1 6 i 6 n. Since Γ as well as D1, D2, . . . , Dn are amenable,
we have that M1,M2, . . . ,Mn are amenable. Since M = M1 ∗L(Γ) M2 ∗ · · · ∗L(Γ) Mn, the
conclusion follows from Corollary 9.7.
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Appendix: Spectral gap for inclusions of von Neumann algebras
by Adrian Ioana and Stefaan Vaes(1)

Let (M, τ) be a von Neumann algebra equipped with a faithful normal tracial state.
Let P ⊂M be a von Neumann subalgebra. In [70, Section 2], Popa introduced the following
two different notions of spectral gap for the inclusion P ⊂M .

(a) P ⊂M has spectral gap if every net of unit vectors ξi ∈ L2(M) that asymptotically
commutes with P , meaning that limi ‖xξi − ξix‖2 = 0 for all x ∈ P , must lie asymp-
totically in L2(P ′ ∩M), namely limi ‖ξi − EP ′∩M (ξi)‖2 = 0.

(b) P ⊂M has w-spectral gap if every net ξi ∈ (M)1 in the unit ball of M that asymp-
totically commutes with P , meaning that limi ‖xξi − ξix‖2 = 0 for all x ∈ P , must lie
asymptotically in P ′ ∩M , namely limi ‖ξi − EP ′∩M (ξi)‖2 = 0.

Here, EP ′∩M denotes the conditional expectation of M onto P ′ ∩M , or its extension as the
orthogonal projection of L2(M) onto L2(P ′ ∩M).

In [70, Remark 2.2], the subtle difference between spectral gap and w-spectral gap is
explained: concrete examples of inclusions without spectral gap, but yet having w-spectral
gap are given, and the analogy with the difference between strong ergodicity and spectral
gap for a probability measure preserving group action Γ y (X,µ) is explained, yielding the
following example. Let Γ = Fn be a free group, for n ≥ 2, and let Γ y (X,µ) be a
measure preserving action on a standard probability space that is strongly ergodic but does
not have spectral gap (see [71, Example 2.7]). Denote A = L∞(X), M = A o Γ and
P = L(Γ). Since Γ is not inner amenable and Γ y (X,µ) is strongly ergodic, it follows

(1) Supported by Research Programme G.0639.11 of the Research Foundation – Flanders (FWO) and KU Leuven
BOF research grant OT/13/079.
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that P ⊂ M has w-spectral gap. On the other hand, P ⊂ M does not have spectral gap.
Indeed, let ξn ∈ L2(A) 	 C1 be a sequence of unit vectors such that ‖ugξn − ξnug‖2 → 0,
for all g ∈ Γ. Let x ∈ P and write x =

∑
g∈Γ xgug, where xg ∈ C. Then

‖xξn − ξnx‖22 =
∑
g∈Γ

|xg|2 ‖ugξn − ξnug‖22 for all n.

Since
∑
g∈Γ |xg|2 = ‖x‖22 <∞, it follows that ‖xξn − ξnx‖2 → 0.

Finally note that if M is a II1 factor and P = M , then both notions of spectral gap are
equivalent by [67, Theorem 2.1].

In the proof of Theorem 5.1 above, the following technical property is needed. This
property sits, a priori, in between spectral gap and w-spectral gap.

(c) Every net of unit vectors ξi ∈ L2(M)⊗ `2(N) that asymptotically commutes withP⊗1

and that is asymptotically subtracial, meaning that lim supi ‖(a⊗ 1)ξi‖2 ≤ ‖a‖2 and
lim supi ‖ξi(a⊗ 1)‖2 ≤ ‖a‖2 for all a ∈M , must lie asymptotically in
L2(P ′ ∩M)⊗ `2(N).

