Optimal integral pinching results
[Résultats de pincement intégral optimaux]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 41-70.

La formule de Bochner-Weitzenböck implique qu'une variété riemannienne compacte dont l'opérateur de courbure est strictement positif a tous ses nombres de Betti triviaux. Nous obtenons un tel résultat d'annulation sous des hypothèses de pincement intégral sur la courbure. Nos résultats sont optimaux et nous analysons les cas d'égalités. Il s'agit d'une extension à la dimension supérieure d'un résultat de M. Gursky.

In this article, we generalize the classical Bochner-Weitzenböck theorem for manifolds satisfying an integral pinching on the curvature. We obtain the vanishing of Betti numbers under integral pinching assumptions on the curvature, and characterize the equality case. In particular, we reprove and extend to higher degrees and higher dimensions a number of integral pinching results obtained by M. Gursky for four-dimensional closed manifolds.

Publié le :
DOI : 10.24033/asens.2238
Classification : 53C21; 58E35, 53C24.
Keywords: Yamabe invariant, curvature pinching, Betti number, harmonic forms.
Mot clés : Invariant de Yamabe, pincement de la courbure, nombre de Betti, formes harmoniques.
@article{ASENS_2015__48_1_41_0,
     author = {Bour, Vincent and Carron, Gilles},
     title = {Optimal integral pinching results},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {41--70},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {1},
     year = {2015},
     doi = {10.24033/asens.2238},
     mrnumber = {3335838},
     zbl = {1317.58021},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2238/}
}
TY  - JOUR
AU  - Bour, Vincent
AU  - Carron, Gilles
TI  - Optimal integral pinching results
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 41
EP  - 70
VL  - 48
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2238/
DO  - 10.24033/asens.2238
LA  - en
ID  - ASENS_2015__48_1_41_0
ER  - 
%0 Journal Article
%A Bour, Vincent
%A Carron, Gilles
%T Optimal integral pinching results
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 41-70
%V 48
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2238/
%R 10.24033/asens.2238
%G en
%F ASENS_2015__48_1_41_0
Bour, Vincent; Carron, Gilles. Optimal integral pinching results. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 1, pp. 41-70. doi : 10.24033/asens.2238. http://www.numdam.org/articles/10.24033/asens.2238/

Akutagawa, K.; Botvinnik, B. Yamabe metrics on cylindrical manifolds, Geom. Funct. Anal., Volume 13 (2003), pp. 259-333 (ISSN: 1016-443X) | DOI | MR | Zbl

Akutagawa, K.; Carron, G.; Mazzeo, R. The Yamabe problem on stratified spaces, Geom. Funct. Anal., Volume 24 (2014), pp. 1039-1079 (ISSN: 1016-443X) | DOI | MR | Zbl

Aubry, E. Finiteness of π1 and geometric inequalities in almost positive Ricci curvature, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 675-695 (ISSN: 0012-9593) | DOI | MR | Zbl

Aubin, T., Monographs in Math., Springer, 1998, 395 pages (ISBN: 3-540-60752-8) | DOI | MR | Zbl

Bourguignon, J.-P.; Ezin, J.-P. Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc., Volume 301 (1987), pp. 723-736 (ISSN: 0002-9947) | DOI | MR | Zbl

Bérard, P. H. From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 371-406 (ISSN: 0273-0979) | DOI | MR | Zbl

Bour, V. Fourth order curvature flows and geometric applications (preprint arXiv:1012.0342 )

Bourguignon, J.-P. Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math., Volume 63 (1981), pp. 263-286 (ISSN: 0020-9910) | DOI | MR | Zbl

Bourguignon, J.-P. The magic of Weitzenböck formulas, Variational methods (Ekeland, I.; Coron, J.-M.; Berestycki, H., eds.), Birkhäuser (1990) | DOI | MR | Zbl

Branson, T. Kato constants in Riemannian geometry, Math. Res. Lett., Volume 7 (2000), pp. 245-261 (ISSN: 1073-2780) | DOI | MR | Zbl

Brendle, S.; Schoen, R. M. Classification of manifolds with weakly 1/4-pinched curvatures, Acta Math., Volume 200 (2008), pp. 1-13 (ISSN: 0001-5962) | DOI | MR | Zbl

Brendle, S.; Schoen, R. Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc., Volume 22 (2009), pp. 287-307 (ISSN: 0894-0347) | DOI | MR | Zbl

