Microlocal limits of plane waves and Eisenstein functions
[Limites microlocales des ondes planes et les fonctions d'Eisenstein]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 371-448

We study microlocal limits of plane waves on noncompact Riemannian manifolds (M,g) which are either Euclidean or asymptotically hyperbolic with curvature -1 near infinity. The plane waves E(z,ξ) are functions on M parametrized by the square root of energy z and the direction of the wave, ξ, interpreted as a point at infinity. If the trapped set K for the geodesic flow has Liouville measure zero, we show that, as z+, E(z,ξ) microlocally converges to a measure μξ, in average on energy intervals of fixed size, [z,z+1], and in ξ. We express the rate of convergence to the limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate—when the flow is Axiom A on the trapped set, this yields a negative power of z. As an application, we obtain Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in terms of the classical escape rate.

Dans ce travail, nous étudions les mesures microlocales des fonctions de type ondes planes sur des variétés non compactes (M,g) qui, près de l'infini, sont euclidiennes ou asymptotiquement hyperboliques avec courbure -1. Les ondes planes E(z,ξ) sont des fonctions sur M paramétrées par la racine carrée de l'énergie z et la direction ξ de l'onde, interprétée comme un point à l'infini. Si l'ensemble capté K pour le flot géodésique est de mesure de Liouville nulle, nous montrons que, quand z+, E(z,ξ) converge microlocalement vers une certaine mesure μξ, en moyenne en ξ et en énergie z sur des intervalles de taille fixe. On exprime la vitesse de convergence vers la limite en fonction de la vitesse de fuite du flot géodésique et de son taux maximal d'expansion. Quand le flot est Axiom A sur K, la vitesse de convergence est une puissance négative de z. Enfin, en guise d'application, nous donnons des développements asymptotiques de type Weyl à plusieurs termes pour les traces locales de projecteurs spectraux, avec un reste dépendant de la vitesse de fuite du flot.

DOI : 10.24033/asens.2217
Classification : 58J50; 58J40, 30F35, 30F45
Keywords: Semiclassical measures, plane waves, Eisenstein functions, Weyl law.
Mots-clés : Mesures semi-classiques, ondes planes, fonctions d'Eisenstein, loi de Weyl.
@article{ASENS_2014__47_2_371_0,
     author = {Dyatlov, Semyon and Guillarmou, Colin},
     title = {Microlocal limits of plane waves  and {Eisenstein} functions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {371--448},
     year = {2014},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {2},
     doi = {10.24033/asens.2217},
     mrnumber = {3215926},
     zbl = {1297.58007},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2217/}
}
TY  - JOUR
AU  - Dyatlov, Semyon
AU  - Guillarmou, Colin
TI  - Microlocal limits of plane waves  and Eisenstein functions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 371
EP  - 448
VL  - 47
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2217/
DO  - 10.24033/asens.2217
LA  - en
ID  - ASENS_2014__47_2_371_0
ER  - 
%0 Journal Article
%A Dyatlov, Semyon
%A Guillarmou, Colin
%T Microlocal limits of plane waves  and Eisenstein functions
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 371-448
%V 47
%N 2
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2217/
%R 10.24033/asens.2217
%G en
%F ASENS_2014__47_2_371_0
Dyatlov, Semyon; Guillarmou, Colin. Microlocal limits of plane waves  and Eisenstein functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 371-448. doi: 10.24033/asens.2217

Anantharaman, N.; Nonnenmacher, S. Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 2465-2523 http://aif.cedram.org/... (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI

Bouzouina, A.; Robert, D. Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002), pp. 223-252 (ISSN: 0012-7094) | MR | Zbl | DOI

Bowen, R.; Ruelle, D. The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975), pp. 181-202 (ISSN: 0020-9910) | MR | Zbl | DOI

Burq, N. Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., Volume 2002 (2002), pp. 221-241 (ISSN: 1073-7928) | MR | Zbl | DOI

Burq, N. Quantum ergodicity of boundary values of eigenfunctions: a control theory approach, Canad. Math. Bull., Volume 48 (2005), pp. 3-15 (ISSN: 0008-4395) | MR | Zbl | DOI

Colin de Verdière, Y. Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985), pp. 497-502 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Chernoff, P. R. Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis, Volume 12 (1973), pp. 401-414 | MR | Zbl | DOI

Dyatlov, S.; Guillarmou, C. Scattering phase asymptotics with fractal remainders, Comm. Math. Phys., Volume 324 (2013), pp. 425-444 (ISSN: 0010-3616) | MR | Zbl | DOI

