Statistical properties of one-dimensional maps under weak hyperbolicity assumptions
[Propriétés statistiques des applications unidimensionnelles sous des hypothèses d'hyperbolicité faibles]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083.

Nous étudions l'existence et des propriétés statistiques des mesures physiques d'une application unidimensionnelle réelle ou complexe satisfaisant une hypothèse d'hyperbolicité faible, par rapport à une mesure de référence géométrique. Nous étudions aussi des propriétés géométriques de ces mesures.

For a real or complex one-dimensional map satisfying a weak hyperbolicity assumption, we study the existence and statistical properties of physical measures, with respect to geometric reference measures. We also study geometric properties of these measures.

Publié le :
DOI : 10.24033/asens.2233
Classification : 37E05, 37C40, 37F35.
Keywords: Physical measures, mixing rates.
Mot clés : Mesures physiques, vitesse de mélange.
@article{ASENS_2014__47_6_1027_0,
     author = {Rivera-Letelier, Juan and Shen, Weixiao},
     title = {Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1027--1083},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {6},
     year = {2014},
     doi = {10.24033/asens.2233},
     mrnumber = {3297154},
     zbl = {1351.37195},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2233/}
}
TY  - JOUR
AU  - Rivera-Letelier, Juan
AU  - Shen, Weixiao
TI  - Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 1027
EP  - 1083
VL  - 47
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2233/
DO  - 10.24033/asens.2233
LA  - en
ID  - ASENS_2014__47_6_1027_0
ER  - 
%0 Journal Article
%A Rivera-Letelier, Juan
%A Shen, Weixiao
%T Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 1027-1083
%V 47
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2233/
%R 10.24033/asens.2233
%G en
%F ASENS_2014__47_6_1027_0
Rivera-Letelier, Juan; Shen, Weixiao. Statistical properties  of one-dimensional maps  under weak hyperbolicity assumptions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083. doi : 10.24033/asens.2233. http://www.numdam.org/articles/10.24033/asens.2233/

Avila, A.; Lyubich, M. Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc., Volume 21 (2008), pp. 305-363 (ISSN: 0894-0347) | DOI | MR | Zbl

Benedicks, M.; Carleson, L. On iterations of 1-ax2 on (-1,1) , Ann. of Math., Volume 122 (1985), pp. 1-25 (ISSN: 0003-486X) | DOI | MR | Zbl

Bonatti, C.; Díaz, L. J.; Viana, M., Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl

Bruin, H.; Luzzatto, S.; Van Strien, S. Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 621-646 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Bowen, R., Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl

Bruin, H.; Rivera-Letelier, J.; Shen, W.; van Strien, S. Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., Volume 172 (2008), pp. 509-533 (ISSN: 0020-9910) | DOI | MR | Zbl

Bruin, H.; Shen, W.; van Strien, S. Invariant measures exist without a growth condition, Comm. Math. Phys., Volume 241 (2003), pp. 287-306 (ISSN: 0010-3616) | DOI | MR | Zbl

Collet, P.; Eckmann, J.-P., Progress in Physics, 1, Birkhäuser, 1980, 248 pages (ISBN: 3-7643-3026-0) | MR | Zbl

Denker, M.; Mauldin, R. D.; Nitecki, Z.; Urbański, M. Conformal measures for rational functions revisited, Fund. Math., Volume 157 (1998), pp. 161-173 (ISSN: 0016-2736) | DOI | MR | Zbl

de Melo, W.; van Strien, S., Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | DOI | MR | Zbl

Dobbs, N. Pesin theory and equilibrium measures on the interval (preprint arXiv:1304.3305 ) | MR

Dobbs, N. Hyperbolic dimension for interval maps, Nonlinearity, Volume 19 (2006), pp. 2877-2894 (ISSN: 0951-7715) | DOI | MR | Zbl

Dobbs, N. Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2803-2824 (ISSN: 0002-9947) | DOI | MR | Zbl

Falconer, K., John Wiley & Sons, Ltd., Chichester, 1990, 288 pages (ISBN: 0-471-92287-0) | MR | Zbl

Gouëzel, S. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 41 (2005), pp. 997-1024 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Graczyk, J.; Smirnov, S. K. Non-uniform hyperbolicity in complex dynamics, Invent. Math., Volume 175 (2009), pp. 335-415 (ISSN: 0020-9910) | DOI | MR | Zbl

Graczyk, J.; Smirnov, S. K. Collet, Eckmann and Hölder, Invent. Math., Volume 133 (1998), pp. 69-96 (ISSN: 0020-9910) | DOI | MR | Zbl

Graczyk, J.; Świątek, G., Annals of Math. Studies, 144, Princeton Univ. Press, Princeton, NJ, 1998, 149 pages (ISBN: 0-691-00257-6; 0-691-00258-4) | MR | Zbl

Haïssinsky, P. Rigidity and expansion for rational maps, J. London Math. Soc., Volume 63 (2001), pp. 128-140 (ISSN: 0024-6107) | DOI | MR | Zbl

Hardy, G. H.; Littlewood, J. E.; Pólya, G., Cambridge Univ. Press, 1952, 324 pages | MR | Zbl

Jones, P. W., Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) (Princeton Math. Ser.), Volume 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 250-267 | DOI | MR | Zbl

Jones, P. W.; Smirnov, S. K. Removability theorems for Sobolev functions and quasiconformal maps, Ark. Mat., Volume 38 (2000), pp. 263-279 (ISSN: 0004-2080) | DOI | MR | Zbl

Kahn, J. Holomorphic removability of julia sets (preprint arXiv:math/9812164 )

