Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in Lp
[Uniforme rectifiabilité et mesure harmonique I: l'uniforme rectifiabilité entraîne le noyau de Poisson dans Lp ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 577-654.

On présente une version invariante par échelles et en dimension supérieure à 3, d'un théorème classique de F. et M. Riesz [37]. Plus précisément, on établit l'absolue continuité de la mesure harmonique par rapport à la mesure de surface, ainsi qu'un gain d'intégrabilité pour le noyau de Poisson, pour un domaine Ωn+1,n2, à bord uniformément rectifiable, vérifiant une condition de chaîne de Harnack et une condition de type « points d'ancrage » ou « Corkscrew » intérieure (mais pas extérieure). L'article associé [28] établit une réciproque, c'est-à-dire l'uniforme rectifiabilité du bord en supposant des estimées invariantes par échelle Lq pour q>1 sur le noyau de Poisson.

We present a higher dimensional, scale-invariant version of a classical theorem of F. and M. Riesz [37]. More precisely, we establish scale invariant absolute continuity of harmonic measure with respect to surface measure, along with higher integrability of the Poisson kernel, for a domain Ωn+1,n2, with a uniformly rectifiable boundary, which satisfies the Harnack chain condition plus an interior (but not exterior) Corkscrew condition. In a companion paper to this one [28], we also establish a converse, in which we deduce uniform rectifiability of the boundary, assuming scale invariant Lq bounds, with q>1, on the Poisson kernel.

Publié le :
DOI : 10.24033/asens.2223
Classification : 31B05, 35J08, 35J25, 42B99, 42B25, 42B37
Keywords: Harmonic measure, Poisson kernel, uniform rectifiability, Carleson measures, $A_\infty $ Muckenhoupt weights.
Mot clés : Mesure harmonique, noyau de Poisson, uniforme rectifiabilité, mesures de Carleson, poids de Muckenhoupt $A_\infty $.
@article{ASENS_2014__47_3_577_0,
     author = {Hofmann, Steve and Martell, Jos\'e Mar{\'\i}a},
     title = {Uniform rectifiability and harmonic measure {I:} {Uniform} rectifiability implies {Poisson} kernels in~$L^p$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {577--654},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {3},
     year = {2014},
     doi = {10.24033/asens.2223},
     mrnumber = {3239100},
     zbl = {1302.31007},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2223/}
}
TY  - JOUR
AU  - Hofmann, Steve
AU  - Martell, José María
TI  - Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 577
EP  - 654
VL  - 47
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2223/
DO  - 10.24033/asens.2223
LA  - en
ID  - ASENS_2014__47_3_577_0
ER  - 
%0 Journal Article
%A Hofmann, Steve
%A Martell, José María
%T Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 577-654
%V 47
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2223/
%R 10.24033/asens.2223
%G en
%F ASENS_2014__47_3_577_0
Hofmann, Steve; Martell, José María. Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 577-654. doi : 10.24033/asens.2223. http://www.numdam.org/articles/10.24033/asens.2223/

Auscher, P.; Hofmann, S.; Lewis, J. L.; Tchamitchian, P. Extrapolation of Carleson measures and the analyticity of Kato's square-root operators, Acta Math., Volume 187 (2001), pp. 161-190 (ISSN: 0001-5962) | DOI | MR | Zbl

Auscher, P.; Hofmann, S.; Muscalu, C.; Tao, T.; Thiele, C. Carleson measures, trees, extrapolation, and T(b) theorems, Publ. Mat., Volume 46 (2002), pp. 257-325 (ISSN: 0214-1493) | DOI | MR | Zbl

Aikawa, H. Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan, Volume 53 (2001), pp. 119-145 (ISSN: 0025-5645) | DOI | MR | Zbl

Aikawa, H. Equivalence between the boundary Harnack principle and the Carleson estimate, Math. Scand., Volume 103 (2008), pp. 61-76 (ISSN: 0025-5521) | DOI | MR | Zbl

Azzam, J.; Schul, R. Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps, Geom. Funct. Anal., Volume 22 (2012), pp. 1062-1123 (ISSN: 1016-443X) | DOI | MR | Zbl

Badger, M. Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited, Math. Z., Volume 270 (2012), pp. 241-262 (ISSN: 0025-5874) | DOI | MR | Zbl

Bishop, C. J.; Jones, P. W. Harmonic measure and arclength, Ann. of Math., Volume 132 (1990), pp. 511-547 (ISSN: 0003-486X) | DOI | MR | Zbl

Bennewitz, B.; Lewis, J. L. On weak reverse Hölder inequalities for nondoubling harmonic measures, Complex Var. Theory Appl., Volume 49 (2004), pp. 571-582 (ISSN: 0278-1077) | DOI | MR | Zbl

Bourgain, J. On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math., Volume 87 (1987), pp. 477-483 (ISSN: 0020-9910) | DOI | MR | Zbl

Carleson, L. Interpolations by bounded analytic functions and the Corona problem, Ann. of Math., Volume 76 (1962), pp. 547-559 (ISSN: 0003-486X) | DOI | MR | Zbl

Coifman, R. R.; Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals, Studia Math., Volume 51 (1974), pp. 241-250 (ISSN: 0039-3223) | DOI | MR | Zbl

Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., Volume 30 (1981), pp. 621-640 (ISSN: 0022-2518) | DOI | MR | Zbl