Duistermaat, J. J.; Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 (ISSN: 0020-9910) | MR | Zbl | DOI

Dimassi, M.; Sjöstrand, J., London Mathematical Society Lecture Note Series, 268, Cambridge Univ. Press, 1999, 227 pages (ISBN: 0-521-66544-2) | MR | Zbl | DOI

Dyatlov, S. Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré, Volume 13 (2012), pp. 1101-1166 (ISSN: 1424-0637) | MR | Zbl | DOI

Dyatlov, S. Microlocal limits of Eisenstein functions away from the unitarity axis, J. Spectr. Theory, Volume 2 (2012), pp. 181-202 (ISSN: 1664-039X) | MR | Zbl | DOI

Dyatlov, S.; Zworski, M. Quantum ergodicity for restrictions to hypersurfaces, Nonlinearity, Volume 26 (2013), pp. 35-52 (ISSN: 0951-7715) | MR | Zbl | DOI

Fathi, A. Expansiveness, hyperbolicity and Hausdorff dimension, Comm. Math. Phys., Volume 126 (1989), pp. 249-262 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Graham, C. R.; Lee, J. M. Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991), pp. 186-225 (ISSN: 0001-8708) | MR | Zbl | DOI

Gérard, P.; Leichtnam, É. Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993), pp. 559-607 (ISSN: 0012-7094) | MR | Zbl | DOI

Guillarmou, C.; Naud, F. Equidistribution of Eisenstein series on convex co-compact hyperbolic manifolds, Amer. J. Math., Volume 136 (2014), pp. 445-479 | MR | Zbl | DOI

Gérard, C.; Sjöstrand, J. Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys., Volume 108 (1987), pp. 391-421 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Guillemin, V. W.; Sternberg, S., Mathematical Surveys and Monographs, 14, AMS, 1990

Grigis, A.; Sjöstrand, J., London Mathematical Society Lecture Note Series, 196, Cambridge Univ. Press, 1994, 151 pages (ISBN: 0-521-44986-3) | MR | Zbl

Guillarmou, C. Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J., Volume 129 (2005), pp. 1-37 (ISSN: 0012-7094) | Zbl | MR | DOI

Guillopé, L.; Zworski, M. Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptotic Anal., Volume 11 (1995), pp. 1-22 (ISSN: 0921-7134) | MR | Zbl | DOI

Helffer, B.; Martinez, A.; Robert, D. Ergodicité et limite semi-classique, Comm. Math. Phys., Volume 109 (1987), pp. 313-326 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Hörmander, L., Grundl. Math. Wiss., 274, Springer, 1985, 525 pages (ISBN: 3-540-13828-5) | Zbl | MR

Hörmander, L., Grundl. Math. Wiss., 275, Springer, 1985, 352 pages (ISBN: 3-540-13829-3) | Zbl | MR

Helffer, B.; Robert, D. Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Volume 53 (1983), pp. 246-268 (ISSN: 0022-1236) | MR | Zbl | DOI

Hassell, A.; Vasy, A. The spectral projections and the resolvent for scattering metrics, J. Anal. Math., Volume 79 (1999), pp. 241-298 (ISSN: 0021-7670) | MR | Zbl | DOI

Hassell, A.; Zelditch, S. Quantum ergodicity of boundary values of eigenfunctions, Comm. Math. Phys., Volume 248 (2004), pp. 119-168 (ISSN: 0010-3616) | MR | Zbl | DOI

Jakobson, D. Quantum unique ergodicity for Eisenstein series on PSL 2(𝐙) PSL 2(𝐑) , Ann. Inst. Fourier (Grenoble), Volume 44 (1994), pp. 1477-1504 (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI

Kifer, Y. Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., Volume 321 (1990), pp. 505-524 (ISSN: 0002-9947) | MR | Zbl | DOI

Lindenstrauss, E. Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math., Volume 163 (2006), pp. 165-219 (ISSN: 0003-486X) | MR | Zbl | DOI

Luo, W. Z.; Sarnak, P. Quantum ergodicity of eigenfunctions on PSL 2(𝐙)𝐇2 , Publ. Math. I.H.É.S., Volume 81 (1995), pp. 207-237 (ISSN: 0073-8301) | MR | Zbl | Numdam

Mazzeo, R. R. Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math., Volume 113 (1991), pp. 25-45 (ISSN: 0002-9327) | MR | Zbl | DOI

Melrose, R. B., Stanford Lectures, Cambridge Univ. Press, 1995, 116 pages (ISBN: 0-521-49673-X; 0-521-49810-4) | MR | Zbl

