Nous étudions l'existence et des propriétés statistiques des mesures physiques d'une application unidimensionnelle réelle ou complexe satisfaisant une hypothèse d'hyperbolicité faible, par rapport à une mesure de référence géométrique. Nous étudions aussi des propriétés géométriques de ces mesures.
For a real or complex one-dimensional map satisfying a weak hyperbolicity assumption, we study the existence and statistical properties of physical measures, with respect to geometric reference measures. We also study geometric properties of these measures.
DOI : 10.24033/asens.2233
Keywords: Physical measures, mixing rates.
Mot clés : Mesures physiques, vitesse de mélange.
@article{ASENS_2014__47_6_1027_0, author = {Rivera-Letelier, Juan and Shen, Weixiao}, title = {Statistical properties of one-dimensional maps under weak hyperbolicity assumptions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1027--1083}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {6}, year = {2014}, doi = {10.24033/asens.2233}, mrnumber = {3297154}, zbl = {1351.37195}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2233/} }
TY - JOUR AU - Rivera-Letelier, Juan AU - Shen, Weixiao TI - Statistical properties of one-dimensional maps under weak hyperbolicity assumptions JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 1027 EP - 1083 VL - 47 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2233/ DO - 10.24033/asens.2233 LA - en ID - ASENS_2014__47_6_1027_0 ER -
%0 Journal Article %A Rivera-Letelier, Juan %A Shen, Weixiao %T Statistical properties of one-dimensional maps under weak hyperbolicity assumptions %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 1027-1083 %V 47 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2233/ %R 10.24033/asens.2233 %G en %F ASENS_2014__47_6_1027_0
Rivera-Letelier, Juan; Shen, Weixiao. Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1027-1083. doi : 10.24033/asens.2233. http://www.numdam.org/articles/10.24033/asens.2233/
Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc., Volume 21 (2008), pp. 305-363 (ISSN: 0894-0347) | DOI | MR | Zbl
On iterations of on , Ann. of Math., Volume 122 (1985), pp. 1-25 (ISSN: 0003-486X) | DOI | MR | Zbl
, Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl
Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 621-646 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Lecture Notes in Math., 470, Springer, Berlin-New York, 1975, 108 pages | MR | Zbl
Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., Volume 172 (2008), pp. 509-533 (ISSN: 0020-9910) | DOI | MR | Zbl
Invariant measures exist without a growth condition, Comm. Math. Phys., Volume 241 (2003), pp. 287-306 (ISSN: 0010-3616) | DOI | MR | Zbl
, Progress in Physics, 1, Birkhäuser, 1980, 248 pages (ISBN: 3-7643-3026-0) | MR | Zbl
Conformal measures for rational functions revisited, Fund. Math., Volume 157 (1998), pp. 161-173 (ISSN: 0016-2736) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | DOI | MR | Zbl
Pesin theory and equilibrium measures on the interval (preprint arXiv:1304.3305 ) | MR
Hyperbolic dimension for interval maps, Nonlinearity, Volume 19 (2006), pp. 2877-2894 (ISSN: 0951-7715) | DOI | MR | Zbl
Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2803-2824 (ISSN: 0002-9947) | DOI | MR | Zbl
, John Wiley & Sons, Ltd., Chichester, 1990, 288 pages (ISBN: 0-471-92287-0) |Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 41 (2005), pp. 997-1024 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
Non-uniform hyperbolicity in complex dynamics, Invent. Math., Volume 175 (2009), pp. 335-415 (ISSN: 0020-9910) | DOI | MR | Zbl
Collet, Eckmann and Hölder, Invent. Math., Volume 133 (1998), pp. 69-96 (ISSN: 0020-9910) | DOI | MR | Zbl
, Annals of Math. Studies, 144, Princeton Univ. Press, Princeton, NJ, 1998, 149 pages (ISBN: 0-691-00257-6; 0-691-00258-4) | MR | Zbl
Rigidity and expansion for rational maps, J. London Math. Soc., Volume 63 (2001), pp. 128-140 (ISSN: 0024-6107) | DOI | MR | Zbl
, Cambridge Univ. Press, 1952, 324 pages |, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) (Princeton Math. Ser.), Volume 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 250-267 | DOI | MR | Zbl
Removability theorems for Sobolev functions and quasiconformal maps, Ark. Mat., Volume 38 (2000), pp. 263-279 (ISSN: 0004-2080) | DOI | MR | Zbl