Böhm, C.; Wilking, B. Manifolds with positive curvature operators are space forms, Ann. of Math., Volume 167 (2008), pp. 1079-1097 (ISSN: 0003-486X) | DOI | MR | Zbl

Carron, G. Rigidity and L2 cohomology of hyperbolic manifolds, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 2307-2331 http://aif.cedram.org/item?id=AIF_2010__60_7_2307_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Carron, G. Une suite exacte en L2-cohomologie, Duke Math. J., Volume 95 (1998), pp. 343-372 (ISSN: 0012-7094) | DOI | MR | Zbl

Calderbank, D. M. J.; Gauduchon, P.; Herzlich, M. Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Volume 173 (2000), pp. 214-255 (ISSN: 0022-1236) | DOI | MR | Zbl

Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C. An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math., Volume 155 (2002), pp. 709-787 (ISSN: 0003-486X) | DOI | MR | Zbl

Chang, S.-Y. A.; Gurksy, M.; Yang, P. C. A conformally invariant sphere theorem in four dimensions, Publ. Math. IHÉS, Volume 98 (2003), pp. 105-143 | DOI | Numdam | MR | Zbl

Carron, G.; Herzlich, M. The Huber theorem for non-compact conformally flat manifolds, Comment. Math. Helv., Volume 77 (2002), pp. 192-220 (ISSN: 0010-2571) | DOI | MR | Zbl

Carron, G.; Pedon, E. On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 3 (2004), pp. 705-747 (ISSN: 0391-173X) | Numdam | MR | Zbl

Cao, H.-D.; Shen, Y.; Zhu, S. The structure of stable minimal hypersurfaces in 𝐑n+1 , Math. Res. Lett., Volume 4 (1997), pp. 637-644 (ISSN: 1073-2780) | DOI | MR | Zbl

Derdziński, A. Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., Volume 49 (1983), pp. 405-433 (ISSN: 0010-437X) | Numdam | MR | Zbl

Gallot, S. Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, Volume 157-158 (1988), pp. 191-216 (ISSN: 0303-1179) | Numdam | MR | Zbl

Gallot, S.; Meyer, D. Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl., Volume 54 (1975), pp. 259-284 (ISSN: 0021-7824) | MR | Zbl

Gursky, M. J. Four-manifolds with δW+=0 and Einstein constants of the sphere, Math. Ann., Volume 318 (2000), pp. 417-431 (ISSN: 0025-5831) | DOI | MR | Zbl

Gursky, M. J. The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics, Ann. of Math., Volume 148 (1998), pp. 315-337 (ISSN: 0003-486X) | DOI | MR | Zbl

Hatcher, A., Cambridge Univ. Press, Cambridge, 2002, 544 pages (ISBN: 0-521-79160-X; 0-521-79540-0) | MR | Zbl

Hebey, E., Lecture Notes in Math., 1635, Springer, 1996, 116 pages (ISBN: 3-540-61722-1) | MR | Zbl

Kulkarni, R. S. On the Bianchi Identities, Math. Ann., Volume 199 (1972), pp. 175-204 (ISSN: 0025-5831) | DOI | MR | Zbl

Labbi, M.-L. Double forms, curvature structures and the (p,q)-curvatures, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3971-3992 (ISSN: 0002-9947) | DOI | MR | Zbl

Labbi, M.-L. On Weitzenböck curvature operators (2006) (preprint arXiv:1010.0733 ) | MR

Li, P.; Wang, J. Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup., Volume 39 (2006), pp. 921-982 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Li, P.; Yau, S.-T. Curvature and holomorphic mappings of complete Kähler manifolds, Compositio Math., Volume 73 (1990), pp. 125-144 (ISSN: 0010-437X) | Numdam | MR | Zbl

Obata, M. The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971/72), pp. 247-258 (ISSN: 0022-040X) | MR | Zbl

Schoen, R. M., Topics in calculus of variations (Montecatini Terme, 1987) (Lecture Notes in Math.), Volume 1365, Springer, 1989, pp. 120-154 | DOI | MR | Zbl

Tachibana, Shun-ichi. The mean curvature for p-plane, J. Diff. Geom., Volume 8 (1973), pp. 47-52 (ISSN: 0022-040X) | MR | Zbl

Yang, D. Convergence of Riemannian manifolds with integral bounds on curvature. II, Ann. Sci. École Norm. Sup., Volume 25 (1992), pp. 179-199 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Yau, S. T. Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., Volume 28 (1975), pp. 201-228 (ISSN: 0010-3640) | DOI | MR | Zbl

Cité par Sources :