In the theorem below, we prove that this property (c) is equivalent to w-spectral gap.
The difference between spectral gap and w-spectral gap arises when there do exist non-

trivial unit vectors ξi ∈ L2(M) that asymptotically commute with P , but when these unit
vectors necessarily have their support in a smaller and smaller corner of M with the opera-
tor norm of ξi becoming larger and larger. If now ξi =

∑
k ai,k⊗δk is a net inL2(M)⊗`2(N)

as in (c), then the subtraciality assumption guarantees that the small supports of the ai,k are
evenly spread overM . Using a maximality argument, it should be possible to glue the ai,k to-
gether into a bounded net inM that asymptotically commutes withP , as in [69, Remark 2.4].
We follow a slightly different approach, taking random linear combinations

∑
k ζkai,k with

ζk ∈ T, very much inspired by [68, Proof of Lemma 4.3].

T. – Let (M, τ) be a von Neumann algebra with a faithful normal tracial state.
Let P ⊂M be a von Neumann subalgebra. The following two conditions are equivalent.

1. The inclusion P ⊂ M does not have w-spectral gap: there exists a net ui ∈ (M)1

in the unit ball of M satisfying limi ‖xui − uix‖2 = 0 for all x ∈ P and satisfying
lim infi ‖ui − EP ′∩M (ui)‖2 > 0.

2. There exist a Hilbert spaceH and a net of vectors ξi ∈ L2(M)⊗H satisfying the following
properties:
• limi ‖(x⊗ 1)ξi − ξi(x⊗ 1)‖2 = 0 for all x ∈ P ,
• lim infi ‖ξi − pL2(P ′∩M)⊗H(ξi)‖2 > 0,
• lim supi ‖(a⊗ 1)ξi‖2 ≤ ‖a‖2 and lim supi ‖ξi(a⊗ 1)‖2 ≤ ‖a‖2 for all a ∈M .

Proof. – It is obvious that 1 implies 2 by taking H = C and ξi = ui.
Assume that 2 holds. Write P = pL2(P ′∩M)⊗H and µi = P(ξi). Obviously

(x⊗ 1)µi = µi(x⊗ 1) for all x ∈ P . Also,

‖(a⊗ 1)µi‖2 = ‖P((EP ′∩M (a∗a)1/2 ⊗ 1)ξi)‖2 for all a ∈M and all i .

Therefore, also lim supi ‖(a⊗ 1)µi‖2 ≤ ‖a‖2 for all a ∈M , and similarly with ‖µi(a⊗ 1)‖2.
Replacing ξi by (ξi − µi)/2, we may from now on moreover assume that P(ξi) = 0 for all i.
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Define the normal positive functionals ωi, ω′i ∈ M∗ given by ωi(a) = 〈(a ⊗ 1)ξi, ξi〉
and ω′i(a) = 〈ξi(a ⊗ 1), ξi〉. After passage to a subnet, we may assume that ωi → ω and
ω′i → ω′ weakly∗, where ω, ω′ ∈ M∗ are nonzero positive functionals satisfying ω, ω′ ≤ τ .
Convex combinations of the functionals ωi, resp. ω′i, then converge in norm to ω, resp. ω′.
Such convex combinations are canonically implemented by vectors inH⊗ `2(N). Therefore,
replacing H by H ⊗ `2(N), we may assume that limi ‖ωi − ω‖1 = limi ‖ω′i − ω′‖1 = 0.

Write ω = τ( ·T ) and ωi = τ( ·Ti), where T, Ti are positive elements in L1(M). We have
0 ≤ T ≤ 1 and limi ‖Ti − T‖1 = 0. Denote by pi ∈ M the spectral projection of Ti
corresponding to the interval [0, 2]. We claim that limi ωi(1 − pi) = 0. Write qi = 1 − pi.
Then, qiTiqi ≥ 2qi. Also, qiTqi ≤ qi because T ≤ 1. Therefore, qi(Ti − T )qi ≥ qi.
Since ‖qi(Ti − T )qi‖1 → 0, it follows that ‖qi‖1 → 0. Then also ‖qiTqi‖1 → 0, so that
‖qiTiqi‖1 → 0, proving the claim.

By the claim, we have that limi ‖ξi − (pi ⊗ 1)ξi‖2 = 0. We similarly define p′i and get that
limi ‖ξi − (pi ⊗ 1)ξi(p

′
i ⊗ 1)‖2 = 0. Replacing ξi by piξip′i/2, we now have the following

properties.