Holomorphic removability of julia sets (preprint arXiv:math/9812164 )
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys., Volume 149 (1992), pp. 31-69 http://projecteuclid.org/euclid.cmp/1104251138 (ISSN: 0010-3616) | DOI | MR | Zbl
Fibonacci maps re(al) visited, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 99-120 (ISSN: 0143-3857) | DOI | MR | Zbl
Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | DOI | MR | Zbl
Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 77-93 (ISSN: 0143-3857) | DOI | MR | Zbl
Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 37-40 (ISSN: 0249-6291) | MR | Zbl
The Fibonacci unimodal map, J. Amer. Math. Soc., Volume 6 (1993), pp. 425-457 (ISSN: 0894-0347) | DOI | MR | Zbl
Dimensions of the Julia sets of rational maps with the backward contraction property, Fund. Math., Volume 198 (2008), pp. 165-176 (ISSN: 0016-2736) | DOI | MR | Zbl
On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Sci. China Math., Volume 53 (2010), pp. 1663-1677 (ISSN: 1674-7283) | DOI | MR | Zbl
Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985), pp. 495-524 http://projecteuclid.org/euclid.cmp/1104114003 (ISSN: 0010-3616) | DOI | MR | Zbl
Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv., Volume 75 (2000), pp. 535-593 (ISSN: 0010-2571) | DOI | MR | Zbl
, Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl
Julia and John revisited, Fund. Math., Volume 215 (2011), pp. 67-86 (ISSN: 0016-2736) | DOI | MR | Zbl
, The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67-116 | DOI | MR | Zbl
, Annals of Math. Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006, 304 pages (ISBN: 978-0-691-12488-9; 0-691-12488-4) | MR | Zbl
Absolutely continuous measures for certain maps of an interval, Publ. Math. I.H.É.S., Volume 53 (1981), pp. 17-51 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys., Volume 260 (2005), pp. 131-146 (ISSN: 0010-3616) | DOI | MR | Zbl
Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 6661-6676 (ISSN: 0002-9947) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 148, Cambridge Univ. Press, Cambridge, 2003, 281 pages (ISBN: 0-521-82538-5) | DOI | MR | Zbl
Topological invariance of the Collet-Eckmann property for -unimodal maps, Fund. Math., Volume 155 (1998), pp. 33-43 (ISSN: 0016-2736) | DOI | MR | Zbl
Invariant measures exist under a summability condition for unimodal maps, Invent. Math., Volume 105 (1991), pp. 123-136 (ISSN: 0020-9910) | DOI | MR | Zbl
Porosity of Collet-Eckmann Julia sets, Fund. Math., Volume 155 (1998), pp. 189-199 (ISSN: 0016-2736) | DOI | MR | Zbl
Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 135-178 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys., Volume 301 (2011), pp. 661-707 (ISSN: 0010-3616) | DOI | MR | Zbl
Hölder implies Collet-Eckmann, Astérisque, Volume 261 (2000), pp. 385-403 (ISSN: 0303-1179) | Numdam | MR | Zbl
Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: on non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 717-742 (ISSN: 0002-9947) | DOI | MR | Zbl
Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | DOI | MR | Zbl
A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 595-636 (ISSN: 0143-3857) | DOI | MR | Zbl
A measure associated with axiom-A attractors, Amer. J. Math., Volume 98 (1976), pp. 619-654 (ISSN: 0002-9327) | DOI | MR | Zbl
Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France, Volume 131 (2003), pp. 399-420 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
Gibbs measures in ergodic theory, Uspehi Mat. Nauk, Volume 27 (1972), pp. 21-64 (ISSN: 0042-1316) | MR | Zbl
, Geometric dynamics (Rio de Janeiro, 1981) (Lecture Notes in Math.), Volume 1007, Springer, Berlin, 1983, pp. 725-752 | DOI | MR | Zbl
An invariance principle for maps with polynomial decay of correlations, Comm. Math. Phys., Volume 260 (2005), pp. 1-15 (ISSN: 0010-3616) | DOI | MR | Zbl
Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., Volume 17 (2004), pp. 749-782 (electronic) (ISSN: 0894-0347) | DOI | MR | Zbl
Decay of correlations for certain quadratic maps, Comm. Math. Phys., Volume 146 (1992), pp. 123-138 http://projecteuclid.org/euclid.cmp/1104249979 (ISSN: 0010-3616) | DOI | MR | Zbl
Recurrence times and rates of mixing, Israel J. Math., Volume 110 (1999), pp. 153-188 (ISSN: 0021-2172) | DOI | MR | Zbl
Cité par Sources :