Carleson, L.; Garnett, J. Interpolating sequences and separation properties, Journal d'Analyse Mathématique, Volume 28 (1975), pp. 273-299 (ISSN: 0021-7670) | DOI | Zbl

Christ, M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., Volume 60/61 (1990), pp. 601-628 (ISSN: 0010-1354) | DOI | MR | Zbl

Dahlberg, B. E. J. Estimates of harmonic measure, Arch. Rational Mech. Anal., Volume 65 (1977), pp. 275-288 (ISSN: 0003-9527) | DOI | MR | Zbl

David, G.; Jerison, D. S. Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J., Volume 39 (1990), pp. 831-845 (ISSN: 0022-2518) | DOI | MR | Zbl

Dahlberg, B. E. J.; Jerison, D. S.; Kenig, C. E. Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat., Volume 22 (1984), pp. 97-108 (ISSN: 0004-2080) | DOI | MR | Zbl

David, G.; Semmes, S. Singular integrals and rectifiable sets in 𝐑n: Beyond Lipschitz graphs, Astérisque, Volume 193 (1991) (ISSN: 0303-1179) | Numdam | MR | Zbl

David, G.; Semmes, S., Mathematical Surveys and Monographs, 38, Amer. Math. Soc., Providence, RI, 1993, 356 pages (ISBN: 0-8218-1537-7) | MR | Zbl

Evans, L. C.; Gariepy, R. F., Studies in Advanced Math., CRC Press, Boca Raton, FL, 1992, 268 pages (ISBN: 0-8493-7157-0) | MR | Zbl

García-Cuerva, J.; Rubio de Francia, J. L., North-Holland Mathematics Studies, 116, North-Holland Publishing Co., Amsterdam, 1985, 604 pages (ISBN: 0-444-87804-1) | MR | Zbl

Grau de la Herran, A.; Mourgoglou, M. A Tb theorem for square functions in domains with Ahlfors-David regular boundaries, J. Geom. Anal. (2013), pp. 1-22 | DOI | MR | Zbl

Gilbarg, D.; Trudinger, N. S., Grundl. Math. Wiss., 224, Springer, Berlin, 1983, 513 pages (ISBN: 3-540-13025-X) | MR | Zbl

Grüter, M.; Widman, K.-O. The Green function for uniformly elliptic equations, Manuscripta Math., Volume 37 (1982), pp. 303-342 (ISSN: 0025-2611) | DOI | MR | Zbl

Hofmann, S.; Lewis, J. L. The Dirichlet problem for parabolic operators with singular drift terms, Mem. Amer. Math. Soc., Volume 151 (2001) (ISSN: 0065-9266) | DOI | MR | Zbl

Hofmann, S.; Martell, J. M., The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis (Proc. Centre Math. Appl. Austral. Nat. Univ.), Volume 44, Austral. Nat. Univ., Canberra, 2010, pp. 143-166 | MR | Zbl

Hofmann, S.; Martell, J. M. A estimates via extrapolation of Carleson measures and applications to divergence form elliptic operators, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 65-101 (ISSN: 0002-9947) | DOI | MR | Zbl

Hofmann, S.; Martell, J. M.; Uriarte-Tuero, I. Uniform rectifiability and harmonic measure II: Poisson kernels in L p imply uniform rectifiability (to appear in Duke Math. J ) | MR | Zbl

Jerison, D. S.; Kenig, C. E. Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math., Volume 46 (1982), pp. 80-147 (ISSN: 0001-8708) | DOI | MR | Zbl

Jones, P. W., Harmonic analysis and partial differential equations (El Escorial, 1987) (Lecture Notes in Math.), Volume 1384, Springer, Berlin, 1989, pp. 24-68 | DOI | MR | Zbl

Kenig, C. E., CBMS Regional Conference Series in Mathematics, 83, Amer. Math. Soc., 1994, 146 pages (ISBN: 0-8218-0309-3) | MR | Zbl

Kenig, C. E.; Toro, T. Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 323-401 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Kenig, C. E.; Toro, T. Harmonic measure on locally flat domains, Duke Math. J., Volume 87 (1997), pp. 509-551 (ISSN: 0012-7094) | DOI | MR | Zbl

Kenig, C. E.; Toro, T. Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math., Volume 150 (1999), pp. 369-454 (ISSN: 0003-486X) | DOI | MR | Zbl

Lavrentʼev, M. Boundary problems in the theory of univalent functions, Amer. Math. Soc. Transl., Volume 32 (1963), pp. 1-35 (ISSN: 0065-9290) | MR | Zbl

Lewis, J. L.; Murray, M. A. M. The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc., Volume 114 (1995) (ISSN: 0065-9266) | DOI | MR | Zbl

Riesz, F.; Riesz, M. Über die Randwerte einer analytischen Funktion, Comptes rendus du quatrième congrès des mathématiciens scandinaves, Stockholm 1916, Almqvist & Wilksels (1920) | JFM

Sawyer, E. T., Harmonic analysis (Minneapolis, Minn., 1981) (Lecture Notes in Math.), Volume 908, Springer, Berlin-New York, 1982, pp. 102-127 | DOI | MR | Zbl

Semmes, S. Analysis vs. geometry on a class of rectifiable hypersurfaces in 𝐑n , Indiana Univ. Math. J., Volume 39 (1990), pp. 1005-1035 (ISSN: 0022-2518) | DOI | MR | Zbl

Stein, E. M., Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl

Cité par Sources :