• limi ‖(x⊗ 1)ξi − ξi(x⊗ 1)‖2 = 0 for all x ∈ P ,
• limi ‖P(ξi)‖2 = 0 and lim infi ‖ξi‖2 > 0,
• ‖(a⊗ 1)ξi‖2 ≤ ‖a‖2 and ‖ξi(a⊗ 1)‖2 ≤ ‖a‖2 for all i and all a ∈M .

Define δ > 0 such that lim infi ‖ξi‖22 > 4δ. Fix a finite subset F ⊂ P satisfying F = F ∗

and fix ε > 0. We will construct an elementW ∈M satisfying ‖W‖2 ≤ 8/δ,EP ′∩M (W ) = 0,
‖W‖22 > δ and ‖xW −Wx‖2 ≤ ε for all x ∈ F . Once we have done this for arbitrary finite
F ⊂ P and ε > 0 (with the same fixed δ from the beginning), the net in 1 indeed exists.

Every vector ξ ∈ L2(M) ⊗ H belongs to L2(M) ⊗ H0 for some separable subspace
H0 ⊂ H. We can therefore find a sequence of vectors ξn ∈ L2(M)⊗ `2(N) satisfying

• limn ‖(x⊗ 1)ξn − ξn(x⊗ 1)‖2 = 0 for all x ∈ F ,
• limn ‖P(ξn)‖2 = 0 and lim infn ‖ξn‖22 > 4δ,
• ‖(a⊗ 1)ξn‖2 ≤ ‖a‖2 and ‖ξn(a⊗ 1)‖2 ≤ ‖a‖2 for all n and all a ∈M .

By the last property, we have ξn =
∑
k an,k ⊗ δk where an,k ∈ M satisfies

∑
k an,ka

∗
n,k ≤ 1

and
∑
k a
∗
n,kan,k ≤ 1. Approximating ξn by a finite sum, we may assume that for every n,

there are only finitely many nonzero an,k.

Define K ⊂ L2(M)⊗`2(N) as the linear span of all a⊗δk. Define the standard probability
space X = TN as an infinite product of tori equipped with the Lebesgue measure. Write
M = L∞(X)⊗M and define the linear map

Θ : K → M : (Θ(a⊗ δk))(ζ) = ζka for all a ∈M,k ∈ N, ζ ∈ X.

Write B = L∞(X) ⊗ (P ′ ∩M). By a direct computation, using that the functions ζ 7→ ζi
are orthogonal for distinct i, we get that

• Θ((x⊗ 1)ξ(y ⊗ 1)) = (1⊗ x)Θ(ξ)(1⊗ y) for all x, y ∈M , ξ ∈ K ,
• ‖Θ(ξ)‖2 = ‖ξ‖2 for all ξ ∈ K ,
• EB(Θ(ξ)) = Θ( P(ξ)) for all ξ ∈ K .
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Finally we prove that, if ξ ∈ K is given by a finite sum ξ =
∑
k ak⊗δk satisfying

∑
k aka

∗
k ≤ 1

and
∑
k a
∗
kak ≤ 1, then

(9.3) τ
(
|Θ(ξ)|4

)
≤ 2.

To prove (9.3), first note that |Θ(ξ)|4(ζ) =
∑
i,j,k,l ζi ζj ζk ζl a

∗
i aja

∗
kal. The integral over ζ is

zero, except in two cases: the case where i = j and k = l, and the case where i = l and j = k.
Counting ‘twice’ the case where i = j = k = l, we find that

E1⊗M
(
|Θ(ξ)|4

)
=
(∑

i

a∗i ai

)2

+
∑
i

a∗i

(∑
j

aja
∗
j

)
ai −

∑
i

(a∗i ai)
2.

Using that
∑
j aja

∗
j ≤ 1 and

∑
i a
∗
i ai ≤ 1, it follows that E1⊗M

(
|Θ(ξ)|4

)
≤ 2. Applying τ ,

we find that (9.3) holds.