Keller, G.; Nowicki, T. Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys., Volume 149 (1992), pp. 31-69 http://projecteuclid.org/euclid.cmp/1104251138 (ISSN: 0010-3616) | DOI | MR | Zbl

Keller, G.; Nowicki, T. Fibonacci maps re(al) visited, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 99-120 (ISSN: 0143-3857) | DOI | MR | Zbl

Kozlovski, O.; van Strien, S. Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | DOI | MR | Zbl

Ledrappier, F. Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 77-93 (ISSN: 0143-3857) | DOI | MR | Zbl

Ledrappier, F. Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 37-40 (ISSN: 0249-6291) | MR | Zbl

Lyubich, M.; Milnor, J. The Fibonacci unimodal map, J. Amer. Math. Soc., Volume 6 (1993), pp. 425-457 (ISSN: 0894-0347) | DOI | MR | Zbl

Li, H.; Shen, W. Dimensions of the Julia sets of rational maps with the backward contraction property, Fund. Math., Volume 198 (2008), pp. 165-176 (ISSN: 0016-2736) | DOI | MR | Zbl

Li, H.; Shen, W. On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Sci. China Math., Volume 53 (2010), pp. 1663-1677 (ISSN: 1674-7283) | DOI | MR | Zbl

Mañé, R. Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985), pp. 495-524 http://projecteuclid.org/euclid.cmp/1104114003 (ISSN: 0010-3616) | DOI | MR | Zbl

McMullen, C. T. Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv., Volume 75 (2000), pp. 535-593 (ISSN: 0010-2571) | DOI | MR | Zbl

McMullen, C. T., Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl

Mihalache, N. Julia and John revisited, Fund. Math., Volume 215 (2011), pp. 67-86 (ISSN: 0016-2736) | DOI | MR | Zbl

Milnor, J., The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67-116 | DOI | MR | Zbl

Milnor, J., Annals of Math. Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006, 304 pages (ISBN: 978-0-691-12488-9; 0-691-12488-4) | MR | Zbl

Misiurewicz, M. Absolutely continuous measures for certain maps of an interval, Publ. Math. I.H.É.S., Volume 53 (1981), pp. 17-51 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Melbourne, I.; Nicol, M. Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys., Volume 260 (2005), pp. 131-146 (ISSN: 0010-3616) | DOI | MR | Zbl

Melbourne, I.; Nicol, M. Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6661-6676 (ISSN: 0002-9947) | DOI | MR | Zbl

Mauldin, R. D.; Urbański, M., Cambridge Tracts in Mathematics, 148, Cambridge Univ. Press, Cambridge, 2003, 281 pages (ISBN: 0-521-82538-5) | DOI | MR | Zbl

Nowicki, T.; Przytycki, F. Topological invariance of the Collet-Eckmann property for S-unimodal maps, Fund. Math., Volume 155 (1998), pp. 33-43 (ISSN: 0016-2736) | DOI | MR | Zbl

Nowicki, T.; van Strien, S. Invariant measures exist under a summability condition for unimodal maps, Invent. Math., Volume 105 (1991), pp. 123-136 (ISSN: 0020-9910) | DOI | MR | Zbl

Przytycki, F.; Rohde, S. Porosity of Collet-Eckmann Julia sets, Fund. Math., Volume 155 (1998), pp. 189-199 (ISSN: 0016-2736) | DOI | MR | Zbl

Przytycki, F.; Rivera-Letelier, J. Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 135-178 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Przytycki, F.; Rivera-Letelier, J. Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys., Volume 301 (2011), pp. 661-707 (ISSN: 0010-3616) | DOI | MR | Zbl

Przytycki, F. Hölder implies Collet-Eckmann, Astérisque, Volume 261 (2000), pp. 385-403 (ISSN: 0303-1179) | Numdam | MR | Zbl

Przytycki, F. Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: on non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 717-742 (ISSN: 0002-9947) | DOI | MR | Zbl

Qiu, W.; Yin, Y. Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | DOI | MR | Zbl

Rivera-Letelier, J. A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 595-636 (ISSN: 0143-3857) | DOI | MR | Zbl

Ruelle, D. A measure associated with axiom-A attractors, Amer. J. Math., Volume 98 (1976), pp. 619-654 (ISSN: 0002-9327) | DOI | MR | Zbl

Senti, S. Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France, Volume 131 (2003), pp. 399-420 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

Sinaĭ, J. G. Gibbs measures in ergodic theory, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 (ISSN: 0042-1316) | MR | Zbl

Sullivan, D., Geometric dynamics (Rio de Janeiro, 1981) (Lecture Notes in Math.), Volume 1007, Springer, Berlin, 1983, pp. 725-752 | DOI | MR | Zbl

Tyran-Kamińska, M. An invariance principle for maps with polynomial decay of correlations, Comm. Math. Phys., Volume 260 (2005), pp. 1-15 (ISSN: 0010-3616) | DOI | MR | Zbl

van Strien, S.; Vargas, E. Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., Volume 17 (2004), pp. 749-782 (electronic) (ISSN: 0894-0347) | DOI | MR | Zbl

Young, L.-S. Decay of correlations for certain quadratic maps, Comm. Math. Phys., Volume 146 (1992), pp. 123-138 http://projecteuclid.org/euclid.cmp/1104249979 (ISSN: 0010-3616) | DOI | MR | Zbl

Young, L.-S. Recurrence times and rates of mixing, Israel J. Math., Volume 110 (1999), pp. 153-188 (ISSN: 0021-2172) | DOI | MR | Zbl

Cité par Sources :