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MICROLOCAL LIMITS OF PLANE WAVES
AND EISENSTEIN FUNCTIONS

 S DYATLOV  C GUILLARMOU

A. – We study microlocal limits of plane waves on noncompact Riemannian mani-
folds (M, g) which are either Euclidean or asymptotically hyperbolic with curvature −1 near infinity.
The plane waves E(z, ξ) are functions on M parametrized by the square root of energy z and the
direction of the wave, ξ, interpreted as a point at infinity. If the trapped setK for the geodesic flow has
Liouville measure zero, we show that, as z → +∞, E(z, ξ) microlocally converges to a measure µξ, in
average on energy intervals of fixed size, [z, z + 1], and in ξ. We express the rate of convergence to the
limit in terms of the classical escape rate of the geodesic flow and its maximal expansion rate—when
the flow is Axiom A on the trapped set, this yields a negative power of z. As an application, we obtain
Weyl type asymptotic expansions for local traces of spectral projectors with a remainder controlled in
terms of the classical escape rate.

R. – Dans ce travail, nous étudions les mesures microlocales des fonctions de type ondes
planes sur des variétés non compactes (M, g) qui, près de l’infini, sont euclidiennes ou asymptotique-
ment hyperboliques avec courbure−1. Les ondes planesE(z, ξ) sont des fonctions surM paramétrées
par la racine carrée de l’énergie z et la direction ξ de l’onde, interprétée comme un point à l’infini. Si
l’ensemble captéK pour le flot géodésique est de mesure de Liouville nulle, nous montrons que, quand
z → +∞, E(z, ξ) converge microlocalement vers une certaine mesure µξ, en moyenne en ξ et en éner-
gie z sur des intervalles de taille fixe. On exprime la vitesse de convergence vers la limite en fonction de
la vitesse de fuite du flot géodésique et de son taux maximal d’expansion. Quand le flot est Axiom A
sur K, la vitesse de convergence est une puissance négative de z. Enfin, en guise d’application, nous
donnons des développements asymptotiques de type Weyl à plusieurs termes pour les traces locales de
projecteurs spectraux, avec un reste dépendant de la vitesse de fuite du flot.

For a compact Riemannian manifold (M, g) of dimension dwhose geodesic flow is ergodic
with respect to the Liouville measure µL, quantum ergodicity (QE) of eigenfunctions [48,
58, 7] states that any orthonormal basis (ej)j∈N of eigenfunctions of the Laplacian with
eigenvalues z2

j , has a density one subsequence (ejk) that converges microlocally to µL in the
following sense: for each symbol a ∈ C∞(T ∗M) of order zero,

(1.1) 〈Ophjk
(a)ejk , ejk〉L2(M) →

1

µL(S∗M)

∫
S∗M

a dµL.
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372 S. DYATLOV AND C. GUILLARMOU

Here S∗M stands for the unit cotangent bundle, Oph(a) denotes the pseudodifferential
operator obtained by quantizing a (see Section 3.1), and we put hj = z−1

j . The proof uses
the following integrated form of quantum ergodicity [25]:

(1.2) hd−1
∑

h−1≤zj≤h−1+1

∣∣∣∣〈Oph(a)ej , ej〉L2 − 1

µL(S∗M)

∫
S∗M

a dµL

∣∣∣∣→ 0 as h→ 0.

See Appendix D for a short self-contained proof of this result using the methods of this paper.
In the present paper, we consider a non-compact complete Riemannian manifold (M, g)

and show that generalized eigenfunctions of the Laplacian onM known in scattering theory
as distorted plane waves or Eisenstein functions, converge microlocally on average, similarly
to (1.2), with the limiting measure µξ depending on the direction of the plane wave ξ—see
Theorem 1. We also give estimates on the rate of convergence in terms of classical quantities
defined from the geodesic flow on M—see Theorem 2.

Our microlocal convergence of plane waves is similar in spirit to the QE Results (1.1)
and (1.2). However, unlike the case of QE where ergodicity of the geodesic flow is essential,
our result is based on a different phenomenon, roughly described as dispersion of plane waves.
This difference manifests itself in the proofs as follows: instead of averaging an observable
along the geodesic flow as in the standard proof of quantum ergodicity, we propagate it. See
Section 2 for an outline of the proofs of Theorems 1 and 2.

Geometric assumptions near infinity. – The manifold M has dimension d = n + 1. For our
results to hold, we need to make several assumptions on the geometry of (M, g) near infinity
and on the spectral decomposition of its Laplacian ∆. They are listed in Section 4 and we
check in Sections 6 and 7 that they are satisfied in each of the following two cases:

1. there exists a compact setK0 ⊂M such that (M\K0, g) is isometric toRn+1\B(0, R0)

with the Euclidean metric g0 for someR0 > 0; hereB(0, R0) denotes the ball centered
at 0 of radius R0,

2. (M, g) is an asymptotically hyperbolic manifold in the sense that it admits a smooth
compactification M and there exists a smooth boundary defining function x such that
in a collar neighborhood of the boundary ∂M , the metric has the form

(1.3) g =
dx2 + h(x)

x2
,

where h(x) is a smooth 1-parameter family of metrics on ∂M for x ∈ [0, ε). We further
assume that g has sectional curvature −1 in a neighborhood of ∂M .

In case (1), we call (M, g) Euclidean near infinity, while in case (2), we call it hyperbolic near in-
finity. Case (2) in particular includes convex co-compact hyperbolic quotients Γ\Hn+1—see
Appendix A. Other possible geometries are discussed in Section 2.1.

Distorted plane waves/Eisenstein functions. – Let ∆ be the (nonnegative) Laplace-Beltrami
operator on M . In the study of the relation between classical dynamics and high energy
behavior it is natural to use the semiclassically rescaled operator h2∆, with h > 0 small
parameter tending to zero.

The operator h2∆ has continuous spectrum on a half-line [c0h
2,∞) (here c0 is 0 for the

Euclidean and n2/4 for the hyperbolic case) and possibly a finite number of eigenvalues
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MICROLOCAL LIMITS OF PLANE WAVES AND EISENSTEIN FUNCTIONS 373

in (0, c0h
2). The continuous spectrum is parametrized by distorted plane waves (or Eisenstein

functions in the hyperbolic case) Eh(λ, ξ) ∈ C∞(M), satisfying for λ ∈ R,

(1.4) (h2(∆− c0)− λ2)Eh(λ, ξ) = 0.

Because of the h-rescaling, the effective spectral parameter is λ/h. Here ξ lies on the bound-
ary ∂M of a compactification M of M . We can think of an element of ∂M as the direction
of escape to infinity for a non-trapped geodesic; then ξ is the direction of the outgoing part
of the plane wave Eh(λ, ξ) at infinity.

For instance, in the case of manifolds Euclidean near infinity, c0 = 0, ∂M = Sn is the
sphere, and for m ∈M \K0 ' Rn+1 \B(0, R0),

Eh(λ, ξ;m) = e
iλ
h ξ·m + Einc,

where Einc is incoming in the sense that there exists f ∈ C∞(Sn) such that
[Einc(λ, ξ;m)− |m|−n2 e−iλh |m|f( m

|m| )]|M\K0
∈ L2, or equivalently Einc lies in the image

of C∞0 (Rn+1) under the free incoming resolvent (h2∆ − (λ − i0)2)−1 of the Laplacian
on Rn+1). These conditions provide a unique characterization of Eh(λ, ξ). We can also
write Eh(λ, ξ) = E(λ/h, ξ), where E(z, ξ) is the nonsemiclassical plane wave, and rewrite
the results below in terms of the parameter z, as in the abstract.

We will freely use the notions of semiclassical analysis as found for example in [62], and
reviewed in Section 3. We denote elements of the cotangent bundle T ∗M by (m, ν), where
m ∈M and ν ∈ T ∗mM . The semiclassical principal symbol of h2∆ is equal to p(m, ν) = |ν|2g,
where |ν|g is the length of ν ∈ T ∗mM with respect to the metric g. Therefore, the plane
wave Eh should be concentrated on the unit cotangent bundle (see [62, Theorem 5.3])

S∗M := {(m, ν) ∈ T ∗M | |ν|g = 1}.

If gt : T ∗M → T ∗M denotes the geodesic flow, then the Hamiltonian flow of p is etHp = g2t.

Semiclassical limits of Eh when the trapped set has measure zero. – In scattering theory
trajectories which never escape to infinity play a special role as they can be observed only
indirectly in asymptotics of plane waves. The incoming tail (resp. outgoing tail) Γ− ⊂ S∗M

(resp. Γ+ ⊂ S∗M ) of the flow is defined as follows: a point (m, ν) lies in Γ− (resp. Γ+) if and
only if the geodesic gt(m, ν) stays in some compact set for t ≥ 0 (resp. t ≤ 0). The trapped
set K := Γ+ ∩ Γ− is the set of points (m, ν) such that the geodesic gt(m, ν) lies entirely in
some compact subset of S∗M .

Our first result states that if µL(K) = 0, then plane waves Eh(λ, ξ) converge on average
to some measures supported on the closure of the set of trajectories converging to ξ in M :

T 1. – Let (M, g) be a Riemannian manifold satisfying the assumptions of Sec-
tion 4 and suppose that the trapped set has Liouville measure µL(K) = 0. For Lebesgue almost
every ξ ∈ ∂M , there exists a Radon measureµξ onS∗M such that for each compactly supported
h-semiclassical pseudodifferential operator A ∈ Ψ0(M), we have as h→ 0,

(1.5) h−1

∥∥∥∥〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) −
∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ,λ(∂M×[1,1+h])

→ 0,
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374 S. DYATLOV AND C. GUILLARMOU

where σ(A) is the semiclassical principal symbol of A as defined in [62, Theorem 14.1]. The
measure µξ has support

(1.6) supp(µξ) ⊂ {(m, ν) ∈ S∗M | lim
t→+∞

gt(m, ν) = ξ},

and disintegrates the Liouville measure in the sense that there exists a smooth measure dξ on ∂M
such that, if µL is the Liouville measure generated by

√
p = |ν|g on S∗M , then

(1.7)
∫
∂M

µξ dξ = µL.

The limiting measure µξ is defined in Section 4.3. Implicit in (1.7) is the statement that for
any bounded Borel S ⊂ S∗M , we have µξ(S) ∈ L1

ξ(∂M). In Lemma A.1, we show that for
hyperbolic manifolds µξ is well defined for all ξ ∈ ∂M and it is likely that the same is true
when the curvature of g is negative near the trapped set, but we believe that this does not hold
in the general setting of Theorem 1.

In the case when WFh(A) ∩ Γ− = ∅ (in particular when g is non-trapping), we ac-
tually have a full expansion of 〈AEh, Eh〉 in powers of h, with remainders bounded
in L1

ξ,λ(∂M × [1, 1 + h])—see (5.14). It is likely that for K = ∅, this can be strengthened to
uniform convergence in ξ, λ, using nontrapping estimates on the resolvent.

The now standard argument of Colin de Verdière and Zelditch (see for example the proof
of [62, Theorem 15.5]) shows that there exists a family of Borel sets A(h) ⊂ ∂M × [1, 1 + h]

such that the ratio of the measure of A(h) to the measure of the whole ∂M × [1, 1 + h] goes
to 1 as h→ 0, and for each A ∈ Ψ0(M) as in Theorem 1 with σ(A) independent of h,

(1.8) 〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) →
∫
S∗M

σ(A) dµξ uniformly in (λ, ξ) ∈ A(h).

This statement can be viewed as an analogue of the quantum ergodicity fact (1.1), though as
explained above, it is produced by a different phenomenon.

Estimates for the remainder. – We next provide a quantitative version of Theorem 1, namely
an estimate of the left-hand side of (1.5). We define the set T (t) of geodesics trapped for
time t > 0 as follows: let K0 be a compact geodesically convex subset of M (in the sense
of (B.1)) containing a neighborhood of the trapped set K, then (see also Section 5.2)

(1.9) T (t) := {(m, ν) ∈ S∗M | m ∈ K0, π(gt(m, ν)) ∈ K0},

where π : T ∗M → M is the projection map. A quantity which will appear frequently with
some parameter Λ > 0 is the following interpolated measure

(1.10) r(h,Λ) := sup
0≤θ≤1

h1−θµL
(
T
(
θΛ−1| log h|

))
,

where h > 0 is small. This converges to 0 as h → 0 when µL(K) = 0 and it interpolates
between h (when θ = 0) and the Liouville measure of the set of geodesics that remain trapped
for time Λ−1| log h| (when θ = 1). When the measure µL( T (t)) decays exponentially in t,
as in (1.14), r(h,Λ) can be replaced by simply O(h) + µL( T (Λ−1| log h|)). The O(h) term
here is natural since one can add an operator in hΨ0(M) toA, which will change 〈AEh, Eh〉
by O(h), but will not change σ(A) (which is only defined invariantly modulo O(h)).
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MICROLOCAL LIMITS OF PLANE WAVES AND EISENSTEIN FUNCTIONS 375

We next define the maximal expansion rate as follows (see also (3.17)):

(1.11) Λmax := lim sup
|t|→+∞

1

|t|
log sup

(m,ν)∈ T (t)

‖dgt(m, ν)‖.

We can estimate the left-hand side of (1.5) in terms of the (interpolated) measure of the set
of all trajectories trapped for the Ehrenfest time, see (2.7) for the definition of the latter. If
we pair with a test function in ξ instead of taking the L1

ξ norm, then the estimate becomes
stronger, corresponding to the set of all trajectories trapped for twice the Ehrenfest time:

T 2. – Let (M, g) be as in Theorem 1. Take Λ0 > Λmax. Then for each compactly
supported h-semiclassical pseudodifferential operatorA ∈ Ψ0(M) and for each f ∈ C∞(∂M),

h−1

∥∥∥∥〈AEh, Eh〉 − ∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ,λ(∂M×[1,1+h])

= O(r(h, 2Λ0)),(1.12)

h−1

∥∥∥∥ ∫
∂M

f(ξ)

(
〈AEh, Eh〉 −

∫
S∗M

σ(A) dµξ

)
dξ

∥∥∥∥
L1
λ([1,1+h])

= O(r(h,Λ0)).(1.13)

The proof of Theorem 2 actually gives an expansion of 〈AEh, Eh〉 in powers of h, with
remainder µL( T (Λ−1| log h|)) instead of r(h,Λ)—see (5.43) and the proofs of Proposi-
tions 5.11 and 5.13. This full expansion is cumbersome to write down, therefore we only
do it for the trace estimates (1.16) below.

Remainder in terms of pressure. – When the trapped set K has Liouville measure 0 and is
uniformly partially hyperbolic in the sense of Appendix B.1, we estimate using [57]

(1.14) µL( T (t)) = O(et(P (Ju)+ε)),

for each ε > 0, where P (Ju) ≤ 0 is the topological pressure of the unstable Jacobian—see
Appendix B.1. WhenK is a hyperbolic basic set (Axiom A flow), then P (Ju) < 0 by [3], and
the remainders in (1.12) and (1.13) are then polynomial in h:

r(h,Λ) = O(h+ h−(P (Ju)+ε)/Λ),

and one can get rid of ε here by slightly changing Λ0. In the special case where g has
constant sectional curvature−1 nearK, the bounds in (1.12) and (1.13) become respectively,
O(h+h(n−δ)/2−) and O(h+hn−δ−), whereK has Hausdorff dimension dimH(K) = 2δ+1.(1)

See Appendix B.2 for details.

In all cases, ifK is nonempty, then it has Minkowski dimension at least 1; since gt/2( T (t))

contains an e−Λ0t/2 sized neighborhood ofK, there exists c > 0 such that for all small h > 0

(1.15) µL
(
T ((2Λ0)−1| log h|)

)
≥ chn/2, µL

(
T (Λ−1

0 | log h|)
)
≥ chn.

(1) The notation O(h−α−) means O(h−α−ε) for any fixed ε > 0.
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376 S. DYATLOV AND C. GUILLARMOU

Local Weyl asymptotics for spectral projectors. – It is possible to express the spectral measure
of h2∆ in terms of the distorted plane waves (see (4.5)), and using (1.13), we obtain an expan-
sion in powers of h for local traces of spectral projectors up to an explicit remainder. We only
write it here for the case where the flow is partially uniformly hyperbolic with P (Ju) < 0,
but a more general result with the Liouville measure of T (Λ−1

0 | log h|) holds—see Theorem 4
in Section 5.3. In the theorem below, we use a quantization procedure Oph on M mapping
compactly supported symbols to compactly supported operators; alternatively, one can con-
sider operators of the form χOph(a)χ, where Oph is any quantization procedure, a(x, ξ) is
compactly supported in the x variable, and χ ∈ C∞0 (M) is equal to 1 near π(supp a).

T 3. – Let (M, g) be as in Theorem 1, let Λ0 > Λmax and assume that the trapped
setK is uniformly partially hyperbolic withµL(K) = 0 and that the topological pressureP (Ju)

of the unstable Jacobian onK is negative. Then there exist differential operators(2)Lj of order 2j

on T ∗M , with L0 = 1, such that for each compactly supported zeroth order classical symbol a,
we have for each s > 0 and N ∈ N

(1.16) Tr(Oph(a) 1l[0,s](h
2∆)) = (2πh)−n−1

N∑
j=0

hj
∫

|ν|2g≤s

Lja dµω+h−n O
(
h−

P (Ju)
Λ0 +hN

)
where µω is the standard volume form on T ∗M and 1l[0,s](h

2∆) denotes the spectral projector
ofh2∆ onto the frequency window [0, s]. The remainder is uniform in swhen s varies in a compact
subset of (0,∞).

In particular, if g has constant sectional curvature −1 near K and the Hausdorff dimen-
sion of K is given by 2δ + 1, then the remainder in (1.16) becomes O(h−δ−), for N large
enough.

Applications. – In a separate paper [12], we show that Theorem 3 implies new asymptotics
for the spectral shift function (or scattering phase) with remainders in terms of P (Ju) when
the trapped set has Liouville measure 0 and the manifold is Euclidean near infinity with
uniformly partially hyperbolic geodesic flow near K.

Previous works. – Let us briefly discuss the history of Quantum Ergodicity (QE) and explain
its relation to the present paper. The original QE statement was proved by Shnirelman [48],
Zelditch [58], and Colin de Verdière [7] in the microlocal case, by Helffer-Martinez-
Robert [25] in the semiclassical case (with the integrated estimate using an O(h) spectral
window like in the present paper, rather than the O(1) window used in the microlocal case),
and by Gérard-Leichtnam [16] and Zelditch-Zworski [61] for manifolds with boundary
(ergodic billiards). Quantum ergodicity for boundary values and restrictions of eigenfunc-
tions to hypersurfaces was studied by Hassell-Zelditch [24], Burq [5], Toth-Zelditch [52, 53],
and by Dyatlov-Zworski [13].

The first result on noncompact manifolds, namely for embedded eigenvalues and Eisen-
stein functions on surfaces with cusps, was proved by Zelditch [59]. For the special case of
arithmetic hyperbolic surfaces, a stronger statement of Quantum Unique Ergodicity (QUE),

(2) In this paper, the symbols Lj will denote different operators in different propositions.
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saying that the whole sequence of eigenstates microlocally converges to the Liouville mea-
sure, was proved by Lindenstrauss [31] and Soundararajan [49] for Hecke-Maass forms and
by Luo-Sarnak [32] and Jakobson [29] for Eisenstein functions. For further information on
the topic, the reader is directed to the recent reviews [39, 47, 60].