Define the sequence Un ∈ M given by Un = Θ(ξn). Fix a free ultrafilter ω on N. We claim
that (Un) defines an element in L2( Mω). For every n ∈ N and λ > 0, denote by pn,λ the
spectral projection of |Un| corresponding to the interval [0, λ]. Write qn,λ = 1− pn,λ. Using
(9.3) in the last inequality, we get that

λ2 ‖Un qn,λ‖22 = λ2 τ(|Un|2qn,λ) ≤ τ(|Un|4qn,λ) ≤ τ(|Un|4) ≤ 2.

It follows that (Unpn,λ)n belongs to Mω and converges in ‖ · ‖2 to U = (Un) ∈ L2( Mω)

as λ → ∞. We still have that τ(|U |4) ≤ 2. The other properties of the sequence (ξn) now
translate to: U commutes with 1⊗ F , ‖U‖22 > 4δ and EBω (U) = 0.

Put λ =
√

2/δ and denote by pλ the spectral projection of |U | corresponding to the
interval [0, λ]. Write qλ = 1− pλ. Then, pλ ∈ Mω ∩ (1⊗ F )′ and, as above,

‖Uqλ‖22 ≤
2

λ2
= δ.

Define V = Upλ. Then, V ∈ Mω ∩ (1⊗ F )′ and ‖V ‖ ≤ λ. Also,

‖V − EBω (V )‖22 = ‖V ‖22 − ‖EBω (V )‖22 = ‖V ‖22 − ‖EBω (U)− EBω (Uqλ)‖22
= ‖V ‖22 − ‖EBω (Uqλ)‖22 = ‖U‖22 − ‖Uqλ‖22 − ‖EBω (Uqλ)‖22
≥ ‖U‖22 − 2δ > 2δ.

Represent V by a sequence V = (Vn) with Vn ∈ M and ‖Vn‖ ≤ ‖V ‖ ≤ λ. Since V commutes
with 1⊗ F , we fix n close enough to ω such that∑

x∈ F

‖(1⊗ x)Vn − Vn(1⊗ x)‖22 <
ε2δ

λ2
and(9.4)

‖Vn − EB(Vn)‖22 > 2δ.(9.5)

From now on, we view Vn as a measurable function from X to M , with ‖Vn(ζ)‖ ≤ λ for all
ζ ∈ X. Define the sets

X0 =
{
ζ ∈ X

∣∣∣ ∑
x∈ F

‖xVn(ζ)− Vn(ζ)x‖22 < ε2
}
,

X1 =
{
ζ ∈ X

∣∣∣ ‖Vn(ζ)− EP ′∩M (Vn(ζ))‖22 > δ
}
.
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Because of (9.4), we have that µ(X0) > 1− δ/λ2. We claim that also µ(X1) > δ/λ2. Indeed,
if µ(X1) ≤ δ/λ2, using that ‖Vn(ζ) − EP ′∩M (Vn(ζ))‖2 ≤ ‖Vn(ζ)‖2 ≤ ‖Vn(ζ)‖ ≤ λ for all
ζ ∈ X, it follows that

‖Vn − EB(Vn)‖22

=

∫
X1

‖Vn(ζ)− EP ′∩M (Vn(ζ))‖22 dµ(ζ) +

∫
X\X1

‖Vn(ζ)− EP ′∩M (Vn(ζ))‖22 dµ(ζ)

≤ µ(X1)λ2 + µ(X \X1)δ ≤ 2δ.

This contradicts (9.5) and the claim follows. But then µ(X0 ∩X1) > 0 and we pick
ζ ∈ X0 ∩X1. Define W = Vn(ζ)− EP ′∩M (Vn(ζ)). By construction, we have that
‖W‖2 ≤ (2λ)2 = 8/δ,EP ′∩M (W ) = 0, ‖W‖22 > δ and ‖xW −Wx‖2 < ε for all x ∈ F .

C. – Let (M, τ) and (N, τ) be von Neumann algebras with a faithful normal
tracial state. Let P ⊂ M be a von Neumann subalgebra. If P ⊂ M has w-spectral gap, then
also P ⊗ 1 ⊂M ⊗N has w-spectral gap.

Proof. – It suffices to putH = L2(N) and to view unitary operators inM⊗N as vectors
in L2(M)⊗H.
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