Dans ce travail, nous étudions les mesures microlocales des fonctions de type ondes planes sur des variétés non compactes qui, près de l'infini, sont euclidiennes ou asymptotiquement hyperboliques avec courbure . Les ondes planes sont des fonctions sur paramétrées par la racine carrée de l'énergie et la direction de l'onde, interprétée comme un point à l'infini. Si l'ensemble capté pour le flot géodésique est de mesure de Liouville nulle, nous montrons que, quand , converge microlocalement vers une certaine mesure , en moyenne en et en énergie sur des intervalles de taille fixe. On exprime la vitesse de convergence vers la limite en fonction de la vitesse de fuite du flot géodésique et de son taux maximal d'expansion. Quand le flot est Axiom A sur , la vitesse de convergence est une puissance négative de . Enfin, en guise d'application, nous donnons des développements asymptotiques de type Weyl à plusieurs termes pour les traces locales de projecteurs spectraux, avec un reste dépendant de la vitesse de fuite du flot.
We study microlocal limits of plane waves on noncompact Riemannian manifolds which are either Euclidean or asymptotically hyperbolic with curvature near infinity. The plane waves are functions on parametrized by the square root of energy and the direction of the wave, , interpreted as a point at infinity. If the trapped set for the geodesic flow has Liouville measure zero, we show that, as , microlocally converges to a measure , in average on energy intervals of fixed size, , and in . We express the rate of convergence to the limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate—when the flow is Axiom A on the trapped set, this yields a negative power of . As an application, we obtain Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in terms of the classical escape rate.
Keywords: Semiclassical measures, plane waves, Eisenstein functions, Weyl law.
Mot clés : Mesures semi-classiques, ondes planes, fonctions d'Eisenstein, loi de Weyl.
@article{ASENS_2014__47_2_371_0, author = {Dyatlov, Semyon and Guillarmou, Colin}, title = {Microlocal limits of plane waves and {Eisenstein} functions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {371--448}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {2}, year = {2014}, doi = {10.24033/asens.2217}, mrnumber = {3215926}, zbl = {1297.58007}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2217/} }
TY - JOUR AU - Dyatlov, Semyon AU - Guillarmou, Colin TI - Microlocal limits of plane waves and Eisenstein functions JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 371 EP - 448 VL - 47 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2217/ DO - 10.24033/asens.2217 LA - en ID - ASENS_2014__47_2_371_0 ER -
%0 Journal Article %A Dyatlov, Semyon %A Guillarmou, Colin %T Microlocal limits of plane waves and Eisenstein functions %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 371-448 %V 47 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2217/ %R 10.24033/asens.2217 %G en %F ASENS_2014__47_2_371_0
Dyatlov, Semyon; Guillarmou, Colin. Microlocal limits of plane waves and Eisenstein functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 371-448. doi : 10.24033/asens.2217. http://www.numdam.org/articles/10.24033/asens.2217/
Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 2465-2523 http://aif.cedram.org/item?id=AIF_2007__57_7_2465_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252 (ISSN: 0012-7094) | DOI | MR | Zbl
The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975), pp. 181-202 (ISSN: 0020-9910) | DOI | MR | Zbl
Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., Volume 2002 (2002), pp. 221-241 (ISSN: 1073-7928) | DOI | MR | Zbl
Quantum ergodicity of boundary values of eigenfunctions: a control theory approach, Canad. Math. Bull., Volume 48 (2005), pp. 3-15 (ISSN: 0008-4395) | DOI | MR | Zbl
Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985), pp. 497-502 http://projecteuclid.org/getRecord?id=euclid.cmp/1104114465 (ISSN: 0010-3616) | DOI | MR | Zbl
Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis, Volume 12 (1973), pp. 401-414 | DOI | MR | Zbl
Scattering phase asymptotics with fractal remainders, Comm. Math. Phys., Volume 324 (2013), pp. 425-444 (ISSN: 0010-3616) | DOI | MR | Zbl
The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 (ISSN: 0020-9910) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 268, Cambridge Univ. Press, 1999, 227 pages (ISBN: 0-521-66544-2) | DOI | MR | Zbl
Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré, Volume 13 (2012), pp. 1101-1166 (ISSN: 1424-0637) | DOI | MR | Zbl
Microlocal limits of Eisenstein functions away from the unitarity axis, J. Spectr. Theory, Volume 2 (2012), pp. 181-202 (ISSN: 1664-039X) | DOI | MR | Zbl
Quantum ergodicity for restrictions to hypersurfaces, Nonlinearity, Volume 26 (2013), pp. 35-52 (ISSN: 0951-7715) | DOI | MR | Zbl
Expansiveness, hyperbolicity and Hausdorff dimension, Comm. Math. Phys., Volume 126 (1989), pp. 249-262 http://projecteuclid.org/getRecord?id=euclid.cmp/1104179851 (ISSN: 0010-3616) | DOI | MR | Zbl
Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991), pp. 186-225 (ISSN: 0001-8708) | DOI | MR | Zbl
Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993), pp. 559-607 (ISSN: 0012-7094) | DOI | MR | Zbl
Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds, Amer. J. Math., Volume 136 (2014), pp. 445-479 | DOI | MR | Zbl
Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys., Volume 108 (1987), pp. 391-421 http://projecteuclid.org/getRecord?id=euclid.cmp/1104116533 (ISSN: 0010-3616) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 14, AMS, 1990
, London Mathematical Society Lecture Note Series, 196, Cambridge Univ. Press, 1994, 151 pages (ISBN: 0-521-44986-3) | MR | Zbl
Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J., Volume 129 (2005), pp. 1-37 (ISSN: 0012-7094) | DOI | MR | Zbl
Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptotic Anal., Volume 11 (1995), pp. 1-22 (ISSN: 0921-7134) | DOI | MR | Zbl
Ergodicité et limite semi-classique, Comm. Math. Phys., Volume 109 (1987), pp. 313-326 http://projecteuclid.org/getRecord?id=euclid.cmp/1104116844 (ISSN: 0010-3616) | DOI | MR | Zbl
, Grundl. Math. Wiss., 274, Springer, 1985, 525 pages (ISBN: 3-540-13828-5) | MR | Zbl
, Grundl. Math. Wiss., 275, Springer, 1985, 352 pages (ISBN: 3-540-13829-3) | MR | Zbl
Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Volume 53 (1983), pp. 246-268 (ISSN: 0022-1236) | DOI | MR | Zbl
The spectral projections and the resolvent for scattering metrics, J. Anal. Math., Volume 79 (1999), pp. 241-298 (ISSN: 0021-7670) | DOI | MR | Zbl
Quantum ergodicity of boundary values of eigenfunctions, Comm. Math. Phys., Volume 248 (2004), pp. 119-168 (ISSN: 0010-3616) | DOI | MR | Zbl
Quantum unique ergodicity for Eisenstein series on , Ann. Inst. Fourier (Grenoble), Volume 44 (1994), pp. 1477-1504 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., Volume 321 (1990), pp. 505-524 (ISSN: 0002-9947) | DOI | MR | Zbl
Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math., Volume 163 (2006), pp. 165-219 (ISSN: 0003-486X) | DOI | MR | Zbl
Quantum ergodicity of eigenfunctions on , Publ. Math. I.H.É.S., Volume 81 (1995), pp. 207-237 (ISSN: 0073-8301) | Numdam | MR | Zbl
Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math., Volume 113 (1991), pp. 25-45 (ISSN: 0002-9327) | DOI | MR | Zbl
, Stanford Lectures, Cambridge Univ. Press, 1995, 116 pages (ISBN: 0-521-49673-X; 0-521-49810-4) | MR | Zbl
Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 (ISSN: 0022-1236) | DOI | MR | Zbl
Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces (preprint arXiv:1103.3507 ) | MR | Zbl
Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 (ISSN: 0020-9910) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 143, Cambridge Univ. Press, 1989, 221 pages (ISBN: 0-521-37674-2) | DOI | MR | Zbl
Spectral problems in open quantum chaos, Nonlinearity, Volume 24 (2011), pp. 123-167 | DOI | Zbl
Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009), pp. 149-233 (ISSN: 0001-5962) | DOI | MR | Zbl
The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 (ISSN: 0001-5962) | DOI | MR | Zbl
Asymptotique semi-classique du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques, Comm. Partial Differential Equations, Volume 10 (1985), pp. 365-390 (ISSN: 0360-5302) | DOI | MR | Zbl
Multifractal analysis of conformal Axiom A flows, Comm. Math. Phys., Volume 216 (2001), pp. 277-312 (ISSN: 0010-3616) | DOI | MR | Zbl
Entropy of semiclassical measures in dimension 2, Duke Math. J., Volume 155 (2010), pp. 271-336 (ISSN: 0012-7094) | DOI | MR | Zbl
, Progress in Math., 68, Birkhäuser, 1987, 329 pages (ISBN: 0-8176-3354-5) | MR | Zbl
Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal., Volume 80 (1988), pp. 124-147 (ISSN: 0022-1236) | DOI | MR | Zbl
Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. (N.S.), Volume 48 (2011), pp. 211-228 (ISSN: 0273-0979) | DOI | MR | Zbl
Quantum unique ergodicity for , Ann. of Math., Volume 172 (2010), pp. 1529-1538 (ISSN: 0003-486X) | MR | Zbl
The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.É.S., Volume 50 (1979), pp. 171-202 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984), pp. 259-277 (ISSN: 0001-5962) | DOI | MR | Zbl
Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains with ergodic billiards, Ann. Henri Poincaré, Volume 13 (2012), pp. 599-670 (ISSN: 1424-0637) | DOI | MR | Zbl
Quantum ergodic restriction theorems: manifolds without boundary, Geom. Funct. Anal., Volume 23 (2013), pp. 715-775 (ISSN: 1016-443X) | DOI | MR | Zbl
Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, Math. Sci. Res. Inst. Publ., Volume 60 (2012), pp. 487-528 | MR | Zbl
Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math., Volume 194 (2013), pp. 381-513 (ISSN: 0020-9910) | DOI | MR | Zbl
, Panoramas et Synthèses, 22, Soc. Math. France, 2006, 156 pages (ISBN: 978-2-85629-221-1) | MR | Zbl
Large deviations in dynamical systems, Trans. Amer. Math. Soc., Volume 318 (1990), pp. 525-543 (ISSN: 0002-9947) | DOI | MR | Zbl
, Current developments in mathematics, 2009, Int. Press, Somerville, MA, 2010, pp. 115-204 | MR | Zbl
Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987), pp. 919-941 (ISSN: 0012-7094) | DOI | MR | Zbl
Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991), pp. 1-49 (ISSN: 0022-1236) | DOI | MR | Zbl
, Graduate Studies in Math., 138, Amer. Math. Soc., 2012, 431 pages (ISBN: 978-0-8218-8320-4) | MR | Zbl
Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys., Volume 175 (1996), pp. 673-682 http://projecteuclid.org/getRecord?id=euclid.cmp/1104276097 (ISSN: 0010-3616) | DOI | MR | Zbl
Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974), pp. 181-182 (ISSN: 0042-1316) | MR | Zbl
Cité par Sources :