La formule de Bochner-Weitzenböck implique qu'une variété riemannienne compacte dont l'opérateur de courbure est strictement positif a tous ses nombres de Betti triviaux. Nous obtenons un tel résultat d'annulation sous des hypothèses de pincement intégral sur la courbure. Nos résultats sont optimaux et nous analysons les cas d'égalités. Il s'agit d'une extension à la dimension supérieure d'un résultat de M. Gursky.
In this article, we generalize the classical Bochner-Weitzenböck theorem for manifolds satisfying an integral pinching on the curvature. We obtain the vanishing of Betti numbers under integral pinching assumptions on the curvature, and characterize the equality case. In particular, we reprove and extend to higher degrees and higher dimensions a number of integral pinching results obtained by M. Gursky for four-dimensional closed manifolds.
DOI : 10.24033/asens.2238
Keywords: Yamabe invariant, curvature pinching, Betti number, harmonic forms.
Mot clés : Invariant de Yamabe, pincement de la courbure, nombre de Betti, formes harmoniques.
@article{ASENS_2015__48_1_41_0, author = {Bour, Vincent and Carron, Gilles}, title = {Optimal integral pinching results}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {41--70}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {1}, year = {2015}, doi = {10.24033/asens.2238}, mrnumber = {3335838}, zbl = {1317.58021}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2238/} }
TY - JOUR AU - Bour, Vincent AU - Carron, Gilles TI - Optimal integral pinching results JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 41 EP - 70 VL - 48 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2238/ DO - 10.24033/asens.2238 LA - en ID - ASENS_2015__48_1_41_0 ER -
%0 Journal Article %A Bour, Vincent %A Carron, Gilles %T Optimal integral pinching results %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 41-70 %V 48 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2238/ %R 10.24033/asens.2238 %G en %F ASENS_2015__48_1_41_0
Bour, Vincent; Carron, Gilles. Optimal integral pinching results. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 41-70. doi : 10.24033/asens.2238. http://www.numdam.org/articles/10.24033/asens.2238/
Yamabe metrics on cylindrical manifolds, Geom. Funct. Anal., Volume 13 (2003), pp. 259-333 (ISSN: 1016-443X) | DOI | MR | Zbl
The Yamabe problem on stratified spaces, Geom. Funct. Anal., Volume 24 (2014), pp. 1039-1079 (ISSN: 1016-443X) | DOI | MR | Zbl
Finiteness of and geometric inequalities in almost positive Ricci curvature, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 675-695 (ISSN: 0012-9593) | DOI | MR | Zbl
, Monographs in Math., Springer, 1998, 395 pages (ISBN: 3-540-60752-8) | DOI | MR | Zbl
Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc., Volume 301 (1987), pp. 723-736 (ISSN: 0002-9947) | DOI | MR | Zbl
From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 371-406 (ISSN: 0273-0979) | DOI | MR | Zbl
Fourth order curvature flows and geometric applications (preprint arXiv:1012.0342 )
Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math., Volume 63 (1981), pp. 263-286 (ISSN: 0020-9910) | DOI | MR | Zbl
The magic of Weitzenböck formulas, Variational methods (Ekeland, I.; Coron, J.-M.; Berestycki, H., eds.), Birkhäuser (1990) | DOI | MR | Zbl
Kato constants in Riemannian geometry, Math. Res. Lett., Volume 7 (2000), pp. 245-261 (ISSN: 1073-2780) | DOI | MR | Zbl
Classification of manifolds with weakly -pinched curvatures, Acta Math., Volume 200 (2008), pp. 1-13 (ISSN: 0001-5962) | DOI | MR | Zbl
Manifolds with -pinched curvature are space forms, J. Amer. Math. Soc., Volume 22 (2009), pp. 287-307 (ISSN: 0894-0347) | DOI | MR | Zbl
Manifolds with positive curvature operators are space forms, Ann. of Math., Volume 167 (2008), pp. 1079-1097 (ISSN: 0003-486X) | DOI | MR | Zbl
Rigidity and cohomology of hyperbolic manifolds, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 2307-2331 http://aif.cedram.org/item?id=AIF_2010__60_7_2307_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Une suite exacte en -cohomologie, Duke Math. J., Volume 95 (1998), pp. 343-372 (ISSN: 0012-7094) | DOI | MR | Zbl
Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Volume 173 (2000), pp. 214-255 (ISSN: 0022-1236) | DOI | MR | Zbl
An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math., Volume 155 (2002), pp. 709-787 (ISSN: 0003-486X) | DOI | MR | Zbl
A conformally invariant sphere theorem in four dimensions, Publ. Math. IHÉS, Volume 98 (2003), pp. 105-143 | DOI | Numdam | MR | Zbl
The Huber theorem for non-compact conformally flat manifolds, Comment. Math. Helv., Volume 77 (2002), pp. 192-220 (ISSN: 0010-2571) | DOI | MR | Zbl
On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 3 (2004), pp. 705-747 (ISSN: 0391-173X) | Numdam | MR | Zbl
The structure of stable minimal hypersurfaces in , Math. Res. Lett., Volume 4 (1997), pp. 637-644 (ISSN: 1073-2780) | DOI | MR | Zbl
Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., Volume 49 (1983), pp. 405-433 (ISSN: 0010-437X) | Numdam | MR | Zbl
Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, Volume 157-158 (1988), pp. 191-216 (ISSN: 0303-1179) | Numdam | MR | Zbl
Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl., Volume 54 (1975), pp. 259-284 (ISSN: 0021-7824) | MR | Zbl
Four-manifolds with and Einstein constants of the sphere, Math. Ann., Volume 318 (2000), pp. 417-431 (ISSN: 0025-5831) | DOI | MR | Zbl
The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics, Ann. of Math., Volume 148 (1998), pp. 315-337 (ISSN: 0003-486X) | DOI | MR | Zbl
, Cambridge Univ. Press, Cambridge, 2002, 544 pages (ISBN: 0-521-79160-X; 0-521-79540-0) |, Lecture Notes in Math., 1635, Springer, 1996, 116 pages (ISBN: 3-540-61722-1) | MR | Zbl
On the Bianchi Identities, Math. Ann., Volume 199 (1972), pp. 175-204 (ISSN: 0025-5831) | DOI | MR | Zbl
Double forms, curvature structures and the -curvatures, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3971-3992 (ISSN: 0002-9947) | DOI | MR | Zbl
On Weitzenböck curvature operators (2006) (preprint arXiv:1010.0733 ) | MR
Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 921-982 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Curvature and holomorphic mappings of complete Kähler manifolds, Compositio Math., Volume 73 (1990), pp. 125-144 (ISSN: 0010-437X) | Numdam | MR | Zbl
The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971/72), pp. 247-258 (ISSN: 0022-040X) | MR | Zbl
, Topics in calculus of variations (Montecatini Terme, 1987) (Lecture Notes in Math.), Volume 1365, Springer, 1989, pp. 120-154 | DOI | MR | Zbl
The mean curvature for -plane, J. Diff. Geom., Volume 8 (1973), pp. 47-52 (ISSN: 0022-040X) | MR | Zbl
Convergence of Riemannian manifolds with integral bounds on curvature. II, Ann. Sci. École Norm. Sup., Volume 25 (1992), pp. 179-199 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., Volume 28 (1975), pp. 201-228 (ISSN: 0010-3640) | DOI | MR | Zbl
Cité par Sources :