As remarked above, our result differs from the above works in that it uses dispersion of
plane waves instead of the ergodicity of the geodesic flow. This dispersion phenomenon was
used to study microlocal limits of plane waves on convex co-compact hyperbolic quotients
satisfying δ < n/2 by Guillarmou-Naud in [20], and on surfaces with cusps at complex ener-
gies by Dyatlov [11]. Both [20] and [11] guarantee microlocal convergence of the Eisenstein
functions that is uniform in λ and ξ, rather than the (weaker) L1

λ,ξ estimates of the current paper;
these statements are formally similar to QUE, while our statement is formally similar to QE.
In [20], uniform in λ and ξ estimates are possible because Lagrangian states, when propa-
gated by the Schrödinger group U(t) = eith∆/2, would disperse faster than they fail to be
approximated semiclassically, a phenomenon similar to the one studied by Nonnenmacher-
Zworski [40]. In fact, it is plausible that the result of [20] is true when the condition δ < n/2

is replaced by the negative pressure condition of [40]. As for [11], the energy being away from
the real line makes the measure corresponding to Eh exponentially increasing, rather than
invariant, along the flow; in a way, this paper relies on damping of plane waves rather than
dispersion.

We see that the uniform convergence in [20] and [11] is possible because one has better
control on the propagated Lagrangian states. Such better control is directly related to having
a polynomial bound on the scattering resolvent. In the less restricted situation of our paper,
however, it is not clear if such a bound would hold; therefore, we need to average in λ and ξ
to pass to trace (or, strictly speaking, Hilbert-Schmidt norm) estimates, just as in the proof
of Quantum Ergodicity.

The expansions for local traces of the spectral measure as in Theorem 3 were studied by
Robert-Tamura [46] for nontrapping perturbations of the Euclidean space, yielding a full
expansion in powers of h in that setting.

2. Outline of the proofs

In this section, we explain the ideas of the proofs of Theorems 1 and 2, in the case of
manifolds Euclidean near infinity. We also describe the structure of the paper.

We start with Theorem 1. Take t > 0; we will use limt→+∞ limh→0 limits, therefore
remainders that decay in h with constants depending on t will be negligible. Since Eh is
a generalized eigenfunction of the Laplacian (1.4), we have for λ > 0

(2.1) Eh(λ, ξ) = e−itλ
2/(2h)U(t)Eh(λ, ξ).

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator, quantizing the geodesic flow gt.
Since Eh does not lie in L2(M), we cannot apply the operator U(t) to it; however, (2.1) can
be made rigorous, with an O(h∞) error, by using appropriate cutoffs—see Lemma 3.10. We
will not write these cutoffs here for the sake of brevity.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



378 S. DYATLOV AND C. GUILLARMOU

Take a compactly supported and compactly microlocalized semiclassical pseudodifferen-
tial operator A on M ; then by (2.1),

(2.2) 〈AEh, Eh〉 = 〈AU(t)Eh, U(t)Eh〉 = 〈A−tEh, Eh〉,

whereA−t := U(−t)AU(t) is a pseudodifferential operator with principal symbol σ(A)◦g−t.
(It is not compactly supported, but we ignore this issue here.) We now use the following
decomposition of plane waves (see (6.5)): for a fixed λ > 0,

(2.3) Eh = χ0E
0
h + E1

h, E0
h(m) = e

iλ
h ξ·m, E1

h = −Rh(λ)Fh, Fh := (h2∆− λ2)χ0E
0
h.

HereE0
h is the outgoing part of the plane wave, defined in a certain neighborhood of infinity

and solving (1.4) there, while χ0 is a cutoff function equal to 1 near infinity and supported
inside the domain of E0

h; then

Fh = [h2∆, χ0]E0
h

is compactly supported and we can apply to it the semiclassical incoming resolvent Rh(λ)

defined by Rh(λ) := limε→0+(h2∆ − (λ − iε)2)−1 when acting on compactly supported
functions, where (h2∆−z)−1 is bounded on L2 for z /∈ [0,∞)—see (6.2) for the definition in
the Euclidean case and (7.8) for a similar description in the hyperbolic case. For λ = 1+ O(h),
the function Fh is microlocalized inside the set

Wξ := {(m, ν) | m ∈ supp(dχ0), ν = ξ} ⊂ S∗M.

In general, we cannot expect the resolvent Rh(λ) to be polynomially bounded in h, and
thus cannot determine the wavefront set of E1

h. However, we will show the following weaker
propagation of singularities statement: the function

Ẽ1
h(λ, ξ) :=

E1
h(λ, ξ)

1 + ‖Eh(λ, ξ)‖L2(K0)
,

whereK0 ⊂M is a sufficiently large compact set, is polynomially bounded in h and for each
(m, ν) ∈WFh(Ẽ1

h), the geodesic gt(m, ν) is either trapped as t→ +∞ or passes throughWξ

for some t ≥ 0. For the case of manifolds Euclidean near infinity, this follows directly from
the explicit formula for the scattering resolvent on the free Euclidean space; for manifolds
hyperbolic near infinity, we use the microlocal properties of the resolvent established in [54].
See Assumption (A6) in Section 4.2, Section 6.2, and Proposition 7.4 for details.

IfA and 1−χ0 are both supported in the ball of radiusR, letϕ ∈ C∞0 (M) be independent
of t and equal to 1 in the ball of radius R+ 1. Then we write

A−t = A−t0 +A−t1 , A−t0 := A−tϕ, A−t1 := A−t(1− ϕ).

Now, each (m, ν) ∈ WFh(A−t1 ) has the following properties: |m| ≥ R+ 1, and for
(m′, ν′) = g−t(m, ν), |m′| ≤ R. (See Figure 1.) Therefore, the geodesic gs(m, ν) escapes
to infinity for s ≥ 0 and never passes through Wξ; it follows from the discussion of the
wavefront set of Ẽ1

h in the previous paragraph that

‖A−t1 E1
h‖L2 = O(h∞(1 + ‖Eh‖L2(K0))).

Therefore, we can write

(2.4) 〈AEh, Eh〉 = 〈A−t1 χ0E
0
h, χ0E

0
h〉+ 〈A−t0 Eh, Eh〉+ O(h∞(1 + ‖Eh‖2L2(K0))).
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ϕdχ0

A

ϕdχ0

A−t
0 A−t

1

F 1. A phase space picture of the main argument. The right side of each
picture represents infinity; χ0 = 1 in the lighter shaded region and dχ0 is supported
in the darker shaded region, while ϕ = 1 to the left of the vertical dashed line.
The horizontal dashed lines on the right represent the wavefront set of Ẽ1

h; they
terminate at the solid arrows, which denote the set Wξ.

The first term on the right-hand side is explicit, as we have a formula forE0
h; we can calculate

for Lebesgue almost every ξ and λ = 1 + O(h),

(2.5) lim
t→+∞

lim
h→0
〈A−t1 χ0E

0
h(λ, ξ), χ0E

0
h(λ, ξ)〉 =

∫
S∗M

a dµξ.

It then remains to estimate the second and third terms on average in λ and ξ. For this, we use
the relation (4.5) of distorted plane waves to the spectral measure of the Laplacian to get for
any bounded compactly supported pseudodifferential operator B,

(2.6) h−1‖BEh(λ, ξ)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ Chn‖B 1l[1,(1+h)2](h
2∆)‖2HS.

Here HS denotes the Hilbert-Schmidt norm. One can estimate the right-hand side of (2.6)
uniformly in h—see Lemma 3.11 and the proof of Proposition 4.5. Then h−1‖Eh‖2L2(K0),
when integrated over λ ∈ [1, 1 + h] and ξ, is bounded uniformly in h; this removes the third
term on the right-hand side of (2.4).

Finally, the average in λ, ξ of the second term on the right-hand side of (2.4) can be
bounded, modulo an Ot(h) remainder, by the L2 norm ‖σ(A−t0 )‖L2(S∗M) of the restriction
of the principal symbol of A−t0 to the energy surface S∗M , with respect to the Liouville
measure. Now, σ(A−t0 ) = (σ(A) ◦ g−t)ϕ converges to zero as t → +∞ at any point which
is not trapped in the backwards direction. Since we assumed µL(K) = 0, by the dominated
convergence theorem ‖σ(A−t0 )‖L2(S∗M) converges to zero as t→ +∞; this finishes the proof
of Theorem 1.

For the estimate (1.12) in Theorem 2, we need to take t up to the Ehrenfest time:

(2.7) t = te := Λ−1
0 log(1/h)/2,

replacing the limt→+∞ limh→0 limit in the argument of Theorem 1 by just the limh→0 limit,
but with t depending on h. The operator A−t is then still pseudodifferential, though in a
mildly exotic class. To avoid a quantization procedure uniform at infinity, we give an itera-
tive argument, propagating A for a fixed time for ∼ log(1/h) steps, applying t-independent
cutoffs and removing the microlocally negligible terms at each step. The proof then works
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as before, with the term 〈A−t0 Eh, Eh〉 bounded by the Liouville measure of the microsup-
port of A−t0 (see Definition 3.1), which depends on h and is contained in gt( T (t)), where
T (t) is defined in (1.9); this proves (1.12). The interpolated quantity r(h,Λ) from (1.10)
appears because of the subprincipal terms in (2.5).

For (1.13), we have to propagate to twice the Ehrenfest time: t = 2te. The operator A−t

is not pseudodifferential, but we can use (2.1) to write

(2.8) 〈A−t0 Eh, Eh〉 = 〈U(−t/2)AU(t/2) · U(t/2)ϕU(−t/2)Eh, Eh〉.

The operators U(−t/2)AU(t/2) and U(t/2)ϕU(−t/2) are both pseudodifferential in
a mildly exotic class; multiplying them, we get a pseudodifferential operator whose full
symbol is supported inside gt/2( T (t)), and thus (2.8) can be estimated by the Liouville
measure of this set, giving the remainder (1.13).

A problem arises when trying to get a rate of convergence in (2.5) for t up to twice the
Ehrenfest time. We are unable to propagate the Lagrangian state E0

h(λ, ξ) pointwise in ξ

and λ for time t, therefore we do not get anL1
ξ estimate in (1.13). However, for f ∈ C∞(∂M)

we can still approximate the integral

(2.9)
∫
∂M

f(ξ)〈A−t1 χ0E
0
h, χ0E

0
h〉 dξ

as follows. Define the operator

Π0
f (λ) :=

∫
∂M

f(ξ)(χ0E
0
h(λ, ξ))⊗ (χ0E

0
h(λ, ξ)) dξ.

Here⊗ denotes the Hilbert tensor product; that is, if u, v ∈ C∞(M), thenu⊗v is the operator
with the Schwartz kernel

(2.10) Ku⊗v(m,m
′) = u(m)v(m′).

We can show that if X̃ is a pseudodifferential operator with compactly supported Schwartz
kernel and microlocalized in a compact subset of T ∗M , satisfying certain conditions, then
X̃Π0

f X̃
∗ is a Fourier integral operator associated to the canonical relation

{(m, ν;m′, ν′) | (m, ν) ∈ S∗M, (m′, ν′) = gs(m, ν) for some s ∈ (−T0, T0)},

for a fixed T0 > 0 depending on X̃. (For comparison, for the spectral measure of h2∆

we would have to formally take all possible values of s, which would destroy any hope on
microlocally approximating it when the geodesic flow is chaotic. The use ofE0

h instead ofEh
here puts us in a ‘nontrapping’ situation M = Rn, where the cutoff X̃ restricts the range of
times s we have to consider.) We can then write

X̃Π0
f (λ)X̃∗ = (2πh)n

∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs ds,

where Bs is a smooth family of pseudodifferential operators, compactly supported in
s ∈ (−T0, T0)—see Lemma 5.12. We then write the integral (2.9) as

Tr(U(−t)AU(t)(1− ϕ)Π0
f (λ)) = Tr

∫ T0

−T0

e−iλ
2s/(2h)U(−t)AU(t)(1− ϕ)U(s)Bs ds

= Tr

∫ T0

−T0

e−iλ
2s/(2h)U(−t/2)AU(t/2) · U(t/2)(1− ϕ)U(s)BsU(−s− t/2) · U(s) ds.
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The operators U(−t/2)AU(t/2) and U(t/2)(1−ϕ)U(s)BsU(−s− t/2) are pseudodifferen-
tial in a mildly exotic class; thus their product is also pseudodifferential and (bearing in mind
that s varies in a bounded set) one gets a microlocal expansion for (2.9) through a local trace
formula for Schrödinger propagators—see Lemma 3.12 and Proposition 5.13.

2.1. Other possible geometric assumptions

Our results should be true for asymptotically hyperbolic manifolds without the constant
curvature assumption near infinity. The main difficulty here is constructing a good semiclas-
sical parametrix for the Eisenstein functionEh(λ, ξ) near ξ ∈ ∂M ; this can be done by WKB
approximation, and the phase is a Busemann functionφξ(m) near ξ, however one would need
a good understanding of the regularity of φξ(m) as m → ξ. This is in a way related to the
high-frequency parametrix of [36] in the non-trapping setting. For asymptotically Euclidean
or asymptotically conic ends, this might be more complicated as we would need a parametrix
of Eh(λ, ξ) in a large neighborhood of ξ ∈ ∂M , essentially in a region with closure contain-
ing a ball of radius π/2 in ∂M . In particular, the Lagrangian supporting the semiclassical
parametrix of Eh(λ, ξ) would not a priori be projectable far from ξ, which would make the
construction more technical. We leave these questions for future research.

The convergence result in Theorem 1 should be true in the case whereM has a boundary,
for instanceM = Rn+1 \ Ω with Ω a piecewise smooth obstacle. In fact, it should be straight-
forward to check that the method of proof applies when combined with the idea of [61], based
on the fact that the region in phase space near the boundary where the dynamics is compli-
cated is of Liouville measure 0 (since we assume µL(K) = 0). To get a good remainder in
that setting would be more involved since one would need to care about the amount of mass
of plane waves staying in the regions near the boundary where the dynamics is complicated,
as we propagate up to Ehrenfest time. A reasonable case to start with is that of strictly convex
obstacles.

2.2. Structure of the paper

In Section 3, we review certain notions of semiclassical analysis and derive several tech-
nical lemmata; in particular, in Section 3.2, we review the local theory of semiclassical
Lagrangian distributions and Fourier integral operators and in Section 3.3 we study mi-
crolocal properties of Schrödinger propagators, including the Hilbert-Schmidt norm bound
(Lemma 3.11). In Section 4, we formulate the general assumptions on the studied manifolds
and derive some immediate corollaries; Section 4.1 contains the geometric assumptions and
the definition of the trapped set and Section 4.2 contains the analytic assumptions on dis-
torted plane waves. In Section 4.3 we construct the limiting measures µξ and in Section 4.4
we prove averaged estimates on Eisenstein functions.

In Section 5, we give the proofs of our main theorems. Section 5.1 contains the proof
of Theorem 1, Section 5.2 contains the proof of the estimate (1.12) in Theorem 2, while
Section 5.3 contains the proof of the estimate (1.13) in Theorem 2. Section 5.3 also contains
the Tauberian argument proving an expansion of the local trace of a spectral projector
(Theorem 4). Sections 6 and 7 study the Euclidean and hyperbolic near infinity manifolds,
respectively, and show that the general assumptions of Section 4 are satisfied in these cases.
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Appendix A provides a formula for the limiting measures in the case of a convex
co-compact hyperbolic quotient, which generalizes the limiting measure of [20] to the
case δ ≥ n/2. Appendix B discusses the classical escape rate, in particular explaining (1.14).
Appendix C gives a self-contained proof of Egorov’s theorem up to the Ehrenfest time
(Proposition 3.9). Finally, Appendix D contains a short proof of (a special case of) quantum
ergodicity in the semiclassical setting, which is simpler than that of [25] because it does not
rely on [9, 43].

3. Semiclassical preliminaries

In this section, we review the methods of semiclassical analysis needed for our argument.
Most of the constructions listed below are standard: pseudodifferential operators, wavefront
sets, local theory of Fourier integral operators, and Egorov’s theorem. However, Section 3.3
contains the propagation result for generalized eigenfunctions (Lemma 3.10) and a Hilbert-
Schmidt norm estimate in an O(h) spectral window (Lemma 3.11), which the authors were
unable to find in previous literature.

3.1. Notation

In this subsection, we briefly review certain notation used in semiclassical analysis. The
reader is referred to [62] (especially Chapter 14 on semiclassical calculus on manifolds) or [8]
for a detailed introduction to the subject.

The phase space. – Let M be a d-dimensional manifold without boundary. We denote
elements of the cotangent bundle T ∗M by (m, ν), where ν ∈ T ∗mM . Following [54, Sec-
tion 2], consider the fiber-radial compactification T

∗
M of T ∗M , with the boundary defining

function given by 〈ν〉−1 for any smooth inner product on the fibers of T ∗M . The bound-
ary ∂T

∗
M , called the fiber infinity, is diffeomorphic to the cosphere bundle S∗M over M .(3)

Except in Propositions 3.2 and 7.4, we will use compactly microlocalized operators, for
which the fiber-radial compactification is not necessary.

Symbol classes. – For k ∈ R and ρ ∈ [0, 1/2), consider the symbol class Skρ (M) defined as
follows: a smooth function a(m, ν;h) on T ∗M × [0, h0) lies in Skρ (M) if and only if for each
compact set K ⊂M and each multiindices α, β, there exists a constant CαβK such that

(3.1) sup
m∈K, ν∈T∗mM

|∂αm∂βν a(m, ν;h)| ≤ CαβKh−ρ(|α|+|β|)〈ν〉k−|β|.

These classes are independent of the choice of coordinates onM . Note that we do not fix the
behavior of the symbols as m → ∞. The important special case is ρ = 0, which includes
the classical symbols studied in [54]. The class Sk0 (M), denoted simply by Sk(M), would
be sufficient for the convergence Theorem 1. The classes Skρ with ρ > 0 will be important
for obtaining the remainder estimate of Theorem 2; these classes arise when propagating
symbols in Sk0 for short logarithmic times, as in Proposition 3.9.

(3) Unlike [54], we do not use the notation S∗M for fiber infinity—we reserve it for the unit cotangent bundle
{|ν|g = 1} ⊂ T ∗M .
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Since plane waves are microlocalized on the cosphere bundle, away from the fiber infinity,
we will most often work with the classes Scomp

ρ , consisting of compactly supported functions
satisfying (3.1); we have Scomp

ρ ⊂ Skρ for all k.

Pseudodifferential operators. – Following [62, Section 14.2], we can define the alge-
bra Ψk

ρ(M) of pseudodifferential operators with symbols in Skρ (M). (The properties of
the symbol classes Skρ required for the construction of [62, Section 14.2] are derived as
in [62, Section 4.4]; see also [27, Chapter 18] or [18, Chapter 3].) As before, denote Ψk = Ψk

0 .
Since our symbols can grow arbitrarily fast as m → ∞, we do not make any a priori as-
sumptions on the behavior of elements of Ψk

ρ near the infinity in M . However, we require
that all operators A ∈ Ψk(M) be properly supported; namely, the restriction of each of the
projection maps πm, πm′ : M ×M → M to the support of the Schwartz kernel KA(m,m′)

of A is a proper map. See for example [27, Proposition 18.1.22] for how to obtain properly
supported quantizations on noncompact manifolds. Then each element of Ψk(M) acts
Hs
h,loc(M) → Hs−k

h,loc(M), where Hs
h,loc(M) denotes the space of distributions locally in the

semiclassical Sobolev space Hs
h (see for example [62, Section 7.1] for the definition of semi-

classical Sobolev spaces). We also include properly supported operators that are O(h∞)Ψ−∞

into all considered pseudodifferential classes, see for example [27, Definition 18.1.20].