Mazzeo, R. R.; Melrose, R. B. Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 (ISSN: 0022-1236) | MR | Zbl | DOI

Melrose, R. B.; Sá Barreto, A.; Vasy, A. Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces (preprint arXiv:1103.3507 ) | MR | Zbl

Melrose, R. B.; Zworski, M. Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 (ISSN: 0020-9910) | MR | Zbl | DOI

Nicholls, P. J., London Mathematical Society Lecture Note Series, 143, Cambridge Univ. Press, 1989, 221 pages (ISBN: 0-521-37674-2) | MR | Zbl | DOI

Nonnenmacher, S. Spectral problems in open quantum chaos, Nonlinearity, Volume 24 (2011), pp. 123-167 | Zbl | DOI

Nonnenmacher, S.; Zworski, M. Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009), pp. 149-233 (ISSN: 0001-5962) | MR | Zbl | DOI

Patterson, S. J. The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 (ISSN: 0001-5962) | MR | Zbl | DOI

Petkov, V.; Robert, D. Asymptotique semi-classique du spectre d'hamiltoniens quantiques et trajectoires classiques périodiques, Comm. Partial Differential Equations, Volume 10 (1985), pp. 365-390 (ISSN: 0360-5302) | MR | Zbl | DOI

Pesin, Y. B.; Sadovskaya, V. Multifractal analysis of conformal Axiom A flows, Comm. Math. Phys., Volume 216 (2001), pp. 277-312 (ISSN: 0010-3616) | MR | Zbl | DOI

Rivière, G. Entropy of semiclassical measures in dimension 2, Duke Math. J., Volume 155 (2010), pp. 271-336 (ISSN: 0012-7094) | MR | Zbl | DOI

Robert, D., Progress in Math., 68, Birkhäuser, 1987, 329 pages (ISBN: 0-8176-3354-5) | MR | Zbl

Robert, D.; Tamura, H. Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal., Volume 80 (1988), pp. 124-147 (ISSN: 0022-1236) | MR | Zbl | DOI

Sarnak, P. Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. (N.S.), Volume 48 (2011), pp. 211-228 (ISSN: 0273-0979) | MR | Zbl | DOI

Soundararajan, K. Quantum unique ergodicity for SL 2() , Ann. of Math., Volume 172 (2010), pp. 1529-1538 (ISSN: 0003-486X) | MR | Zbl

Sullivan, D. The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.É.S., Volume 50 (1979), pp. 171-202 (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI

Sullivan, D. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984), pp. 259-277 (ISSN: 0001-5962) | MR | Zbl | DOI

Toth, J. A.; Zelditch, S. Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains with ergodic billiards, Ann. Henri Poincaré, Volume 13 (2012), pp. 599-670 (ISSN: 1424-0637) | MR | Zbl | DOI

Toth, J. A.; Zelditch, S. Quantum ergodic restriction theorems: manifolds without boundary, Geom. Funct. Anal., Volume 23 (2013), pp. 715-775 (ISSN: 1016-443X) | MR | Zbl | DOI

Vasy, A. Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, Math. Sci. Res. Inst. Publ., Volume 60 (2012), pp. 487-528 | MR | Zbl

Vasy, A. Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math., Volume 194 (2013), pp. 381-513 (ISSN: 0020-9910) | MR | Zbl | DOI

Vũ Ngọc, S., Panoramas et Synthèses, 22, Soc. Math. France, 2006, 156 pages (ISBN: 978-2-85629-221-1) | MR | Zbl

Young, L.-S. Large deviations in dynamical systems, Trans. Amer. Math. Soc., Volume 318 (1990), pp. 525-543 (ISSN: 0002-9947) | MR | Zbl | DOI

Zelditch, S., Current developments in mathematics, 2009, Int. Press, Somerville, MA, 2010, pp. 115-204 | MR | Zbl

Zelditch, S. Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987), pp. 919-941 (ISSN: 0012-7094) | MR | Zbl | DOI

Zelditch, S. Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991), pp. 1-49 (ISSN: 0022-1236) | MR | Zbl | DOI

Zworski, M., Graduate Studies in Math., 138, Amer. Math. Soc., 2012, 431 pages (ISBN: 978-0-8218-8320-4) | MR | Zbl

Zelditch, S.; Zworski, M. Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys., Volume 175 (1996), pp. 673-682 http://projecteuclid.org/... (ISSN: 0010-3616) | MR | Zbl | DOI

Šnirelʼman, A. I. Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974), pp. 181-182 (ISSN: 0042-1316) | Zbl | MR

Cité par Sources :