We have the semiclassical principal symbol map

σ : Ψk
ρ(M)→ Skρ (M)/h1−2ρSk−1

ρ (M)

and its right inverse, a non-canonical quantization map

Oph : Skρ (M)→ Ψk
ρ(M).

ForA ∈ Ψk
ρ(M), we often use σ(A) to denote any representative of the corresponding equiv-

alence class, hence the remainder terms below. The standard operations of pseudodifferential
calculus with symbols in Skρ have an O(h1−2ρ) remainder instead of the O(h) remainder valid
for the class Sk0 . More precisely, we have for A ∈ Ψk

ρ(M) and B ∈ Ψk′

ρ (M),

σ(A∗) = σ(A) + O(h1−2ρ)Sk−1
ρ (M),

σ(AB) = σ(A)σ(B) + O(h1−2ρ)
Sk+k′−1
ρ (M)

,

σ([A,B]) = −ih{σ(A), σ(B)}+ O(h2(1−2ρ))
Sk+k′−2
ρ (M)

.

Here {·, ·} stands for the Poisson bracket and the adjoint is with respect to L2(M). The O(·)
notation is used in the present paper in the following way: we write u = Oz(F ) X if the norm
of the function, or the operator, u in the functional space X is bounded by the expression
F times a constant depending on the parameter z.

Wavefront sets. – If A : C∞(M) → C∞(M) is a properly supported operator, we say
that A = O(h∞)Ψ−∞ if A is smoothing and each of the C∞(M × M) seminorms of its
Schwartz kernel is O(h∞). For each A ∈ Ψk

ρ(M), we have A = Oph(a) + O(h∞)Ψ−∞ for
some a ∈ Skρ (M). Define the semiclassical wavefront set WFh(A) ⊂ T

∗
M of A as follows:

a point (m, ν) ∈ T ∗M does not lie in WFh(A), if there exists a neighborhood U of (m, ν)

in T
∗
M such that each (m, ν)-derivative of a is O(h∞〈ν〉−∞) in U ∩ T ∗M .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



384 S. DYATLOV AND C. GUILLARMOU

Operators with compact wavefront sets in T ∗M are called compactly microlocalized; those
are exactly operators of the form Oph(a) + O(h∞)Ψ−∞ for some a ∈ Scomp

ρ . We denote
by Ψcomp

ρ (M) the class of all compactly microlocalized elements of Ψk
ρ(M); as before, we put

Ψcomp(M) = Ψcomp
0 (M). Compactly microlocalized operators should not be confused with

compactly supported operators (operators whose Schwartz kernels are compactly supported).

We will need a finer notion of microsupport on h-dependent sets, used in the proofs in
Sections 5.2 and 5.3, for example in Proposition 5.8:

D 3.1. – An operator A ∈ Ψcomp
ρ (M) is said to be microsupported on an

h-dependent family of sets V (h) ⊂ T ∗M , if we can writeA = Oph(a)+ O(h∞)Ψ−∞ , where for
each compact set K ⊂ T ∗M , each differential operator ∂α on T ∗M , and each N , there exists
a constant CαNK such that for h small enough,

sup
(m,ν)∈K\V (h)

|∂αa(m, ν;h)| ≤ CαNKhN .

Since the change of variables formula for the full symbol of a pseudodifferential opera-
tor [62, Theorem 9.10] contains an asymptotic expansion in powers of h, consisting of deriva-
tives of the original symbol, Definition 3.1 does not depend on the choice of the quantization
procedure Oph. Moreover, if A ∈ Ψcomp

ρ is microsupported inside some V (h) and B ∈ Ψk
ρ,

thenAB,BA, andA∗ are also microsupported inside V (h). It follows from the definition of
the wavefront set that (m, ν) ∈ T ∗M does not lie in WFh(A) for someA ∈ Ψcomp

ρ , if and only
if there exists an h-independent neighborhood U of (m, ν) such thatA is microsupported on
the complement ofU . Note however thatA need not be microsupported on WFh(A), though
it will be microsupported on any h-independent neighborhood of WFh(A). Finally, it can be
seen by Taylor’s formula that if A ∈ Ψcomp

ρ (M) is microsupported in V (h) and ρ′ > ρ, then
A is also microsupported on the set of all points in V (h) which are at least hρ

′
away from the

complement of V (h).

Ellipticity. – ForA ∈ Ψk
ρ(M), define its elliptic set ell(A) ⊂ T ∗M as follows: (m, ν) ∈ ell(A)

if and only if there exist a neighborhood U of (m, ν) in T
∗
M and a constant C such that

|σ(A)| ≥ C−1〈ν〉k in U ∩ T ∗M . The following statement is the standard semiclassical
elliptic estimate; see [27, Theorem 18.1.24’] for the closely related microlocal case and for
example [10, Section 2.2] for the semiclassical case.

P 3.2. – Assume that P ∈ Ψk
ρ(M), A ∈ Ψk′

ρ (M), and WFh(A) ⊂ ell(P ).
Assume moreover that A is compactly supported. Then there exist a constant C and a function
χ ∈ C∞0 (M) such that for each s ∈ R, each u ∈ Hs+k′

h,loc (M) and each N , we have

‖Au‖Hsh ≤ C‖χPu‖Hs+k′−kh

+ O(h∞)‖χu‖H−N .

Moreover, if P is a differential operator, then we can take any χ such that the Schwartz kernel
of A is supported in {χ 6= 0} × {χ 6= 0}.
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Semi-classical wave-front sets of distributions. – An h-dependent family u(h) ∈ D′(M) is
called h-tempered, if for each open U compactly contained in M , there exist constants C
and N such that

(3.2) ‖u(h)‖H−Nh (U) ≤ Ch
−N .

For a tempered distribution u, we say that (m0, ν0) ∈ T ∗M does not lie in the wavefront set WFh(u),
if there exists a neighborhood V (m0, ν0) in T

∗
M such that for each A ∈ Ψ0(M) with

WFh(A) ⊂ V , we have Au = O(h∞)C∞ . By Proposition 3.2, (m0, ν0) 6∈ WFh(u) if
and only if there exists compactly supported A ∈ Ψ0(M) elliptic at (m0, ν0) such that
Au = O(h∞)C∞ . The wavefront set of u is a closed subset of T

∗
M ; it is empty if and

only if u = O(h∞)C∞(M). We can also verify that for u tempered and A ∈ Ψk
ρ(M),

WFh(Au) ⊂WFh(A) ∩WFh(u).

3.2. Semiclassical Lagrangian distributions

In this subsection, we review some facts from the theory of semiclassical Lagrangian
distributions. See [21, Chapter 6] or [56, Section 2.3] for a detailed account, and [28, Sec-
tion 25.1] or [18, Chapter 11] for the closely related microlocal case. However, note that we
do not attempt to define the principal symbols as global invariant geometric objects; this
makes the resulting local theory considerably simpler.

Phase functions. – LetM be a manifold without boundary. We denote its dimension by d; in
the convention used in the present paper, d = n+ 1. As before, we denote elements of T ∗M
by (m, ν), m ∈ M , ν ∈ T ∗mM . Let ϕ(m, θ) be a smooth real-valued function on some open
subset Uϕ of M × RL, for some L; we call m base variables and θ oscillatory variables. We
say that ϕ is a (nondegenerate) phase function, if the differentials d(∂θ1ϕ), . . . , d(∂θLϕ) are
linearly independent on the critical set

(3.3) Cϕ := {(m, θ) | ∂θϕ = 0} ⊂ Uϕ.

In this case

Λϕ := {(m, ∂mϕ(m, θ)) | (m, θ) ∈ Cϕ} ⊂ T ∗M

is an (immersed, and we will shrink the domain of ϕ to make it embedded) Lagrangian
submanifold. We say that ϕ generates Λϕ.

Symbols. – Let ρ ∈ [0, 1/2). A smooth function a(m, θ;h) is called a compactly supported
symbol of type ρ on Uϕ, if it is supported in some compact h-independent subset of Uϕ, and
for each differential operator ∂α on M × RL, there exists a constant Cα such that

sup
Uϕ

|∂αa| ≤ Cαh−ρ|α|.

Similarly to Section 3.1, we write a ∈ Scomp
ρ (Uϕ) and denote Scomp := Scomp

0 .
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Lagrangian distributions. – Given a phase functionϕ and a symbol a ∈ Scomp
ρ (Uϕ), consider

the h-dependent family of functions

(3.4) u(m;h) = h−L/2
∫
RL
eiϕ(m,θ)/ha(m, θ;h) dθ.

We call u a Lagrangian distribution of type ρ generated byϕ. By the method of non-stationary
phase, if supp a is contained in some h-independent compact set K ⊂ Uϕ, then

(3.5) WFh(u) ⊂ {(m, ∂mϕ(m, θ)) | (m, θ) ∈ Cϕ ∩K} ⊂ Λϕ.

The principal symbol σϕ(u) ∈ Scomp
ρ (Λϕ) of u is defined modulo O(h1−2ρ) by the expression

(3.6) σϕ(u)(m, ∂mϕ(m, θ);h) = a(m, θ;h), (m, θ) ∈ Cϕ.

That σϕ(u) does not depend (modulo O(h1−2ρ)) on the choice of a producing u will follow
from Proposition 3.3 and (3.9).

Following [18, Chapter 11], we introduce a certain (local) canonical form for Lagrangian
distributions. Fix some local system of coordinates onM (shrinkingM to the domain of this
coordinate system and identifying it with a subset of Rd) and consider

(3.7) ΛF = {(m, ν) | m = −∂νF (ν), ν ∈ UF } ⊂ T ∗M,

where F is a smooth real-valued function on some open set UF ⊂ Rd, such that the image
of −∂νF is contained in M . Then ΛF is Lagrangian; in fact, it is generated by the phase
functionm·ν+F (ν), with ν the oscillatory variable. One can also prove that any Lagrangian
submanifold not intersecting the zero section (which is always the case for the Lagrangians
considered in this paper) can be locally brought under the form (3.7) for an appropriate
choice of the coordinate system on M—see for example [18, Lemma 9.5].

If b(ν;h) ∈ Scomp
ρ (UF ) and χ ∈ C∞0 (M) is equal to 1 near −∂νF (supp b), then we can

define a Lagrangian distribution by the following special case of (3.4):

(3.8) v(m;h) = χ(m)h−d/2
∫
UF

ei(m·ν+F (ν))/hb(ν;h) dν.

We need χ to make v ∈ C∞0 (M); however, by (3.5) (or directly by the method of nonstation-
ary phase), if we choose χ differently, then v will change by O(h∞)C∞0 .

If v is given by (3.8), then we can recover the symbol b by the Fourier inversion formula:

(3.9) eiF (ν)/hb(ν;h) = (2π)−dh−d/2
∫
M

e−im·ν/hv(m;h) dm+ O(h∞)S (Rd).

Note that if v = O(h∞)C∞0 , then b(ν;h) = O(h∞)C∞0 . Moreover, if v ∈ C∞0 (M) satis-
fies (3.9) for some b ∈ Scomp

ρ (UF ), then v is given by (3.8) modulo O(h∞)C∞0 . Following [18,
Chapter 11], by the method of stationary phase each Lagrangian distribution can be brought
locally into the form (3.8):

P 3.3. – Assume thatϕ is a phase function, and the corresponding Lagrangian
Λ = Λϕ can be written in the form (3.7). Fora(m, θ;h) ∈ Scomp

ρ (Uϕ) and b(ν;h) ∈ Scomp
ρ (UF ),

denote by ua and vb the functions given by (3.4) and (3.8), respectively. Then:
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1. For each a ∈ Scomp
ρ (Uϕ), there exists b ∈ Scomp

ρ (UF ) such that ua = vb + O(h∞)C∞0 .
Moreover, we have the following asymptotic decomposition for b:

(3.10) b(ν;h) =
∑

0≤j<N

hjLja(m, θ;h) + O(hN(1−2ρ))Scomp
ρ (UF ),

where each Lj is a differential operator of order 2j on Uϕ, and (m, θ) ∈ Cϕ is the solution to
the equation (m, ∂mϕ(m, θ)) = (−∂νF (ν), ν). In particular, if σϕ(u) is given by (3.6), then

(3.11) σϕ(u)(−∂νF (ν), ν;h) = fϕF b(ν;h) + O(h1−2ρ)Scomp
ρ (UF ),

where fϕF is some nonvanishing function depending on ϕ and the coordinate system on M .
Adding a certain constant to the function F , we can make fϕF independent of h.

2. For each b ∈ Scomp
ρ (UF ), there exists a ∈ Scomp

ρ (Uϕ) such that vb = ua + O(h∞)C∞0 .

D 3.4. – Let Λ ⊂ T ∗M be an embedded Lagrangian submanifold. We say
that an h-dependent family of functions u(m;h) ∈ C∞0 (M) is a (compactly supported and
compactly microlocalized) Lagrangian distribution of type ρ associated to Λ, if it can be
written as a sum of finitely many functions of the form (3.4), for different phase functions ϕ
parametrizing open subsets of Λ, plus an O(h∞)C∞0 remainder. Denote by Icomp

ρ (Λ) the space
of all such distributions, and put Icomp(Λ) := Icomp

0 (Λ).

By Proposition 3.3, if ϕ is a phase function and u ∈ Icomp
ρ (Λϕ), then u can be written

in the form (3.4) for some symbol a, plus an O(h∞)C∞0 remainder. The symbol σϕ(u), given
by (3.6), is well-defined modulo O(h1−2ρ).

The action of a pseudodifferential operator on a Lagrangian distribution is given by the
following proposition, following from Proposition 3.3 and the method of stationary phase:

P 3.5. – Let u ∈ Icomp
ρ (Λ) and P ∈ Ψk

ρ(M). Then Pu ∈ Icomp
ρ (Λ).

Moreover,
1. If Λ = Λϕ for some phase function ϕ, then

σϕ(Pu) = σ(P )|Λϕ · σϕ(u) + O(h1−2ρ)Scomp
ρ (Λ).

2. Assume that Λ = ΛF is given by (3.7) in some coordinate system on M . Let b(ν;h) and
bP (ν;h) be the symbols corresponding to u andPu, respectively, via (3.8). Let alsoP = Oph(p)

for some quantization procedure Oph. Then

bP (ν;h) =
∑

0≤j<N

hjLj(p(m, ν
′;h)b(ν;h))|ν′=ν,m=−∂νF (ν) + O(hN(1−2ρ))Scomp

ρ (UF ),

where each Lj is a differential operator of order 2j on M × UF × UF .

Finally, we give the following estimate of the L2 norm of a Lagrangian distribution,
following from the boundedness of the Fourier transform on L2:

P 3.6. – Assume that u ∈ Icomp
ρ (ΛF ), where ΛF is given by (3.7). Let u be

given by (3.8), with b(ν;h) the corresponding symbol. Then for some constant C independent
of h,

(3.12) ‖u(m;h)‖L2 ≤ C‖b(ν;h)‖L2(UF ).
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Fourier integral operators. – A special case of Lagrangian distributions are Fourier integral
operators associated to canonical transformations. Let M,M ′ be two manifolds of the same
dimension d, and let κ be a symplectomorphism from an open subset of T ∗M to an open
subset of T ∗M ′. Consider the Lagrangian

Λκ = {(m, ν;m′,−ν′) | κ(m, ν) = (m′, ν′)} ⊂ T ∗M × T ∗M ′ = T ∗(M ×M ′).

A compactly supported operator U : D′(M ′) → C∞0 (M) is called a (semiclassical)
Fourier integral operator of type ρ associated to κ, if its Schwartz kernel KU (m,m′) lies
in h−d/2Icomp

ρ (Λκ). We write U ∈ Icomp
ρ (κ). Note that we quantize a canonical transfor-

mation T ∗M → T ∗M ′ as an operator D′(M ′) → C∞0 (M), in contrast with the standard
convention, which would quantize it as an operator D′(M) → C∞0 (M ′). The h−d/2 fac-
tor is explained as follows: the normalization for Lagrangian distributions is chosen so
that ‖u‖L2 ∼ 1, while the normalization for Fourier integral operators is chosen so that
‖U‖L2(M ′)→L2(M) ∼ 1.

After sufficiently shrinking the domain of κ and choosing an appropriate coordinate
system on M ′ (which is possible for all κ whose graph does not intersect the zero section
of T ∗M ′, see the remark following (3.7)), we can find a generating function S(m, ν′) for κ;
that is,

(3.13) κ(m, ν) = (m′, ν′) ⇐⇒ ∂mS(m, ν′) = ν, ∂ν′S(m, ν′) = m′.

Here (m, ν′) vary in some open set US ⊂ M × Rd. The phase function S(m, ν′) −m′ · ν′,
with ν′ the oscillatory variable, parametrizes Λκ and for U ∈ Icomp

ρ (κ), we write similarly
to (3.8),

(3.14) KU (m,m′) = h−dχ(m′)

∫
Rd
e
i
h (S(m,ν′)−m′·ν′)b(m, ν′;h) dν′ + O(h∞)C∞0 ,

for some symbol b ∈ Scomp
ρ (US) and any χ ∈ C∞0 (M ′) such that χ = 1 near the set

∂ν′S(supp b). The function b is determined uniquely byU modulo O(h∞)Scomp
ρ (US), similarly

to (3.9). Note that if κ is the identity map, then S(m, ν′) = m · ν′ and we arrive to the
quantization formula for a semiclassical pseudodifferential operator.

Similarly to Proposition 3.5, we have

P 3.7. – Assume thatU ∈ Icomp
ρ (κ) andP ∈ Ψk

ρ(M ′). ThenUP ∈ Icomp
ρ (κ).

If moreover κ is given by (3.13), b(m, ν′;h) and bP (m, ν′;h) are the symbols corresponding toU
and UP , respectively, via (3.14), and P = Oph(p) for some quantization procedure Oph, then
we have the following asymptotic decomposition for bP :

bP (m, ν′;h) =
∑

0≤j<N

hjLj(p(m
′, ν̃)b(m, ν′))|ν̃=ν′,m′=∂ν′S(m,ν′) + O(hN(1−2ρ))Scomp

ρ (US).

Here each Lj is a differential operator of order 2j on M ′ × Rd × US . In particular,

bP (m, ν′;h) = p(∂ν′S(m, ν′), ν′;h)b(m, ν′;h) + O(h1−2ρ)Scomp
ρ (US).

A similar statement is true for an operator of the form PU , where P ∈ Ψk
ρ(M) and the terms

of the asymptotic decomposition have the form hjLj(p(m̃, ν)b(m, ν′))|m̃=m, ν=∂mS(m,ν′).
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3.3. Schrödinger propagators

Let (M, g) be a complete Riemannian manifold, ∆ = ∆g the corresponding (nonnega-
tive) Laplace-Beltrami operator, and p(m, ν) = |ν|2g the semiclassical principal symbol of
h2∆ ∈ Ψ2(M). We use the notation S∗M = p−1(1) ⊂ T ∗M for the unit cotangent bundle.
The geodesic flow gt on T ∗M is related to the Hamiltonian flow etHp of p by the formula
gt = etHp/2. The operator ∆ is essentially self-adjoint on L2(M) by [6] and its domain is
given by the Friedrichs extension. Let

U(t) = eith∆/2 = e
it
h (h2∆/2)

be the semiclassical Schrödinger propagator; it is a unitary operator on L2(M). The basic
microlocal properties of U(t) are given by the following

P 3.8. – For each t ∈ R,

1. (Egorov’s Theorem) For each compactly supported A ∈ Ψcomp
ρ (M), there exists com-

pactly supported At ∈ Ψcomp
ρ (M) such that

(3.15) U(t)AU(−t) = At + O(h∞)L2→L2 .

Moreover, WFh(At) ⊂ g−t(WFh(A)) and σ(At) = σ(A) ◦ gt + O(h1−2ρ).

2. (Microlocalization)U(t) is microlocalized on the graph of g−t, namely ifA,B ∈ Ψk
ρ(M)

are compactly supported and at least one of them is compactly microlocalized, then

(3.16) gt(WFh(A)) ∩WFh(B) = ∅ =⇒ AU(t)B = O(h∞)L2→L2 .

3. (Parametrix) If A ∈ Ψcomp(M) is compactly supported, then U(t)A is the sum of a
compactly microlocalized Fourier integral operator (of type 0) associated to gt, as defined in
Section 3.2, and an O(h∞)L2→L2 remainder.

The proofs are standard; part 1 can be found in [62, Theorem 11.1] (with the mildly exotic
classes Ψcomp

ρ handled as in Appendix C), part 2 follows directly from part 1, and part 3 is
proved similarly to [62, Theorem 10.4]. The operator U(t)A quantizes gt, not g−t, because
of the convention adopted in Section 3.2 that a canonical transformation T ∗M → T ∗M ′ is
quantized as an operator D′(M ′)→ C∞0 (M).

Egorov’s theorem until the Ehrenfest time. – Proposition 3.8 is valid for bounded times t;
as t→∞, the constants in the estimates for the corresponding symbols will blow up.
However, it is still possible to prove Egorov’s Theorem for t bounded by a certain multiple
of log(1/h), called the Ehrenfest time. To define this time, we fix an open bounded setU ⊂M
with geodesically convex closure in the sense of (B.1) and define the maximal expansion rate

(3.17) Λmax := lim sup
|t|→∞

1

|t|
log sup

m∈U, |ν|g=1,

gt(m,ν)∈U

‖dgt(m, ν)‖.

Here ‖dgt(m, ν)‖ is the operator norm of the differential dgt(m, ν) : T(m,ν)T
∗M → Tgt(m,ν)T

∗M

with respect to any given smooth norm on the fibers of T (T ∗M). Since we will work on
a noncompact manifold, we introduce cutoffs into the corresponding propagators:
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P 3.9. – Assume that X1, X2 ∈ Ψ0(M) satisfy ‖Xj‖L2→L2 ≤ 1 + O(h) and
are compactly supported inside U . Let εe > 0 and take Λ0,Λ

′
0 > 0 such that Λ0 > Λ′0 > (1 + 2εe)Λmax.

Fix t0 ∈ R. Then for each integer

(3.18) l ∈ [0, log(1/h)/(2|t0|Λ0)],

and each compactly supported A ∈ Ψcomp(M) with WFh(A) ⊂ Eεe := {1− εe ≤ |ν|g ≤ 1 + εe},
the compactly supported operator A(l) := (X2U(t0))lA(U(−t0)X1)l lies in Ψcomp

ρl
(M),

modulo an O(h∞)L2→L2 remainder, with

(3.19) ρl = l|t0|Λ′0/ log(1/h) < 1/2.

Moreover, the Scomp
ρl

seminorms of the full symbol of A(l) are bounded uniformly in l, in the
following sense: the order k derivatives of this symbol are bounded by Ch−kρl , where C is
a constant independent of h and l. The principal symbol of A(l) is

σ(A(l)) = (σ(A) ◦ glt0)

l−1∏
j=0

(σ(X1)σ(X2)) ◦ gjt0 + O(h1−2ρl).

The wavefront set of A(l), for l > 0, is contained in WFh(X1) ∩WFh(X2) ∩ Eεe . Finally,
if UA and UX are open sets such that WFh(A) ⊂ UA and WFh(X1) ∩WFh(X2) ⊂ UX , then
A(l) is microsupported, in the sense of Definition 3.1, inside the set

V (l) := g−lt0(UA) ∩
l−1⋂
j=0

g−jt0(UX).

The set V (l) does not depend on h directly, however it depends on l, which is allowed to depend
on h, and our microlocal vanishing statement is uniform in l.

Proposition 3.9 is the main technical tool of obtaining the polynomial remainder bound
of Theorem 2; it is also the reason why the classes Ψcomp

ρ appear. Its proof, following the
methods of [1, Section 5.2] and [62, Theorem 11.12], is given in Appendix C. See also [44,
Theorem 7.1] for a more refined estimate in the more restrictive setting of two-dimensional
manifolds with hyperbolic geodesic flows. We do not impose any restrictions on the set U
at this point, however in our actual argument it will have to contain a neighborhood of the
trapped set—see the beginning of Section 5.2.

Propagating generalized eigenfunctions. – The following fact, similar to [11, Proposition 3.3],
will be used to propagate the Eisenstein functions by the group U(t):

L 3.10. – Assume that u ∈ C∞(M) solves the equation

(h2∆− z)u = 0, |1− z| ≤ Ch.

Let χ ∈ C∞0 (M); take t ∈ R and assume that χt ∈ C∞0 (M) is supported in the interior of
a compact set Kt ⊂M and satisfies

(3.20) dg(suppχ, supp(1− χt)) > |t|.

Here dg denotes Riemannian distance on M . Then

χu = χe−itz/(2h)U(t)χtu+ O(h∞‖u‖L2(Kt))L2(M).
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Proof. – Without loss of generality, we assume that t ≥ 0. For 0 ≤ s ≤ t, define
us = χ(u− e−isz/(2h)U(s)χtu). We need to prove that

(3.21) ‖ut‖L2 = O(h∞)‖u‖L2(Kt).

Since χ = χχt, we have u0 = 0; next,

2hDsus = −χe−isz/(2h)U(s)(h2∆− z)χtu = −e−isz/(2h)χU(s)[h2∆, χt]u.

Let B ∈ Ψcomp be compactly supported inside Kt ×Kt, equal to the identity microlocally
near suppχt ∩ S∗M , but microlocalized in a small neighborhood of S∗M so that by (3.20),

gs(suppχ) ∩WFh(B) ∩ supp(1− χt) = ∅.

Note that WFh([h2∆, χt]) ⊂ supp(1− χt). Then by part 2 of Proposition 3.8,

(3.22) ‖χU(s)[h2∆, χt]Bu‖L2 = O(h∞)‖u‖L2(Kt), 0 ≤ s ≤ t.

Moreover, by Proposition 3.2

(3.23) ‖χU(s)[h2∆, χt](1−B)u‖L2 = O(h∞)‖u‖L2(Kt).

Combining (3.22) and (3.23), we get ‖∂sus‖L2 = O(h∞)‖u‖L2(Kt); it remains to integrate
in s to get (3.21).

Hilbert-Schmidt norm estimates. – We now prove Hilbert-Schmidt norm estimates for the
product of a pseudodifferential operator with a spectral projector. (See [27, Section 19.1]
for the properties of Hilbert-Schmidt and trace class operators.) To simplify notation, we
consider a spectral interval of size h centered at λ = 1; similar statement is true for the
interval [λ+ c1h, λ+ c2h] with λ > 0, replacing S∗M by λS∗M .

L 3.11. – Fix c1, c2 ∈ R and let 1l[1+c1h,1+c2h](h
2∆) be defined by means of spectral

theory. Assume that A ∈ Ψcomp
ρ (M) is compactly supported. Then

(3.24) h(d−1)/2‖ 1l[1+c1h,1+c2h](h
2∆)A‖HS ≤ C‖σ(A)‖L2(S∗M) + O(h1−2ρ).

HereC is a constant independent ofA (if WFh(A) is contained in a fixed compact set), however
the constant in O(h1−2ρ) depends onA. We take theL2 norm ofσ(A) on the energy surfaceS∗M
with respect to the Liouville measure µL.

Moreover, if WFh(A) is microsupported, in the sense of Definition 3.1, in some h-dependent
family of sets V (h) ⊂ T ∗M , then

(3.25) h(d−1)/2‖ 1l[1+c1h,1+c2h](h
2∆)A‖HS ≤ CµL(V (h) ∩ S∗M)1/2 + O(h∞).

Here µL(V (h) ∩ S∗M) denotes the volume of V (h) ∩ S∗M with respect to the Liouville mea-
sure on S∗M and the constant C depends on a certain Scomp

ρ -seminorm of the full symbol ofA.

Proof. – Take a function χ ∈ S (R) such that χ̂ is compactly supported in some in-
terval (−T, T ) and χ does not vanish on [c1, c2] (for example, take nonzero ψ ∈ C∞0 (R)

with ψ ≥ 0, then |ψ̂| > 0 in an interval [c1ε, c2ε]; set χ(x) := ψ̂(εx)). Then

1l[1+c1h,1+c2h](h
2∆) = Zχ((h2∆− 1)/h),
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where Z is a certain function of h2∆ and it is bounded on L2(M) uniformly in h. It then
suffices to estimate the Hilbert-Schmidt norm of

B = h(d−1)/2χ((h2∆− 1)/h)A = (2π)−1h(d−1)/2

∫ T

−T
χ̂(t)e−it/hU(2t)Adt.

Let A0 ∈ Ψcomp
0 (M) be compactly supported and equal to the identity microlocally

near WFh(A). By part 3 of Proposition 3.8, for each t we have U(2t)A0 = U2t +R2t, where
U2t ∈ Icomp(g2t) and R2t = O(h∞)L2→L2 . Then

(3.26) (U(2t)− U2t)A = O(h∞)HS.

Indeed, we can write the left-hand side of (3.26) as the sum of R2tA and U(2t)(1 − A0)A;
it remains to note that R2t = O(h∞)L2→L2 , ‖A‖HS is polynomially bounded in h, and
‖(1−A0)A‖HS = O(h∞).

By (3.26), we can replace U(2t) by U2t in the definition of B. Now, ‖B‖HS is equal
to the L2(M ×M) norm of the Schwartz kernel KB . Using the local normal form (3.14),
we can writeKB , up to an O(h∞)C∞0 remainder and an appropriate cutoff in them′ variable,
as a finite sum of expressions of the form (in a fixed coordinate system on M )

(3.27) h−(d+1)/2

∫ T

−T

∫
Rd
ei(S(m,ν′;2t)−m′·ν′−t)/hb(m, ν′, t;h) dν′dt.

Here S(m, ν′; 2t) is a generating function for g2t and b is a certain symbol in Scomp
ρ . More-

over, b admits an asymptotic expansion in terms of the full symbol of A, by Proposition 3.7.
The fact that S and b can be chosen to depend smoothly on t follows from the proof of part 3
of Proposition 3.8. By [62, Lemma 10.5], S satisfies the Hamilton-Jakobi equation

(3.28) g2t(m, ν) = (m′, ν′) =⇒ ∂t(S(m, ν′; 2t)) = p(m, ∂mS(m, ν′; 2t)).

It follows that Φ(m,m′, ν′, t) = S(m, ν′; 2t) − m′ · ν′ − t is a nondegenerate phase
function (with m,m′ as base variables and ν′, t as the oscillatory variables) and generates
the (immersed) Lagrangian

Λ = {(m, ν;m′,−ν′) | p(m, ν) = 1, ∃t ∈ (−T, T ) : g2t(m, ν) = (m′, ν′)}.

Then (3.27) lies in Icomp
ρ (Λ). By the local normal form (3.8) of a Lagrangian distribution, we

can write (3.27), up to an O(h∞)C∞0 remainder and an appropriate cutoff in the (m,m′) vari-
ables, as the sum of finitely many expressions of the form

(3.29) h−d
∫
R2d

ei(m·ν+m′·ν′+F (ν,ν′))/hb̃(ν, ν′;h) dνdν′,

where F parametrizes some open subset of Λ by (3.7) and b̃ is a symbol in Scomp
ρ . By

Proposition 3.7 and Proposition 3.3, we see that the symbol b̃ has the following asymptotic
expansion in terms of the full symbol a of A:

(3.30) b̃(ν, ν′;h) =
∑

0≤j<N

hjLja(m′, ν′;h) + O(hN(1−2ρ))Scomp
ρ

,

where each Lj is a differential operator of order 2j and m,m′ are given by the relation
(m, ν,m′,−ν′) ∈ Λ; in particular, (m′, ν′) ∈ S∗M .

We now use Proposition 3.6 to estimate the L2 norm of (3.29); asB is, modulo O(h∞)HS,
a sum of operators with Schwartz kernels of the form (3.29), this would give an estimate on
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the Hilbert-Schmidt norm ofB. For (3.24), we can write b̃(ν, ν′;h) as a multiple of a(m′, ν′)

plus an O(h1−2ρ) remainder and note that (m′, ν′) always lies in S∗M . For (3.25), we use
that b̃ = O(h∞) outside of the preimage of V (h) under the map (ν, ν′) 7→ (m′, ν′), and that
sup |b̃| can be estimated by a certain Scomp

ρ -seminorm of a.

Local traces of integrated Schrödinger propagators. – We give the following version of
the Schrödinger propagator trace formula when there are no contributions from closed
geodesics:

L 3.12. – Assume that M is a d-dimensional complete Riemannian manifold and
Bs is a family of compactly supported pseudodifferential operators in Ψcomp

ρ (M), smooth and
compactly supported in s ∈ (−T0, T0), where T0 > 0 is fixed. Assume also that all Bs are
microsupported, in the sense of Definition 3.1, in some h-dependent family of bounded sets
V (h) ⊂ T ∗M , and the following nonreturning condition holds:

(3.31) (m, ν) ∈ V (h), |s| < T0 =⇒ d((m, ν), gs(m, ν)) ≥ C−1|s|hρ.

Here C is some constant and d denotes some smooth distance function on T ∗M . Let
Bs = Oph(b(s)) + O(h∞)Ψ−∞ for some family of symbols b(s,m, ν) and some quantiza-
tion procedure Oph. Then for each N and each λ > 0, we have the trace expansion

(3.32) (2πh)d−1

∫ T0

−T0

e−iλ
2s/(2h) Tr(U(s)Bs) ds

=
∑

0≤j<N

hj
∫
S∗M

Ljb(0,m, λν) dµL(m, ν) + O(hN(1−2ρ))C∞λ ,

where µL is the Liouville measure and each Lj is a differential operator of order 2j

on T ∗M(m,ν) × (−T0, T0)s, independent of Bs and smooth in λ. In particular, L0 = λd−2.

Proof. – As in the proof of Lemma 3.11, we can reduce to computing the trace of the
operator with the Schwartz kernel (in some fixed local coordinates)

K(m,m′) = (2πh)−1

∫ T0

−T0

∫
Rd
e
i
h (S(m,ν′;s)−m′·ν′−λ2s/2)b̃(m, ν′, s;h) dν′ds,

where S(m, ν′; s) is a local generating function for gs in the sense of (3.13) and b̃(m, ν′, s;h)

is a certain symbol in Sρ having an asymptotic expansion in terms of the jet of bs at the point
(∂ν′S(m, ν′; s), ν′). The trace of the corresponding operator is∫

M

K(m,m) dm = (2πh)−1

T0∫
−T0

∫
M×Rd

e
i
h (S(m,ν′;s)−m·ν′−λ2s/2)b̃(m, ν′, s;h) dmdν′ds.

We now use the method of stationary phase. The stationary points of the phase are solutions
to the equations gs(m, ν′) = (m, ν′) and |ν′|g = λ; they occur at s = 0 and may also occur
for λ|s| ≥ ri, where ri > 0 is the injectivity radius of M . For λ|s| ≥ ri/2, we see by (3.31)
that the expression under the integral can be split into two pieces, on one of which the
symbol is O(h∞) and on the other, the differential of the phase function has length at
least C−1hρ; by repeated integration by parts, the latter integral is O(h∞).
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It remains to evaluate the contribution of the stationary set {s = 0} ∩ λS∗M . The phase
function is degenerate on these points; however, one can pass to polar coordinates ν′ = rω,
with |ω|g = 1 and r > 0, and apply the method of stationary phase in the (r, s) variables,
resulting in the expansion (3.32). See for example the proofs of [45, Théorème V-7 and
Proposition V-8] or [46, Lemma 3.1] for details of the computation.

4. General assumptions

In this section, we list general geometric assumptions on the manifold M and analytic
assumptions on its Laplacian required for our results to hold. As noted in the introduction,
they are satisfied in particular if outside of a compact set, M is isometric to either the
Euclidean space (studied in Section 6) or an asymptotically hyperbolic space of constant
curvature (studied in Section 7). We also derive some direct consequences of the general
assumptions, including averaged estimates on plane waves and the existence of limiting
measures µξ.

4.1. Geometric assumptions

In this subsection, we specify the geometry of the manifold M at infinity.

Let us introduce some notation and terminology first. On a complete Riemannian man-
ifold (M, g) we denote by gt the geodesic flow of the metric g, considered as a map on the
cotangent bundle T ∗M . Any smooth function f on M can be lifted to a function on T ∗M ;
denote by ḟ , f̈ ∈ C∞(T ∗M) the derivatives of f with respect to the geodesic flow:

ḟ(m, ν) := dtf(gt(m, ν))|t=0, f̈(m, ν) := d2
tf(gt(m, ν))|t=0.

We denote by S∗M the unit cotangent bundle {(m, ν) | |ν|g = 1} ⊂ T ∗M .

A boundary defining function on a smooth compact manifold M with boundary is
a smooth function x : M → [0,∞) such that x > 0 on M and x vanishes to first order
on ∂M .

We make the following assumptions:

(G1) (M, g) is a complete Riemannian manifold of dimension d = n + 1. Moreover, there
exists a compactification ofM , namely a compact manifold with boundaryM such that
M is diffeomorphic to the interior of M . The boundary ∂M is called the boundary at
infinity;

(G2) There exist a boundary defining function x on M and a constant ε0 > 0 such that for
any point (m, ν) ∈ S∗M ,

(4.1) if x(m, ν) ≤ ε0 and ẋ(m, ν) = 0, then ẍ(m, ν) < 0;

(G3) For each (m, ν) ∈ S∗M such that x(m) ≤ ε0 and ẋ(m, ν) ≤ 0, the geodesic gt(m, ν)

(projected onto the base space M ) converges as t → +∞, in the topology of M , to
some point ξ+∞(m, ν) ∈ ∂M . The function ξ+∞ depends smoothly on (m, ν), and we
extend it naturally (as the limit of the corresponding geodesic) to a smooth function
on S∗M \ Γ−, with Γ− given in Definition 4.1 below;
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x

∂M

ε0 x

∂M

ε0

(m, ν)

(m′, ν′) ξ+∞

F 2. Illustrations for (G2) and (G3). Left: (G2) is not satisfied. Right: (G2) is
satisfied. The point (m, ν) does not escape directly in the forward direction, but the
point (m′, ν′) does, illustrating (G3).

(G4) There exists an open set U∞ ⊂ M × ∂M such that U∞ contains a neighborhood
of {(ξ, ξ) ∈M × ∂M | ξ ∈ ∂M} and a smooth real-valued function φ(m, ξ) = φξ(m)

on U∞ such that |∂mφξ(m)|g = 1 everywhere and the function

(4.2) τ(m, ξ) := (m, ∂mφξ(m)) ∈ S∗M, (m, ξ) ∈ U∞,

is a diffeomorphism from U+
∞ onto V +

∞ with inverse given by

τ−1(m, ν) = (m, ξ+∞(m, ν)), (m, ν) ∈ V +
∞

where the sets U+
∞ and V +

∞ are defined by

U+
∞ := {(m, ξ) ∈ U∞ | x(m) ≤ ε0, ẋ(τ(m, ξ)) ≤ 0},
V +
∞ := {(m, ν) ∈ S∗M | x(m) ≤ ε0, ẋ(m, ν) ≤ 0, (m, ξ+∞(m, ν)) ∈ U∞};

(G5) if (m, ν) ∈ V +
∞ , then gt(m, ν) ∈ V +

∞ for all t ≥ 0;
(G6) if ξ ∈ ∂M and m,m′ ∈M are such that (m, ξ), (m′, ξ) ∈ U+

∞, then ∂ξφξ(m) = ∂ξφξ(m
′)

if and only if τ(m, ξ) and τ(m′, ξ) lie on the same geodesic. Moreover, the matrix
∂m∂ξφξ(m) has rank n.

Escaping trajectories and the trapped set. – We now define the incoming/outgoing tails Γ±
and the trapped set K:

D 4.1. – Let γ(t) be a unit speed geodesic. We say that it escapes in the
forward, respectively backward, direction, if γ(t) goes to infinity in M as t → +∞, respec-
tively t→ −∞. If γ(t) does not escape in some direction, we call it trapped in this direction.
Denote by Γ+ ⊂ S∗M the union of all geodesics trapped in the backward direction, by Γ−
the union of all geodesics trapped in the forward direction, and put K = Γ+ ∩ Γ−; we call K
the trapped set.

An escaping geodesic could potentially spend a long time in the compact part of the
manifold. It is helpful to consider geodesics that escape in a straightforward way (with the
boundary defining function x decreasing along them); they appeared in Assumption (G3)
for instance.
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D 4.2. – We say that (m, ν) ∈ S∗M directly escapes in the forward, respectively
backward, direction, if x(m) ≤ ε0 and ẋ(m, ν) ≤ 0, respectively ẋ(m, ν) ≥ 0. Here ε0 is the
constant from (G2). Denote by D E+, respectively D E−, the set of all points directly escaping
in the forward, respectively backward, direction.

One can verify that Γ± are closed sets and the trapped set K is compact (see [15, Ap-
pendix]); in fact, since S∗M ∩ {x ≤ ε0} ⊂ D E+ ∪ D E−, we have K ⊂ {x > ε0}.

For the example of M = Rn+1 discussed below, we have Γ± = ∅. The point (m, ν) lies
in D E+ if and only if x(m) ≤ ε0 and m · ν ≥ 0.

Comments on the geometric assumptions. – A basic example to have in mind for a manifold
satisfying our assumptions is M = Rn+1 with the radial compactification M being a closed
ball and the boundary at infinity ∂M equal to the sphere Sn. We will often use this example
to illustrate the somewhat abstract assumptions of this section. (A more general version will
be considered in Section 6.)

An important corollary of the Assumption (G2) is that for ε ≤ ε0, the compact set {x ≥ ε} ⊂M
is geodesically convex in the sense of (B.1). For the example of M = Rn+1, we can take
x = (1 + |m|−2)−1/2, where |m| is the Euclidean length of m ∈ Rd; the corresponding sets
{x ≥ ε} are balls centered at zero.

It also follows from (G2) that for (m, ν) ∈ D E+, the function x(gt(m, ν)) is decreasing
for t ≥ 0. One can show that x(gt(m, ν)) → 0 as t → +∞ and thus gt(m, ν) escapes in the
forward direction; we do not give a proof of this fact as it follows from the more restrictive
Assumption (G3). Also, if a geodesic γ(t) escapes in the forward direction, then for t large
enough we have γ(t) ∈ D E+. For M = Rn+1, we have ξ+∞(m, ν) = ν ∈ Sn.

Assumption (G4) means that for m sufficiently close to the infinity, the covectors ν such
that (m, ν) ∈ D E+ are in one-to-one correspondence with the limit points ξ+∞(m, ν), and
the inverse correspondence can be described by a phase function. It follows in particular
from (G4) that for a fixed ξ ∈ ∂M , the set of directly escaping points (m, ν) such that
ξ+∞(m, ν) = ξ and (m, ξ) ∈ U∞ is the intersection of D E+ with the Lagrangian

(4.3) Λξ := {(m, ∂mφξ(m)) | (m, ξ) ∈ U∞}.

In the model case M = Rn+1 we can put for any R > 0, U∞ = {(m, ξ) | |m| > R},
and φξ(m) = m · ξ, so that τ is the canonical map from Rn+1 × Sn to S∗Rn+1. Then
U+
∞ = {(m, ξ) | |m| > R, m · ξ ≥ 0} and V +

∞ = {(m, ν) | |m| ≥ R, m · ν ≥ 0};
the difference is that U+

∞ is considered as a subset of Rn+1 × Sn, while V +
∞ is considered as

a subset of S∗Rn+1.

The condition (G5) can also be viewed as a condition on U+
∞, saying that for any (m, ξ) ∈ U+

∞,
the whole geodesic ‘segment’ γ(m, ξ) relating m and the point ξ ∈ ∂M is such that
γ(m, ξ)× {ξ} is contained in U+

∞.

The condition (G6) is required in Proposition 5.12. To explain it, note that under the
Assumption (G4), if (m, ξ) ∈ U+

∞ and (m(t), ν(t)) = gt(τ(m, ξ)), then

(4.4) ∂tφξ(m(t))|t=0 = ∂mφξ(m) · ∂tm(t)|t=0 = g(∂mφξ(m), ∂mφξ(m)) = 1.

Therefore, ∂ξφξ(m) is constant on the geodesic passing through τ(m, ξ).
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4.2. Analytic assumptions

In this subsection, we formulate the analytic assumptions on plane waves. We will prove
that they are satisfied in the Euclidean near infinity setting (in Section 6.2) and in the hy-
perbolic near infinity setting (in Section 7.2). Let M be as in the previous subsection, ∆ be
the (nonnegative definite) Laplace-Beltrami operator on M , and h > 0 be the semiclassical
parameter. We make the following assumptions:

(A1) There exists c0 ≥ 0 (equal to 0 for the Euclidean and to n2/4 for the hyperbolic case),
such that for each λ > 0, h > 0 and ξ ∈ ∂M , there exists a function, called distorted
plane wave, Eh(λ, ξ;m) = E(λ/h, ξ;m), smooth in all variables and solving on M the
differential Equation (1.4) in m:

(h2∆− c0h2 − λ2)Eh(λ, ξ; ·) = 0.

Here ξ gives the direction of the plane wave, while λ corresponds to its semiclassical
energy;

(A2) for each 0 < λ1 ≤ λ2, the Schwartz kernel of the semiclassical spectral projector

Π[λ1,λ2] := 1l[λ2
1+c0h2,λ2

2+c0h2](h
2∆)

can be written in the form

(4.5) Π[λ1,λ2](m,m
′) = (2πh)−n−1

∫ λ2

λ1

λnfΠ(λ/h)

∫
∂M

Eh(λ, ξ;m)Eh(λ, ξ;m′) dξdλ.

Here integration in ξ is carried with respect to a certain given volume form dξ on ∂M
and fΠ(z) > 0 is a smooth function of z such that |∂kz fΠ(z)| ≤ Ck〈z〉−k for each k
and fΠ(z)→ 1 as z →∞.

We now assume that plane waves admit the decomposition

(4.6) Eh(λ, ξ;m) = χ0(m; ξ)E0
h(λ, ξ;m) + E1

h(λ, ξ;m),

where χ0, E
0
h, E

1
h are respectively a cutoff function, an explicit ‘outgoing’ part of the wave,

and the ‘incoming’ part, satisfying more precisely the following properties:

(A3) χ0(m; ξ) is a function smooth in m ∈ M and ξ ∈ ∂M , supported inside the set U∞
from (G4) and χ0(m, ξ) = 1 for m sufficiently close to ξ;

(A4) E0
h(λ, ξ;m) is a smooth function of λ/h ∈ R∗ and (m, ξ) ∈ U∞, of the form

(4.7) E0
h(λ, ξ;m) = e

iλ
h φξ(m)b0(λ, ξ,m;h),

where U∞ and φξ are defined in (G4) and b0(λ, ξ,m;h) = b0(λ/h, ξ,m) is a classical
symbol in h for (m, ξ) ∈ U∞, λ ∈ R∗; that is, b0(λ, ξ,m;h) is smooth in all variables,
including h, up to h = 0. The limit b0(λ, ξ,m; 0) = limh→0 b

0(λ/h, ξ,m) for λ > 0 is
independent of λ;

(A5) for λ in a fixed compact subset of (0,∞) and ε0 defined in (G2), the function

(4.8) Ẽ1
h(λ, ξ;m) :=

E1
h(λ, ξ;m)

1 + ‖Eh(λ, ξ;m)‖L2({x≥ε0})

is h-tempered in the sense of (3.2);

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



398 S. DYATLOV AND C. GUILLARMOU

(A6) for λ in a fixed compact subset of (0,∞), each ξ ∈ ∂M , and each (m,λν) ∈WFh(Ẽ1
h(λ, ξ)),

we have (m, ν) ∈ S∗M and either the geodesic γ(t) = gt(m, ν) does not escape in the
forward direction (i.e., (m, ν) ∈ Γ−) or there exists t ≥ 0 such that γ(t) lies in the set

(4.9) Wξ := {(m, ∂mφξ(m)) | m ∈ supp(∂mχ0)}.

The constants in the corresponding estimates (in the definition of the wave front set of
a distribution given in Section 3.1) are uniform in λ and ξ;

(A7) there exists ε1 ∈ (0, ε0) such that for (m, ν) ∈ S∗M directly escaping in the forward
direction and x(m) ≤ ε1, the point (m, ξ+∞(m, ν)) lies in the set U∞ defined in (G4)
and χ0 = 1 near this point;

(A8) let τ : U+
∞ → V +

∞ be the diffeomorphism from (G4). Then its Jacobian with respect
to the volume measure dvol(m)dξ on U+

∞ and the Liouville measure on V +
∞ , is equal

to |b0(1, ξ,m; 0)|2, with b0 defined in (A4).

For example, for M = Rn+1 we put c0 = 0, Eh(λ, ξ;m) = eiλξ·m/h and use the standard
volume form on the sphere ∂M = Sn. The Equation (4.5) then follows from the Fourier
inversion formula.

Let us informally explain how the decomposition (4.6) is constructed and provide a jus-
tification for Assumptions (A3)–(A6), putting for simplicity λ = 1. First of all, (A4) implies
that for any χ ∈ C∞0 (M), χχ0E

0
h, as a function of m, is a Lagrangian distribution associ-

ated to the Lagrangian Λξ from (4.3). In fact, in the cases considered in the present paper,E0
h

solves on its domain the Equation (1.4); however, we do not make this assumption here, as in
more complicated cases (such as asymptotically hyperbolic manifolds of variable curvature)
E0
h might only be an approximate solution to (1.4) in a certain sense.
If we assume that E0

h solves (1.4) on its domain, then the function

Fh(λ, ξ;m) = (h2∆− λ2 − c0h2)(χ0(m)E0
h(λ, ξ;m))

is equal to [h2∆, χ0]E0
h. SinceE0

h is a Lagrangian distribution associated to Λξ, the wavefront
set of Fh is contained inWξ. We will now takeE1

h = −Rh(λ)Fh, whereRh(λ) is the incoming
scattering resolvent, a certain right inverse of h2∆−λ2−c0h2. Moreover, in our casesRh(λ)

will be microlocally incoming in the weak sense: if we multiply Fh by a (possibly small)
constant to make Rh(λ)Fh bounded polynomially in h, then each point in the wavefront
set of Rh(λ)Fh, when propagated forward by the geodesic flow, will either converge to the
trapped set or pass through WFh(Fh). Thus, the Assumption (A6) should be viewed as
a direct consequence of the fact that the scattering resolvent is microlocally incoming and
of propagation of singularities.

The Assumption (A7) looks less natural, but will play an essential role in our proofs,
in Propositions 5.2 and 5.5. It holds for both Euclidean and hyperbolic infinities, but for
different reasons. For the hyperbolic infinity, χ0(·; ξ) is equal to 1 in a small neighborhood
of ξ and one can see that for (m, ν) directly escaping in the forward direction and converging
to ξ, the distance from m to ξ in M is O(x(m)). This is not true in the Euclidean case;
however, in that case χ0 is equal to 1 outside of a compact subset of M (that is, near the
whole boundary ∂M , not just near ξ).

The Assumption (A8) is required to relate the natural measure arising from the func-
tionE0

h to the Liouville measure. IfEh were equal toE0
h, then this assumption would simply
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follow by taking the trace in (4.5) with a compactly supported pseudodifferential operator
and a smooth cutoff function in λ.

4.3. Limiting measures

We now define the family of limiting measuresµξ. These measures result from propagating
the natural measure arising from the ‘outgoing’ partE0

h of the plane wave, which is supported
on the Lagrangian Λξ from (4.3), backwards along the geodesic flow. In contrast with [11],
where the exponential decay of the measure along the flow ensured its convergence, our
measures will only be defined for almost every ξ.

We first define the measure µ̃ξ on S∗M , corresponding to E0
h, as follows: for each com-

pactly supported continuous function a on S∗M , put

(4.10)
∫
S∗M

a dµ̃ξ =

∫
(m,ξ)∈U+

∞

|b0(1, ξ,m; 0)|2a(τ(m, ξ)) dvol(m).

The support of µ̃ξ is contained in the Lagrangian Λξ from (4.3) and the integral (4.10)
depends continuously on ξ. We see from (A8) that for any continuous function f on ∂M ,

(4.11)
∫
∂M

f(ξ)

∫
S∗M

a(m, ν) dµ̃ξ(m, ν)dξ =

∫
V +
∞

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν).

We now want to define the measure µξ by

(4.12)
∫
S∗M

a dµξ = lim
t→+∞

∫
S∗M

a ◦ g−t dµ̃ξ,

valid for all compactly supported continuous functions a. To show that the limit exists
for almost every ξ (chosen independently of a) and for every a, we will use monotonicity.
By (4.11), (G5), and using the invariance of the function ξ+∞ and the Liouville measure µL
under the geodesic flow, we see that if a and f are nonnegative, then∫

∂M

f(ξ)

∫
S∗M

(a ◦ g−t) dµ̃ξdξ =

∫
g−t(V +

∞)

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν)

is increasing with t. Therefore, for each ξ the integral

Ia,t(ξ) =

∫
S∗M

(a ◦ g−t) dµ̃ξ

is increasing in t for any nonnegative a. Moreover, the integral of Ia,t(ξ) in ξ is bounded by
a t-independent constant, namely by the integral of a by the Liouville measure. Taking a to
be an approximation of the characteristic function of each member of a countable family of
compact sets exhausting S∗M , and using the monotone convergence theorem, we see that
there exists a measure zero set X ⊂ ∂M such that for ξ 6∈ X , we have for any compactly
supported continuous function a,

lim
t→+∞

∫
S∗M

(a ◦ g−t) dµ̃ξ <∞.

This limit is a continuous functional on the space of continuous compactly supported func-
tions on S∗M ; therefore, there exists a unique Borel measure µξ such that (4.12) holds. More-
over, we see that the limit (4.12) is uniform in a, as soon as we fix a compact set containing
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supp a and impose a bound on supS∗M |a|. One also sees immediately (1.6), namely that for
compactly supported continuous a,

supp a ∩ ξ−1
+∞(ξ) = ∅ =⇒

∫
S∗M

a dµξ = 0,

as
∫
S∗M

(a ◦ g−t) dµ̃ξ = 0 for all t.
We can integrate the measure µξ in ξ, getting back the Liouville measure:

P 4.3. – For each f ∈ C∞(∂M) and each a ∈ C∞0 (S∗M) we have

(4.13)
∫
∂M

f(ξ)

∫
S∗M

a(m, ν) dµξ(m, ν)d ξ =

∫
S∗M\Γ−

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν).

In particular, if µL(Γ−) = 0 (which will always be the case in our theorems, see (5.2)), then∫
µξ dξ is the Liouville measure.

Proof. – The left-hand side can be written as

lim
t→+∞

∫
g−t(V +

∞)

f(ξ+∞(m, ν))a(m, ν) dµL(m, ν).

It remains to use the dominated convergence theorem; indeed, the function under the integral
is bounded and compactly supported, we have g−t1(V +

∞) ⊂ g−t2(V +
∞) for t1 < t2, and the

union of g−t(V +
∞) over all t ∈ R is exactly S∗M \ Γ−, as for every geodesic γ(t) escaping in

the forward direction and for t large enough, the point γ(t) is directly escaping in the forward
direction and (γ(t), ξ+∞(γ(t))) ∈ U∞.

Finally, the following lemma will be useful to relate our measure µξ to the one obtained
from E0

h in the proofs of Theorems 1 and 2:

L 4.4. – Let ξ 6∈ X , so that µξ is well-defined. Let a be a compactly supported
continuous function on S∗M .

1. µξ is invariant under the geodesic flow: for each t ∈ R,

(4.14)
∫
S∗M

a ◦ gt dµξ =

∫
S∗M

a dµξ.

2. If supp a ⊂ D E+ ∩ {x ≤ ε1}, where D E+ is given by Definition 4.2 and ε1 is defined
in (A7), then

(4.15)
∫

(m,ξ)∈U∞
|b0(1, ξ,m; 0)χ0(m; ξ)|2a(m, ∂mφξ(m)) dvol(m) =

∫
S∗M

a dµξ.

Proof. – 1. Follows immediately from the Definition (4.12).
2. First of all, note that for m in the support of the function a(m, ∂mφξ(m)), we have

(m, ξ) ∈ U+
∞ and χ0(m; ξ) = 1 by (A7); therefore, the left-hand side of (4.15) becomes

the integral of a over the measure µ̃ξ defined in (4.10). By (4.12), it is enough to show that
for t ≥ 0, ∫

S∗M

a ◦ g−t dµ̃ξ =

∫
S∗M

a dµ̃ξ.

For that, it is enough to show that for each f ∈ C∞0 (∂M),∫
∂M

f(ξ)

∫
S∗M

a ◦ g−t dµ̃ξ =

∫
∂M

∫
S∗M

a dµ̃ξ.
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Using (4.11), we rewrite this as∫
g−t(V +

∞)

f(ξ+∞)a dµL =

∫
V +
∞

f(ξ+∞)a dµL.

This is true as supp a ⊂ V +
∞ ⊂ g−t(V +

∞).

4.4. Averaged estimates on plane waves

One of the principal tools of the present paper are microlocal estimates on the plane
waves Eh(λ, ξ) on average in λ, ξ, where λ takes values in a size h interval. They are di-
rect consequences of (4.5) and the Hilbert-Schmidt norm estimate (3.24). More precisely,
restricting to the case λ = 1 + O(h) for simplicity, we have the following

P 4.5. – Let χ ∈ C∞0 (M). Then:
1. χΠ[1,1+h] is a Hilbert-Schmidt operator and there exists a global constantC such that for

each bounded operator A : L2(M)→ L2(M), we have

(4.16) h−1‖Aχ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ Chn‖AχΠ[1,1+h]‖2HS.

2. The functions χEh are bounded in L2 on average in the following sense: there exists
a constant C(χ) such that for any h,

(4.17) h−1‖χ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

≤ C(χ).

The h−1 prefactor in both cases is due to the fact that we are integrating over an interval of
size h in λ.

Proof. – 1. It follows immediately from (4.5) that
(4.18)

h−1

∫ 1+h

1

fΠ(λ/h)λn
∫
∂M

(χEh(λ, ξ))⊗ (χEh(λ, ξ)) dξdλ = (2π)n+1hnχΠ[1,1+h]χ̄.

Here ⊗ denotes the Hilbert tensor product, defined in (2.10). The integral on the left-hand
side converges in the trace class norm, as the Schwartz kernels of the integrated operators
are smooth and compactly supported. Therefore, χΠ[1,1+h]χ̄ is trace class. Since

χΠ[1,1+h]χ̄ = (χΠ[1,1+h])(χΠ[1,1+h])
∗,

we see that χΠ[1,1+h] is a Hilbert-Schmidt operator. Now, multiplying both sides of (4.18)
by A on the left and A∗ on the right and taking the trace, we get

h−1‖λn/2fΠ(λ/h)1/2Aχ(m)Eh(λ, ξ;m)‖2
L2
m,ξ,λ(M×∂M×[1,1+h])

= (2π)n+1hn Tr((AχΠ[1,1+h])(AχΠ[1,1+h])
∗)

= (2π)n+1hn‖AχΠ[1,1+h]‖2HS.

(4.19)

2. We would like to use Lemma 3.11 to estimate ‖χΠ[1,1+h]‖HS (we can put χ on the other
side of the projector in (3.24) by taking the adjoint), however this is not directly possible as
χ is not compactly microlocalized. We thus use that Eh solve the Equation (1.4), writing by
the elliptic parametrix construction (same as for the proof of Proposition 3.2)

(4.20) χ = B +Qλ(h2∆− λ2 − c0h2) +Rλ
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for λ ∈ [1, 1 + h], where B ∈ Ψcomp(M), Qλ ∈ Ψ−2(M), and Rλ ∈ h∞Ψ−∞(M) are
compactly supported and B is independent of λ and equal to χ microlocally near S∗M . We
can also assume thatQλ andRλ are smooth in λ. Now, we substitute (4.20) into the left-hand
side of (4.17) and use the triangle inequality. By (4.16), the term featuring B is bounded by
a constant times hn‖BΠ[1,1+h]‖2HS, which is bounded uniformly in h by Lemma 3.11. The
term featuring Qλ is zero by (1.4).

Finally, we show that the term featuring Rλ is O(h∞). This does not follow immedi-
ately from (4.16), as the operator Rλ depends on λ. We use the following variant of (4.19):
for λ̃ ∈ [1, 1 + h],

h−1‖λn/2fΠ(λ/h)1/2Rλ̃Eh(λ)‖2
L2
m,ξ,λ(M×∂M×[1,λ̃])

= (2π)n+1hn‖Rλ̃Π[1,λ̃]‖
2
HS.

Differentiating in λ̃, we get

(2π)n+1hn∂λ̃‖Rλ̃Π[1,λ̃]‖
2
HS = h−1‖λ̃n/2fΠ(λ̃/h)1/2Rλ̃Eh(λ̃)‖2L2(m,ξ)(M×∂M)

+ 2h−1 Re〈λn/2fΠ(λ/h)1/2(∂λ̃Rλ̃)Eh(λ), λn/2fΠ(λ/h)1/2Rλ̃Eh(λ)〉L2
m,ξ,λ(M×∂M×[1,λ̃]).

We now integrate in λ̃ from 1 to 1 + h. The integral of the left-hand side is bounded by
a constant times hn‖R1+h‖2HS = O(h∞). The integral of the first term on the right-hand
side is the quantity we are estimating. Finally, the second term on the right-hand side is
bounded by a constant times hn|Tr((∂λ̃Rλ̃)Π[1,1+h]R

∗
λ̃
)|, which is O(h∞) uniformly in λ̃,

as the Hilbert-Schmidt norms of both Rλ̃ and ∂λ̃Rλ̃ are O(h∞).

5. Proofs

5.1. Proof of Theorem 1

In this section, we prove the convergence Theorem 1 under the following assumption:

(5.1) µL(K) = 0,

where µL denotes the Liouville measure on S∗M and K is the trapped set. First of all, note
that (5.1) implies

(5.2) µL(Γ±) = 0.

Indeed, fix ε ∈ (0, ε0), where ε0 is defined in (G2), and take the set Γε+ = Γ+ ∩ {x ≥ ε}.
For (m, ν) ∈ Γ+ ∩ {x = ε}, we have ẋ(m, ν) < 0; indeed, otherwise (m, ν) directly escapes
in the backward direction and thus cannot lie in Γ+. It follows that g−t(Γε+) ⊂ Γε+ for t ≥ 0.
Since Γε+ is bounded, and µL is invariant under the geodesic flow, we have

µL(Γε+) = lim
t→+∞

µL(g−t(Γε+)) = µL

(⋂
t≥0

g−t(Γε+)

)
= µL(K) = 0.

Letting ε→ 0, we get (5.2).

We next note that the averagedL2 bound (4.17) onEh on compact sets, together with (1.4)
and the elliptic Proposition 3.2, give the following
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P 5.1. – AssumeA ∈ Ψ0(M) compactly supported and WFh(A)∩S∗M = ∅.
Then

(5.3) h−1‖〈AEh(λ, ξ), Eh(λ, ξ)〉‖L1
ξ,λ(∂M×[1,1+h]) = O(h∞).

Therefore, it is enough to prove (1.5) for a compactly supported A ∈ Ψcomp(M) microlo-
calized in an arbitrarily small neighborhood of S∗M .

Take t > 0; we will calculate limits of the form limt→+∞ limh→0, thus Ot(h∞) expressions
(that is, expressions that are O(h∞) with the constants depending on t) will be negligible.
Take χ ∈ C∞0 (M) independent of t and such that A = χAχ. We first use that Eh is a gen-
eralized eigenfunction of the Laplacian (1.4) and apply Lemma 3.10: for each λ ∈ [1, 1 + h]

and each ξ ∈ ∂M ,

(5.4) χEh = χe−it(λ
2+c0h

2)/2hU(t)χtEh + Ot(h∞‖Eh‖L2(Kt))L2 .

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator and χt ∈ C∞0 (M) is sup-
ported in the interior of the compact setKt ⊂M and satisfies dg(suppχ, supp(1− χt)) > t.
We also assume that |χt| ≤ 1 everywhere and Kt contains {x ≥ ε0}, where ε0 is defined
in (G2). By Proposition 3.8, we can write U(−t)AU(t) = A−t + Ot(h∞)L2→L2 , where
A−t ∈ Ψcomp is compactly supported. Then

(5.5) 〈AEh, Eh〉 = 〈A−tχtEh, χtEh〉+ Ot(h∞)‖Eh‖2L2(Kt)
.

We will now write

(5.6) A−t = A−t0 +A−t1 , A−t0 := A−tϕ, A−t1 := A−t(1− ϕ),

where the L2 norm of the principal symbol of A−t0 will decay with t and the operator A−t1

will be negligible on E1
h. The function ϕ ∈ C∞0 (M) is taken independent of t and such that

suppχ ⊂ {x > εχ} for some εχ and ϕ = 1 near {x ≥ εχ}. We also require that ϕ = 1 near
{x ≥ ε1}, where ε1 comes from the Assumption (A7).

We first show that the terms in (5.5) featuring both A−t1 and E1
h are O(h∞). For that, we

need to show that the trajectories in WFh(A−t1 ) ⊂ supp(1 − ϕ) ∩ gt(suppχ) satisfy the
geometric property shown on Figure 1:

L 5.2. – Let t ≥ 0. Assume that (m, ν) ∈ S∗M satisfies m ∈ supp(1 − ϕ), but
g−t(m, ν) ∈ suppχ. Then:

1. (m, ν) directly escapes in the forward direction, in the sense of Definition 4.2;
2. for each s ≥ 0, gs(m, ν) does not lie in the set Wξ defined in (4.9), for any ξ ∈ ∂M .

Proof. – (1) We have x(m) < ε1 ≤ ε0; therefore, if (m, ν) does not directly escape in the
forward direction, then it directly escapes in the backward direction; this would imply that
x(g−t(m, ν)) is decreasing in t ≥ 0, which is impossible as x(m) < εχ < x(g−t(m, ν)).

(2) The point gs(m, ν) directly escapes in the forward direction and x(gs(m, ν)) < ε1.
If gs(m, ν) ∈ Wξ, then by (G4), ξ = ξ+∞(m, ν), but this is impossible as χ0 = 1 near
(gs(m, ν), ξ+∞(m, ν)) by (A7).

Combining Lemma 5.2 with the microlocal information we have on E1
h, we get
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P 5.3. – If Eh = χ0E
0
h + E1

h is the decomposition (4.6), then for each t ≥ 0,
(5.7)
〈AEh, Eh〉 = 〈A−t1 χtχ0E

0
h, χtχ0E

0
h〉+ 〈A−t0 χtEh, χtEh〉+ Ot(h∞(1 + ‖Eh‖2L2(Kt)

)),

where A−t0 , A−t1 are defined in (5.6).

Proof. – By (5.5), it is enough to show that

〈A−t1 χtEh, χtEh〉 − 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 = Ot(h∞(1 + ‖Eh‖2L2(Kt)

)).

Given that ‖χ0E
0
h‖L2(Kt) = O(1), it suffices to prove

‖BχtE1
h‖L2 = Ot(h∞(1 + ‖Eh‖L2(Kt))),

where B is equal to either A−t1 or its adjoint. This in turn follows from

(5.8) ‖BχtẼ1
h‖L2 = Ot(h∞),

with Ẽ1
h defined in (4.8). Take (m, ν) ∈WFh(BχtẼ

1
h) ⊂ S∗M . Then by Proposition 3.8,

(m, ν) ∈WFh(B) ⊂WFh(A−t) ∩ supp(1− ϕ) ⊂ gt(WFh(A)) ∩ supp(1− ϕ).

Since WFh(A) ⊂ suppχ, we see that m ∈ supp(1− ϕ) and g−t(m, ν) ∈ suppχ; therefore,
by Lemma 5.2, the geodesic gs(m, ν) escapes in the forward direction and does not pass
through Wξ for s ≥ 0. But then by (A6) the point (m, ν) cannot lie in WFh(Ẽ1

h), a contra-
diction. We showed that the wavefront set of BχtẼ1

h is empty, which implies (5.8).

We now use the averaged estimate (4.16) and the Hilbert-Schmidt norm estimates from
Section 3.3, to estimate the second term on the right-hand side of (5.7):

P 5.4. – There exists a constant C independent of t such that

(5.9) h−1‖〈A−t0 χtEh, χtEh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ C‖(σ(A) ◦ g−t)ϕ‖L2(S∗M) + Ot(h).

Here ‖a‖L2(S∗M) is the L2 norm of the restriction of a to S∗M with respect to the Liouville
measure.

Proof. – Take a real-valued function ϕ1 ∈ C∞0 (M) independent of t such that ϕ1 = 1

near suppϕ. Then the left-hand side of (5.9) is bounded by

h−1‖〈A−t0 χtEh, ϕ1χtEh〉‖L1
ξ,λ

+ h−1‖〈(1− ϕ1)A−t0 χtEh, χtEh〉‖L1
ξ,λ
,

where the L1, and later L2, norms in ξ, λ are taken over ∂M × [1, 1 + h]. The second term
here is Ot(h∞) by the bound (4.17) and since (1 − ϕ1)A−t0 = Ot(h∞)L2→L2 is compactly
supported. The first term can be estimated by applying the Cauchy-Schwarz inequality first
in m and then in (λ, ξ):

h−1‖〈A−t0 χtEh, ϕ1χtEh〉‖L1
ξ,λ
≤ h−1‖ ‖A−t0 χtEh‖L2(M) · ‖ϕ1χtEh‖L2(M)‖L1

ξ,λ

≤ h−1/2‖A−t0 χtEh‖L2
m,ξ,λ

· h−1/2‖ϕ1χtEh‖L2
m,ξ,λ

.

Now, h−1/2‖ϕ1χtEh‖L2
m,ξ,λ

is bounded (independently of t) uniformly in h by (4.17). As

for h−1/2‖A−t0 χtEh‖L2
m,ξ,λ

, we can estimate it using (4.16) by a constant times

hn/2‖A−t0 χtΠ[1,1+h]‖HS.
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Note that the operator A−t0 χt ∈ Ψcomp is compactly supported and it is compactly microlo-
calized independently of t. It then remains to apply (3.24) (to the adjoint of our operator);
by Proposition 3.8, the principal symbol of A−t0 χt is given by (σ(A) ◦ g−t)ϕ.

We now use the dynamical assumption that µL(K) = 0. The function (σ(A) ◦ g−t)ϕ is
supported in a t-independent compact set and bounded uniformly in t. Moreover, it con-
verges to zero pointwise on S∗M \ Γ+ as t→ +∞. Therefore, by (5.2) and the dominated
convergence theorem we have (σ(A) ◦ g−t)ϕ→ 0 in L2(S∗M), as t→ +∞. It then follows
from (5.7) together with the bound (4.17) and from (5.9) that

lim
t→+∞

lim sup
h→0

h−1‖〈AEh, Eh〉 − 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉‖L1

ξ,λ(∂M×[1,1+h]) = 0.

To prove Theorem 1, it now remains to show that

(5.10) lim
t→+∞

lim sup
h→0

h−1

∥∥∥∥〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 −

∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ(∂M)

= 0

uniformly in λ = 1 + O(h). We first note that by (4.7) the function

χtχ0E
0
h(λ, ξ;m) = e

iλ
h φξ(m)χt(m)χ0(m, ξ)b0(1, ξ,m; 0) + Ot(h)L2

is a compactly supported Lagrangian distribution associated to the Lagrangian Λξ from (4.3).
Therefore, by Proposition 3.5, we find

(5.11) A−t1 χtχ0E
0
h(λ, ξ) = e

iλ
h φξχtχ0b

0(1, ξ,m; 0)σ(A−t1 )(m, ∂mφξ(m)) + Ot(h)L2 .

Therefore,

〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 =

∫
M

σ(A−t1 )(m, ∂mφξ(m))|χtχ0b
0(1, ξ,m; 0)|2 dvol(m) + Ot(h).

Now, by Proposition 3.8, σ(A−t1 ) = (σ(A) ◦ g−t)(1 − ϕ). By Lemma 5.2, this function is
supported in D E+∩{x < ε1}, with D E+ from Definition 4.2. Also,χt = 1 near suppσ(A−t1 ).
Then by part 2 of Lemma 4.4,

(5.12) 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 =

∫
S∗M

(σ(A) ◦ g−t)(1− ϕ) dµξ + Ot(h).

Therefore, (5.10) reduces to

(5.13) lim
t→+∞

∥∥∥∥∫
S∗M

(σ(A) ◦ g−t)(1− ϕ) dµξ −
∫
S∗M

σ(A) dµξ

∥∥∥∥
L1
ξ(∂M)

= 0.

By part 1 of Lemma 4.4 and (4.13), we write the norm on the left-hand side of (5.13) as∥∥∥∥∫
S∗M

σ(A)(ϕ ◦ gt) dµξ
∥∥∥∥
L1
ξ(∂M)

≤
∫
S∗M

|σ(A)(ϕ ◦ gt)| dµL.

The expression under the integral on the right-hand side is bounded and compactly sup-
ported uniformly in t and converges to zero pointwise on S∗M \ Γ−; by (5.2) and the domi-
nated convergence theorem, we get (5.13). This finishes the proof of Theorem 1.
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The nontrapped case. – We briefly discuss the situation when WFh(A)∩Γ− = ∅. In this case,
for t large enough (depending on A), for any (m, ν) ∈ WFh(A) we have gt(m, ν) 6∈ suppϕ

and thus
A−t0 = O(h∞)L2→L2 .

Then by (5.7) and the bound (4.17),

〈AEh, Eh〉 = 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉+ O(h∞)L1

ξ,λ(∂M×[1,1+h]).

The quantity 〈A−t1 χtχ0E
0
h, χtχ0E

0
h〉 is calculated in (5.12) up to O(h). However, since E0

h is
a Lagrangian distribution, one can get by Proposition 3.5 a full expansion of this quantity
in powers of h; this yields

(5.14) 〈AEh(λ, ξ), Eh(λ, ξ)〉 =
∑

0≤j<N

hj
∫
S∗M

Lja dµξ + O(hN+1)L1
ξ,λ(∂M×[1,1+h]),

whereA = Oph(a) for some symbol a and some quantization procedure Oph and each Lj is
a differential operator of order 2j on T ∗M , with L0 = 1.

5.2. Estimates on the remainder

In this subsection, we prove (1.12) and establish an approximation fact (Proposition 5.10)
used in the proofs of (1.13) and Theorem 4.

Classical escape rate and Ehrenfest time. – Let K0 ⊂M be a compact geodesically convex
set (in the sense of (B.1)) containing a neighborhood of the projection of the trapped set K
onto M . As in (1.9), define the set

T (t) = {(m, ν) ∈ S∗M | m ∈ K0, g
t(m, ν) ∈ K0}.

The choice of K0 does not matter here: if K ′0 ⊂ M is another set with same properties and
T ′(t) is defined using K ′0 in place of K0, then there exists a constant T0 > 0 such that for
each T ≥ T0 and t ≥ 0,

(5.15) gT ( T ′(t+ 2T )) ⊂ T (t).

Indeed, assume that (5.15) were false. Then there exist sequences Tj → +∞, tj ≥ 0, and
(mj , νj) ∈ S∗M such that g−Tj (mj , νj) and gtj+Tj (mj , νj) both lie in K ′0, but for each j,
either (1) (mj , νj) 6∈ K0 or (2) gtj (mj , νj) 6∈ K0. We may assume that case (1) holds for all j;
case (2) is handled similarly, reversing the direction of the flow and taking gtj (mj , νj) in place
of (mj , νj). Take ε > 0 such that K ′0 ⊂ {x ≥ ε}; since {x ≥ ε} is geodesically convex (in the
sense of (B.1)) for ε small enough, we have (mj , νj) ∈ {x ≥ ε}. Passing to a subsequence,
we can assume that (mj , νj) → (m, ν) ∈ S∗M as j → +∞. Now, since g−Tj (mj , νj) ∈ K ′0
and Tj → +∞, we have (m, ν) ∈ Γ+ (indeed, otherwise there would exist s > 0 such that
g−s(m, ν) ∈ {x < ε} and this would also hold in a neighborhood of (m, ν)). Similarly, since
gtj+Tj (mj , νj) ∈ K ′0 and tj + Tj → +∞, we have (m, ν) ∈ Γ−. It follows that (m, ν) ∈ K,
which is impossible, as each (mj , νj) does not lie inK0, which contains a neighborhood ofK.

By changing Λ0 slightly and using (5.15), we see that the choice of K0 does not matter
for the validity of (1.12) and (1.13); more precisely, if Λ0 > Λ′0, then r′(h,Λ′0) ≤ Cr(h,Λ0),
where r′ is defined by (1.10) using T ′ in place of T . Also, the maximal expansion rate Λmax

defined in (1.11) does not depend on the choice of K0.
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We now choose a geodesically convexK0 in the sense of (B.1) such that its interior contains
the supports of all cutoff functions and compactly supported operators used in the argument
below. We will rely on Proposition 3.9 (with U equal to the interior ofK0); we let Λ0 > Λmax

and fix εe > 0 and Λ′0 such that Λ0 > Λ′0 > (1 + 2εe)Λmax. Define the Ehrenfest time

(5.16) te := log(1/h)/(2Λ0).

Then when propagating an operator in Ψcomp microlocalized inside

(5.17) Eεe := {1− εe ≤ |ν|g ≤ 1 + εe}

with cutoffs supported inside K0, as in Proposition 3.9, for time t = lt0 ∈ [−te, te], we get a
mildly exotic pseudodifferential operator in Ψcomp

ρe , where

(5.18) ρe := teΛ
′
0/ log(1/h) = Λ′0/(2Λ0) < 1/2.

First decomposition of 〈AEh, Eh〉. – By Proposition 5.1, we may assume thatA ∈ Ψcomp(M)

is compactly supported and microlocalized inside the set Eεe defined in (5.17).
We first establish the following decomposition similar to (5.7):

(5.19) 〈AEh, Eh〉 = eilβ〈A(ϕU(t0))lϕEh, Eh〉

+

l∑
j=1

eijβ〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h, Eh〉+ O(h∞ N (Eh)2),

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]; comparing with (5.7), the first term in the right
hand side of (5.19) corresponds to the A−t0 term in (5.7), the sum over j corresponds
to the A−t1 term in (5.7). Here l = O(log(1/h)) is a nonnegative integer and t0 > 0 and
ϕ,ϕt0 ∈ C∞0 (M), specified below, are independent of j. The quantity N (Eh), defined
in (5.22), is related to the L2 norm of Eh on a certain compact set, and is bounded on
average by (5.23). The real-valued parameter β is equal to

(5.20) β = −t0(λ2 + c0h
2)/(2h)

and will not play a big role in our argument.
To show (5.19), we start by considering the functions ϕ,ϕ1, ϕ2 ∈ C∞0 (M) such that:

– 0 ≤ ϕ,ϕ1, ϕ2 ≤ 1 everywhere,
– ϕ = 1 near suppϕ2 and ϕ1 = 1 near suppϕ, and
– ϕ2 = 1 both near the support of A and near the set {x ≥ ε1}, with ε1 defined in (A7).

The proof of (5.19) only uses the functionϕ, however the other two functions will be required
for the more precise decomposition (5.43) below.

We now have the following analogue of Lemma 5.2:

L 5.5. – There exists t0 ≥ 0 such that if (m, ν) ∈ S∗M satisfies

(5.21) m ∈ supp(1− ϕ2) and g−t(m, ν) ∈ suppϕ1 for some t ≥ t0,

then:

1. (m, ν) directly escapes in the forward direction;
2. for each s ≥ 0, gs(m, ν) does not lie in the set Wξ defined in (4.9) for any ξ ∈ ∂M ; and
3. for each s ≥ t0, gs(m, ν) 6∈ suppϕ1.
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ϕ2 ϕ ϕ1

(m, ν)

g−t(m, ν)

gs(m, ν)

F 3. An illustration of Lemma 5.5. The functions ϕ,ϕ1, ϕ2 are supported to
the left of the corresponding dashed lines; the right side of the figure represents

infinity.

Proof. – (1) Let suppϕ1 ⊂ {x ≥ εϕ}. The set D E− ∩ {x ≥ εϕ}, where D E− is spec-
ified in Definition 4.2, is compact; therefore, there exists t0 > 0 such that for t ≥ t0 and
(m, ν) ∈ D E− ∩ {x ≥ εϕ}, we have g−t(m, ν) 6∈ suppϕ1.

Now, assume that (m, ν) satisfies (5.21), but it does not directly escape in the forward
direction. Since (m, ν) ∈ supp(1− ϕ2), we have x(m) ≤ ε0; therefore, (m, ν) ∈ D E−. Then
x(m) ≥ x(g−t(m, ν)) ≥ εϕ; therefore, (m, ν) ∈ D E− ∩ {x ≥ εϕ}, a contradiction with the
fact that g−t(m, ν) ∈ suppϕ1 and t ≥ t0.

(2) This is proved exactly as part 2 of Lemma 5.2.
(3) It is enough to use part (1), take t0 large enough, and use that the set D E+∩{x ≥ εϕ}

is compact.

Take t0 from Lemma 5.5. Let ϕt0 ∈ C∞0 (M) be real-valued and satisfy

dg(suppϕ1, supp(1− ϕt0)) > t0.

Take a compact set Kt0 ⊂M whose interior contains suppϕt0 . Put

(5.22) N (Eh) := 1 + ‖Eh‖L2(Kt0 );

this quantity depends on λ and ξ and we know by (4.17) that

(5.23) h−1‖N (Eh)‖2
L2
ξ,λ(∂M×[1,1+h])

= O(1).

By (1.4) and Lemma 3.10, we have similarly to (5.4),

(5.24) ϕEh = eiβϕU(t0)ϕt0Eh + O(h∞ N (Eh))L2 .

Here β is given by (5.20). Iterating (5.24) by writing ϕt0 = ϕ+ (1− ϕ)ϕt0 , we get for
l = O(log(1/h)) (or even for l polynomially bounded in h)

(5.25) ϕEh = eilβ(ϕU(t0))lϕEh +

l∑
j=1

eijβ(ϕU(t0))j(1− ϕ)ϕt0Eh + O(h∞ N (Eh))L2 ,

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. The same is true if ϕ is replaced by any func-
tion ϕ′ ∈ C∞0 (M) such that dg(suppϕ′, supp(1− ϕt0)) > t0. One can also replace U(t0)

by U(−t0).
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We now use our knowledge of the wavefront set of Ẽ1
h to prove the following analogue of

Proposition 5.3:

P 5.6. – If Eh = χ0E
0
h + E1

h is the decomposition (4.6), then

(5.26) ‖ϕU(t0)(1− ϕ)ϕt0E
1
h‖L2 = O(h∞ N (Eh)),

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. The same is true if we replace each instance of ϕ by
any function in the set {ϕ,ϕ1, ϕ2}.

Proof. – Recalling the Definition (4.8) of Ẽ1
h, we see that (5.26) follows from

(5.27) ‖ϕU(t0)(1− ϕ)ϕt0Ẽ
1
h‖L2 = O(h∞).

We now make the following observation: a point (m, ν) ∈ S∗M in the wavefront set of Ẽ1
h

will make an O(h∞) contribution to (5.27) unlessm ∈ supp(1−ϕ), but g−t0(m, ν) ∈ suppϕ;
however, by (A6) and Lemma 5.5, in this case (m, ν) 6∈ WFh(Ẽ1

h). To make this argument
rigorous, we can write (bearing in mind that Ẽ1

h is polynomially bounded)

ϕt0Ẽ
1
h = BẼ1

h + O(h∞)L2 ,

where B ∈ Ψcomp is compactly supported and such that

(m, ν) ∈WFh(B) ∩ supp(1− ϕ) =⇒ g−t0(m, ν) 6∈ suppϕ.

Then the operator ϕU(t0)(1 − ϕ)B is O(h∞)L2→L2 by part 2 of Proposition 3.8, which
proves (5.27).

Using (5.26), we can replace Eh by χ0E
0
h in each term of the sum (5.25):

ϕEh = eilβ(ϕU(t0))lϕEh +

l∑
j=1

eijβ(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h

+ O(h∞ N (Eh))L2 .

(5.28)

Applying the operator A = ϕAϕ, we get (5.19).

Properties of propagators up to Ehrenfest time. – We will now establish certain properties of
the cutoff and iterated propagators up to the Ehrenfest time te defined in (5.16), or, in certain
cases, up to twice the Ehrenfest time. The need for these properties arises mostly because of
the cutoffs present in the argument. Define the Ehrenfest index

(5.29) le := bte/t0c+ 1 ∼ log(1/h).

L 5.7. – Assume that ϕ′, ϕ′′ ∈ C∞0 (M) satisfy |ϕ′|, |ϕ′′| ≤ 1 everywhere. Let
B ∈ Ψcomp be compactly supported and microlocalized inside the set Eεe defined in (5.17).
Then:

1. If ϕ′′ = 1 near suppϕ′, then for 0 ≤ j ≤ le,

(ϕ′U(±t0))jBU(∓jt0) = (ϕ′U(±t0))jB(U(∓t0)ϕ′′)j + O(h∞)L2→L2 ,(5.30)

(U(±t0)ϕ′)jBU(∓jt0) = (U(±t0)ϕ′)jB(ϕ′′U(∓t0))j + O(h∞)L2→L2 .(5.31)

2. IfB1, B2 ∈ Ψcomp satisfy same conditions asB and moreover WFh(B1)∩WFh(B2) = ∅,
then for 0 ≤ j ≤ 2le (that is, up to twice the Ehrenfest time)

(5.32) B1(ϕ′U(±t0))jB(U(∓t0)ϕ′′)jB2 = O(h∞)L2→L2 .
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The same is true if we replace ϕ′U(±t0) by U(±t0)ϕ′ and/or replace U(∓t0)ϕ′′ by ϕ′′U(∓t0).
3. If ϕ′′ = 1 near suppϕ′ and both ϕ′′ and B are supported at distance more than t0 from

supp(1− ϕt0), then for 0 ≤ j ≤ le (β is defined in (5.20))

e±ijβ(ϕ′U(±t0))jBEh = (ϕ′U(±t0))jB(U(∓t0)ϕ′′)jEh + O(h∞ N (Eh))L2 ,(5.33)

e±ijβ(U(±t0)ϕ′)jBEh = (U(±t0)ϕ′)jB(ϕ′′U(∓t0))jϕt0Eh + O(h∞ N (Eh))L2 .(5.34)

Proof. – We will repeatedly use Propositions 3.8 and 3.9 and omit the O(h∞)L2→L2

remainders present there.
1. We prove (5.30); (5.31) is proved similarly. Assume that the signs are chosen so

that (5.30) features ϕ′U(t0). We argue by induction in j. The case j = 0 is obvious. Now,
assume that (5.30) is true for j − 1 in place of j. Then

(ϕ′U(t0))jBU(−jt0) = ϕ′B′ + O(h∞)L2→L2 ,

where
B′ = U(t0)(ϕ′U(t0))j−1B(U(−t0)ϕ′′)j−1U(−t0)

is a compactly supported operator in Ψcomp
ρe (modulo the O(h∞)L2→L2 remainder from Proposi-

tion 3.9, which we henceforth omit), with ρe defined in (5.18). Since suppϕ′ ∩ supp(1− ϕ′′) = ∅,
we have

ϕ′B′ = ϕ′B′ϕ′′ + O(h∞)L2→L2

and (5.30) follows.
2. We again assume that the signs are chosen so that (5.32) features ϕ′U(t0). Write

j = j1 + j2, where 0 ≤ j1, j2 ≤ le, and write the left-hand side of equality (5.32) as
U(j1t0)B̃1B̃B̃2U(−j1t0), where

B̃ = (ϕ′U(t0))j2B(U(−t0)ϕ′′)j2 ,

B̃1 = U(−j1t0)B1(ϕ′U(t0))j1 , B̃2 = (U(−t0)ϕ′′)j1B2U(j1t0).

Now, B̃ is a compactly supported member of Ψcomp
ρe . Same can be said about B̃1 and B̃2,

by applying (5.31) and its adjoint (where the role of ϕ′ is played by either ϕ′ or ϕ′′ and
the role of ϕ′′, by a suitably chosen cutoff function). Moreover, if U1, U2 are bounded open
subsets of T ∗M such that WFh(Bk) ⊂ Uk and U1 ∩ U2 = ∅, then by Proposition 3.9, B̃k is
microsupported, in the sense of Definition 3.1, on the set gj1t0(Uk); since these two sets do
not intersect, we see that B̃1B̃B̃2 = O(h∞)L2→L2 as needed.

3. We once again fix the sign so that U(t0) stands next to ϕ′. Formally, (5.33) and (5.34)
follow by applying (5.30) and (5.31), respectively, to the identity eijβEh = U(−jt0)Eh. To
make this observation rigorous, we write by Lemma 3.10

eiβBEh = BU(−t0)ϕt0Eh + O(h∞ N (Eh))L2 ,

eiβϕ′′Eh = ϕ′′U(−t0)ϕt0Eh + O(h∞ N (Eh))L2 .

We now use induction in j. For j = 0, both (5.33) and (5.34) are trivial. Now, assume that
they both hold for j − 1 in place of j. We then write

eijβ(ϕ′U(t0))jBEh = eiβ(ϕ′U(t0))jB(U(−t0)ϕ′′)j−1Eh + O(h∞ N (Eh))L2

= (ϕ′U(t0))jB(U(−t0)ϕ′′)j−1U(−t0)ϕt0Eh + O(h∞ N (Eh))L2 .
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The operator (ϕ′U(t0))jB(U(−t0)ϕ′′)j−1U(−t0) is a compactly supported element
of Ψcomp

ρ ; moreover, as j ≥ 1, the wavefront set of this operator is contained in suppϕ′.
Since ϕ′′ = 1 near suppϕ′, we can replace ϕt0 by ϕ′′ in the last formula, proving (5.33).

We next write

eijβ(U(t0)ϕ′)jBEh = eiβ(U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕt0Eh + O(h∞ N (Eh))L2 .

However, ϕ′(U(t0)ϕ′)j−1B(ϕ′′U(−t0))j−1 is a compactly supported element of Ψcomp
ρ and

its wavefront set is contained in suppϕ′. Sinceϕ′′ = 1 near suppϕ′, we can replaceϕt0 byϕ′′,
obtaining (5.34):

eijβ(U(t0)ϕ′)jBEh = eiβ(U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕ′′Eh + O(h∞ N (Eh))L2

= (U(t0)ϕ′)jB(ϕ′′U(−t0))j−1ϕ′′U(−t0)ϕt0Eh + O(h∞ N (Eh))L2 .

Second decomposition of 〈AEh, Eh〉. – We now analyze the terms of (5.19), reducing
〈AEh, Eh〉 to an expression depending on the ‘outgoing’ partE0

h of the plane wave (see (4.6)),
with remainder estimated by the classical escape rate for up to twice the Ehrenfest time.

We will use Lemma 5.7; since it only applies to pseudodifferential operators microlocal-
ized inside the set Eεe from (5.17), we take an operator

(5.35) X0 ∈ Ψcomp(M), WFh(X0) ⊂ Eεe , X0 = 1 near S∗M ∩ suppϕt0 ,

compactly supported insideKt0 . By (1.4) and the elliptic estimate (Proposition 3.2), we have

(5.36) ϕt0Eh = X0ϕt0Eh + O(h∞ N (Eh))L2 = ϕt0X0Eh + O(h∞ N (Eh))L2 .

The same is true if we replaceEh by χ0E
0
h, as by (A4) and the fact that |∂mφξ|g = 1, we have

WFh(χ0E
0
h) ⊂ S∗M . We also recall that WFh(A) ⊂ Eεe .

We start by estimating the first term on the right-hand side of (5.19) for l up to twice the
Ehrenfest time, in terms of the classical escape rate:

P 5.8. – There exists a constant C such that for 0 ≤ l ≤ 2le, we have

(5.37) h−1‖〈A(ϕU(t0))lϕEh, Eh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ CµL( T (lt0)) + O(h∞).

Proof. – We write l = l1 + l2, where 0 ≤ l1, l2 ≤ le; then

〈A(ϕU(t0))lϕEh, Eh〉 = 〈(ϕU(t0))l1ϕEh, (U(−t0)ϕ)l2A∗Eh〉.

Now, by (5.33)

eil1β(ϕU(t0))l1ϕEh = eil1β(ϕU(t0))l1X0ϕEh + O(h∞ N (Eh))L2

= B1
l Eh + O(h∞ N (Eh))L2 ,

where
B1
l = (ϕU(t0))l1X0ϕ(U(−t0)ϕ1)l1 .

Similarly, by (5.34) (recalling that A = ϕAϕ)

e−il2β(U(−t0)ϕ)l2A∗Eh = B2
l Eh + O(h∞ N (Eh))L2 ,

where
B2
l = (U(−t0)ϕ)l2A∗(ϕ1U(t0))l2ϕt0 .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



412 S. DYATLOV AND C. GUILLARMOU

Put Bl = (B2
l )∗B1

l ; recalling (5.23), it is then enough to show that

(5.38) h−1‖〈BlEh, Eh〉‖L1
ξ,λ(∂M×[1,1+h]) ≤ CµL( T (lt0)) + O(h∞).

Now, by Proposition 3.9, the operator B1
l is a compactly supported element of Ψcomp

ρe (mo-
dulo an O(h∞)L2→L2 remainder which we will omit), and it is microsupported, in the sense
of Definition 3.1, inside the set g−l1t0({ϕ1 6= 0}) (here we only use that suppϕ ⊂ {ϕ1 6= 0}).
Similarly, B2

l ∈ Ψcomp
ρe is microsupported inside gl2t0({ϕ1 6= 0}). Therefore, Bl is microsup-

ported on the set

Sl = g−l1t0({ϕ1 6= 0}) ∩ gl2t0({ϕ1 6= 0}).

Note also that Bl is compactly supported independently of l.

Now, by taking the convolution of the indicator function of an hρe sized neighborhood
of Sl with an appropriately rescaled cutoff function, we can construct a compactly supported
operator B̃l ∈ Ψcomp

ρe such that Bl = B̃∗l Bl + O(h∞)Ψ−∞ and B̃l is microsupported

inside an O(hρe) sized neighborhood S̃l of Sl. Using (5.16), (5.18), and the estimate on the
Lipschitz constant of the flow given by (3.17), we see that for (m̃, ν̃) ∈ S̃l∩S∗M , there exists
(m, ν) ∈ Sl ∩ S∗M such that d((m̃, ν̃), (m, ν)) ≤ Chρe and for Λ′0 > Λ′′0 > (1 + 2εe)Λmax,

d(gl1t0(m̃, ν̃), gl1t0(m, ν)) ≤ Cel1t0Λ′′0 hρe ≤ CeteΛ
′′
0 hρe ≤ Ce−te(Λ

′
0−Λ′′0 )

is bounded by some positive power of h. Here d denotes some smooth distance function
on T ∗M . The same is true if we replace gl1t0 with g−l2t0 ; therefore, if the compact set K0

used in the Definition (1.9) of T (t) is chosen large enough, we have

(5.39) S̃l ∩ S
∗M ⊂ gl2t0( T (lt0)).

Using the Cauchy-Schwartz inequality and (4.16), we bound the left-hand side of (5.38) by

h−1‖〈BlEh, Eh〉‖L1
ξ,λ
≤ h−1‖〈BlEh, B̃lEh〉‖L1

ξ,λ
+ O(h∞)

≤ h−1‖BlEh‖L2(M)L2
ξ,λ
· ‖B̃lEh‖L2(M)L2

ξ,λ
+ O(h∞)

≤ C(hn/2‖BlΠ[1,1+h]‖HS)(hn/2‖B̃lΠ[1,1+h]‖HS) + O(h∞).

It remains to use (3.25) (or rather its adjoint). Indeed, bothBl and B̃l are bounded in Ψcomp
ρe

uniformly in l, and they are microsupported in S̃l; therefore, by (5.39)

h−1‖〈BlEh, Eh〉‖L1
ξ,λ
≤ CµL( S̃l ∩ S

∗M) + O(h∞) ≤ CµL( T (lt0)) + O(h∞).

As for the sum in (5.19), we have the following

P 5.9. – We have

(5.40)
eijβ〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E

0
h, Eh〉 = 〈Ãjχ0E

0
h, χ0E

0
h〉+ O(h∞ N (Eh)2),

Ãj := ϕt0(1− ϕ2)(U(−t0)ϕ1)jA(ϕU(t0))j(1− ϕ)ϕt0 ,

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h].
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Proof. – Since A = ϕAϕ, we can replace Eh by ϕ1Eh on the left-hand side of (5.40).
Writing down (5.25) for ϕ1 in place of ϕ and using ϕ2 in place of ϕ1 in the splitting
ϕt0 = ϕ1 + (1− ϕ1)ϕt0 in the last step, we get

ϕ1Eh = eijβ(ϕ1U(t0))jϕ2Eh + eijβ(ϕ1U(t0))j(1− ϕ2)ϕt0Eh

+

j−1∑
k=1

eikβ(ϕ1U(t0))k(1− ϕ1)ϕt0Eh + O(h∞ N (Eh))L2 .
(5.41)

We now substitute (5.41) into the left-hand side of (5.40). The first term gives, after
using (5.36) to replace ϕt0χ0E

0
h by X0ϕt0χ0E

0
h and ϕEh by X0ϕEh

〈A(ϕU(t0))j(1− ϕ)ϕt0χ0E
0
h, (ϕ1U(t0))jϕ2Eh〉 = 〈B0χ0E

0
h, Eh〉+ O(h∞ N (Eh)2),

where
B0 = ϕ2X

∗
0 (U(−t0)ϕ1)jA(ϕU(t0))j(1− ϕ)X0ϕt0 = O(h∞)L2→L2

by (5.32), as suppϕ2 ∩ supp(1− ϕ) = ∅.

Next, we use Proposition 5.6 to write the second term of (5.41) as

eijβ(ϕ1U(t0))j(1− ϕ2)ϕt0χ0E
0
h + O(h∞ N (Eh))L2 ;

therefore, this term gives the right-hand side of (5.40).

It remains to estimate the contribution of each term of the sum in (5.41), which we can
write, using (5.36), as ei(j−k)β〈Bkχ0E

0
h, χ0E

0
h〉+ O(h∞ N (Eh)2), with

Bk = ϕt0X
∗
0 (1− ϕ1)(U(−t0)ϕ1)kA(ϕU(t0))j(1− ϕ)X0ϕt0 .

We need to show that ‖Bk‖L2→L2 = O(h∞) for 1 ≤ k < j. For that, we consider two cases.
First, assume that k ≤ le. Then we have

(5.42) ϕt0X
∗
0 (1− ϕ1)(U(−t0)ϕ1)kA(ϕU(t0))kϕ = O(h∞)L2→L2 ,

as the supports of 1 − ϕ1 and ϕ do not intersect and the operator in between them is
a compactly supported element of Ψcomp

ρe (modulo an O(h∞)L2→L2 remainder which we
will omit). Since Bk is obtained by multiplying the left-hand side of (5.42) on the right
by U(t0)(ϕU(t0))j−1−k(1− ϕ)X0ϕt0 , it is also O(h∞)L2→L2 .

Now, assume that k ≥ le. Take ϕ̃1 ∈ C∞0 (M) equal to 1 near suppϕ1 and such that
|ϕ̃1| ≤ 1 everywhere. We write by (5.30) and its adjoint,

U((k − le)t0)BkU(−(j − le)t0) = B1
kB

2
kB

3
k + O(h∞)L2→L2 ,

B1
k = (ϕ̃1U(t0))k−leϕt0X

∗
0 (1− ϕ1)(U(−t0)ϕ1)k−le ,

B2
k = (U(−t0)ϕ1)leA(ϕU(t0))le ,

B3
k = (ϕU(t0))j−le(1− ϕ)X0ϕt0(U(−t0)ϕ1)j−le .

Now all Bik, i = 1, 2, 3, are compactly supported members of Ψcomp
ρe . Let U1, U2 be two

bounded open sets such that supp(ϕt0(1 − ϕ1)) ⊂ U1, suppϕ ⊂ U2, and U1 ∩ U2 = ∅.
Since k − le > j − le and by Proposition 3.9, the operator B1

k is microsupported, in the
sense of Definition 3.1, on the set g−(k−le)t0(U1), while B3

k is microsupported on the set
g−(k−le)t0(U2); since these two sets do not intersect, we get Bk = O(h∞)L2→L2 , finishing
the proof.
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Combining (5.19) with (5.37) and (5.40), we have finally proved

P 5.10. – For 0 ≤ l ≤ 2le and A ∈ Ψcomp microlocalized inside the set Eεe
defined in (5.17), we have

(5.43)
〈AEh, Eh〉 =

l∑
j=1

〈Ãjχ0E
0
h, χ0E

0
h〉+ O

(
hµL( T (lt0)) + h∞

)
L1
ξ,λ(∂M×[1,1+h])

,

Ãj := ϕt0(1− ϕ2)(U(−t0)ϕ1)jA(ϕU(t0))j(1− ϕ)ϕt0 .

Here le is defined in (5.29) and T (t) in (1.9).

Note that the sum on the right-hand side corresponds to the A−t1 term in (5.7), while the
remainder contains both the A−t0 term (dealt with in Proposition 5.8) and the remainder in
(5.7). We have kept the O(h∞) remainder to include the nontrapping case.

Proof of (1.12). – Put l equal to the number le defined in (5.29). By (5.43), it is enough
to approximate the terms 〈Ãjχ0E

0
h, χ0E

0
h〉. This is done by the following improvement

of (5.10), relying on the Lagrangian structure of E0
h and featuring the interpolated escape

rate r(h,Λ) from (1.10):

P 5.11. – Put l = le given by (5.29), and r(h,Λ) defined in (1.10). Then the
sum on the right-hand side of (5.43) is approximated as follows:

(5.44)
l∑

j=1

〈Ãjχ0E
0
h, χ0E

0
h〉 =

∫
S∗M

σ(A) dµξ + O(hr(h, 2Λ0))L1
ξ,λ(∂M×[1,1+h]).

Proof. – By Proposition 3.9, the operator Ãj is compactly supported and lies in Ψcomp
ρj ,

modulo an O(h∞)L2→L2 remainder, where

ρj =
jt0
te
ρe, with jt0/te ≤ 1 + o(1)

with te and ρe defined in (5.16) and (5.18), respectively. Next, Ãj is microsupported, in the
sense of Definition 3.1, in the set

Qj := gt0({ϕ1 6= 0}) ∩ gjt0({ϕ1 6= 0}).

If the set K0 from the Definition (1.9) of T (t) is large enough, then Qj ∩ S∗M ⊂ gjt0( T (jt0));
by the Definition (1.10) of r(h,Λ), we find

(5.45) h1−jt0/teµL( Qj ∩ S∗M) ≤ r(h, 2Λ0).

By (A4) and Proposition 3.5, we have the following analogue of (5.11):

Ãjχ0E
0
h = e

iλ
h φξχ0b

0(1, ξ,m; 0)σ(Ãj)(m, ∂mφξ(m)) + O(h1−2ρj )L∞ .

Here and below, we also use the fact that the seminorms of Ãj are uniform with respect
to j in the sense stated in Proposition 3.9, in order to control the remainders. More-
over, by part 2 of the same proposition, we see that Ãjχ0E

0
h is O(h∞) outside of the set

of points m ∈ Uξ such that (m, ∂mφξ(m)) ∈ Qj . By Lemma 5.5, σ(Ãj) is supported in

4 e SÉRIE – TOME 47 – 2014 – No 2



MICROLOCAL LIMITS OF PLANE WAVES AND EISENSTEIN FUNCTIONS 415

supp(1− ϕ) ∩ gt0(suppϕ1) ⊂ D E+ ∩ {x < ε1}, with D E+ from Definition 4.2. Using
part 2 of Lemma 4.4, we then get

(5.46) 〈Ãjχ0E
0
h, χ0E

0
h〉 =

∫
S∗M

σ(Ãj) dµξ + O(h1−2ρjµξ( Qj)) + O(h∞),

uniformly in ξ ∈ ∂M and λ ∈ [1, 1 + h]. Now, we write by (5.45) and Proposition 4.3,

l∑
j=1

h1−2ρj‖µξ( Qj)‖L1
ξ

=

l∑
j=1

h1−2ρjµL( Qj ∩ S∗M)

≤ r(h, 2Λ0)

l∑
j=1

h(1−2ρe)jt0/te = r(h, 2Λ0)

l∑
j=1

e−2Λ0(1−2ρe)jt0

≤ Cr(h, 2Λ0).

It remains to sum up the integrals in (5.46). We have by Proposition 3.9, bearing in mind that
ϕϕ1 = ϕ, (1− ϕ)(1− ϕ2) = 1− ϕ, A = ϕAϕ, and dg(supp(1− ϕt0), suppϕ) > t0,

σ(Ãj) = (σ(A) ◦ g−jt0)(1− ϕ)

j−1∏
k=1

ϕ ◦ g−kt0 .

By part 1 of Lemma 4.4, we write

l∑
j=1

∫
S∗M

σ(Ãj) dµξ =

∫
S∗M

σ(A)

l∑
j=1

(1− ϕ ◦ gjt0)

j−1∏
k=1

ϕ ◦ gkt0 dµξ

=

∫
S∗M

σ(A)
(

1−
l∏

k=1

ϕ ◦ gkt0
)
dµξ.

It remains to note that by Proposition 4.3,∫
∂M

∫
S∗M

|σ(A)|
l∏

k=1

ϕ ◦ gkt0 dµξdξ =

∫
S∗M

|σ(A)|
l∏

k=1

ϕ ◦ gkt0 dµL = O(µL( T (lt0)))

since the expression under the last integral is supported in T (lt0).

5.3. Trace estimates

In this subsection, we prove a stronger remainder bound (1.13) for the case when 〈AEh, Eh〉
is paired with a test function in ξ and obtain an expansion of the trace of spectral projectors
with a fractal remainder—Theorem 4.

Expressing E0
h ⊗ E0

h via Schrödinger propagators. – Our argument will be based on the de-
composition (5.43). The remainder in this decomposition is already controlled by the escape
rate at twice the Ehrenfest time te defined in (5.16). However, in the previous subsection (see
Proposition 5.11), we were only able to estimate the sum in (5.43) for l up to the Ehrenfest
index le ∼ te/t0 defined in (5.29). We therefore need a better way of writing down the La-
grangian states E0

h, when coupled with a test function in ξ, and such a way is provided by
(with the cutoffs allowing for representation of the spectral measure in terms of a finite time
integral)
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L 5.12. – Let f(ξ) ∈ C∞(∂M) and define for λ ∈ (1/2, 2),

(5.47) Π0
f (λ) :=

∫
∂M

f(ξ)(χ0E
0
h(λ, ξ))⊗ (χ0E

0
h(λ, ξ)) dξ.

Here ⊗ denotes the Hilbert tensor product, see (2.10). Assume that X̃1, X̃2 ∈ Ψcomp(M) are
compactly supported and the projections πS(WFh(X̃j)) of WFh(X̃j) onto S∗M along the
radial rays in the fibers of T ∗M lie inside D E+ ∩ {x ≤ ε1}, with D E+ defined in (4.2) and
ε1 from (A7). Then

X̃1Π0
f (λ)X̃∗2 = (2πh)n

∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs(λ) ds+ O(h∞)L2→L2 ,

where T0 > 0 depends on the support of the Schwartz kernels of X̃j but not on h, Bs(λ) ∈ Ψcomp(M)

is compactly supported on M , smooth and compactly supported in s ∈ (−T0, T0), depending
smoothly on λ. Moreover, if ξ+∞ is the function defined in (G3), then

(5.48) σ(B0(1))|S∗M = f(ξ+∞)σ(X̃1X̃
∗
2 ).

Proof. – We write

X̃1Π0
f (λ)X̃∗2 =

∫
∂M

f(ξ)(X̃1χ0E
0
h(λ, ξ))⊗ (X̃2χ0E

0
h(λ, ξ)) dξ.

By (A4), χ0E
0
h(λ, ξ) is a Lagrangian distribution associated to λ times the Lagrangian Λξ

from (4.3). By Proposition 3.5, we can write

X̃jχ0E
0
h(λ, ξ)(m) = e

iλ
h φξ(m)bj(λ, ξ,m;h) + O(h∞)C∞0 ,

where φξ is defined in (G4) and bj is a classical symbol in h smooth in λ, ξ,m and com-
pactly supported in m. The symbol bj depends on the operator X̃j ; in fact, we can make
supp bj ⊂ τ−1(πS(WFh(X̃j))), with τ defined in (4.2). We then write the Schwartz kernel
of X̃1Π0

f (λ)X̃∗2 , modulo an O(h∞)C∞0 remainder, as

(5.49) Π̃(m,m′;λ, h) =

∫
∂M

e
iλ
h (φξ(m)−φξ(m′))f(ξ)b1(λ, ξ,m;h)b2(λ, ξ;m′, h) dξ.

Now, the support of each bj in the (m, ξ) variables lies in the set U+
∞ defined in (G4). The

critical points of the phase λ(φξ(m)−φξ(m′)) are given by ∂ξφξ(m) = ∂ξφξ(m
′); using (G6),

we see that h−n/2Π̃(m,m′;λ, h) is a Lagrangian distribution associated to the Lagrangian

(5.50) Λ̃λ := {(m, ν;m′, ν′) | |ν|g = λ, ∃s ∈ (−T0, T0) : gs(m, ν) = (m′, ν′)}.

Here T0 > 0 is large, but fixed.
Now, take some family Bs(λ) ∈ Ψcomp(M) smooth and compactly supported in

s ∈ (−T0, T0) and define the operator

(5.51) ΠB(λ) := (2πh)n
∫ T0

−T0

e−iλ
2s/(2h)U(s)Bs(λ) ds.

Following the proof of Lemma 3.11, we see that h−n/2 times the Schwartz kernel
ΠB(m,m′;λ, h) of ΠB(λ) is, up to an O(h∞)L2→L2 remainder, a compactly supported
and compactly microlocalized Lagrangian distribution associated to the Lagrangian Λ̃λ.
Moreover, the principal symbol of h−n/2ΠB(m,m′;λ, h) at (m, ν,m′, ν′) such that
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gs(m, ν) = (m′, ν′) is a nonvanishing factor times σ(Bs)(m
′, ν′). Arguing as in the proof of

part 2 of Proposition 3.3, we see that we can find a family of operators Bs(λ) such that

Π̃(m,m′;λ, h) = ΠB(m,m′;λ, h) + O(h∞)C∞0 .

It remains to check that the family Bs(λ) can be chosen to depend smoothly on λ uni-
formly in h (this is not automatic, as multiplication by e

i
hψ(λ) for some function ψ destroys

this property, but does not change the Lagrangians where our kernels are microlocalized for
each λ). For that, it is enough to note (by Proposition 3.3) that if we consider h−n/2Π̃ and
h−n/2ΠB as Lagrangian distributions in m,m′, λ, they are associated to the Lagrangian

{(m, ν,m′, ν′, λ, qλ) | |ν|g = λ, ∃s ∈ (−T0, T0) : gs(m, ν) = (m′, ν′), qλ = −λs},

where qλ is the momentum corresponding to λ. For Π̃, this is true as when τ(m′, ξ) =

gλs(τ(m, ξ)), we have φξ(m)− φξ(m′) = −λs by (4.4); for ΠB , this is seen directly from the
parametrization (3.27), keeping in mind the factor e−iλ

2s/(2h) in the definition of ΠB .
Finally, to show the Formula (5.48), putλ = 1, take an arbitraryZ ∈ Ψcomp, and compute

the trace

(5.52) Tr(X̃1Π0
f (1)X̃∗2Z) = (2πh)n

∫ T0

−T0

e−is/(2h) Tr(U(s)Bs(1)Z) ds+ O(h∞).

The left-hand side of (5.52) can be computed as at the end of Section 5.1, using the limiting
measure µξ; by Proposition 4.3, it is equal to the integral of f(ξ+∞)σ(X̃∗2ZX̃1) over the
Liouville measure on S∗M , plus an O(h) remainder. The right-hand side of (5.52) can be
computed by the trace Formula (3.32), and is equal to the integral of B0(1)Z over the
Liouville measure on S∗M , plus an O(h) remainder. Therefore,∫

S∗M

σ(Z)f(ξ+∞)σ(X̃1X̃
∗
2 ) dµL =

∫
S∗M

σ(Z)σ(B0(1)) dµL

for any Z; (5.48) follows.

Proof of (1.13). – By (5.43), it is enough to approximate the sum in this formula up to twice
the Ehrenfest time:

P 5.13. – Fix f ∈ C∞(∂M) and A ∈ Ψcomp(M) is microlocalized inside the
set Eεe defined in (5.17). Put l = 2le, where le is defined in (5.29), and consider the following
function

(5.53) Sf (λ) :=

l∑
j=1

∫
∂M

f(ξ)〈Ãjχ0E
0
h(λ, ξ), χ0E

0
h(λ, ξ)〉 dξ.

If ξ+∞(m, ν) is the limit of gt(m, ν) as t → +∞, for (m, ν) ∈ S∗M \ Γ− (see (G3)), then
for λ ∈ [1, 1 + h],

(5.54) Sf (λ) =

∫
S∗M

f(ξ+∞)σ(A) dµL + O(r(h,Λ0)).

Here r(h,Λ) is defined in (1.10). Moreover, for each k

(5.55) sup
λ∈[1,1+h]

|∂kλSf (λ)| ≤ Ckh−kρe ,

where ρe is defined in (5.18).
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Proof. – First of all, take a compactly supported operator X̃ ∈ Ψcomp such that
WFh(X̃) ∩ S∗M lies inside the set D E+ ∩ {x ≤ ε1} and for X0 defined in (5.35),

ϕU(t0)(1− ϕ)ϕt0X0(1− X̃) = O(h∞)L2→L2 ,

ϕ1U(t0)(1− ϕ2)ϕt0X0(1− X̃) = O(h∞)L2→L2 .

Such an operator exists by Lemma 5.5 (it can be easily seen that in part 1 of this lemma,
(m, ν) actually lies in the interior of D E+). Then by (5.36), the Definition (5.43) of Ãj , and
Lemma 5.12,

Sf (λ) =

l∑
j=1

∫
∂M

f(ξ)〈ÃjX0X̃χ0E
0
h(λ, ξ), X̃χ0E

0
h(λ, ξ)〉 dξ + O(h∞)

=

l∑
j=1

Tr(ÃjX0X̃Π0
f (λ)X̃∗) + O(h∞)

= (2πh)n
l∑

j=1

∫ T0

−T0

e−iλ
2s/(2h) Tr(ÃjX0U(s)Bs(λ)) ds+ O(h∞)

for some fixed T0 > 0 and some family Bs(λ) ∈ Ψcomp smooth in s and λ and compactly
supported in s; we can make Bs microlocalized inside the set Eεe defined in (5.17). We will
henceforth ignore the O(h∞) term.

Now, take 1 ≤ j ≤ l and put j = j1 + j2, where 0 ≤ j1, j2 ≤ le, j2 ≥ 1, and |j1 − j2| ≤ 1.
Using the cyclicity of the trace, we find

Tr(ÃjX0U(s)Bs(λ)) = Tr(U(s)Bj1B
j
2,s(λ)),

Bj1 := (U(−t0)ϕ1)j1A(ϕU(t0))j1 ,

Bj2,s(λ) := (ϕU(t0))j2(1− ϕ)ϕt0X0U(s)Bs(λ)ϕt0(1− ϕ2)(U(−t0)ϕ1)j2U(−s).

Put ρj = (jt0/te)ρe; since j1, j2 ≤ j/2+1, by Proposition 3.9 the operatorBj1 is a compactly
supported element of Ψcomp

ρj/2
(modulo an O(h∞)L2→L2 remainder which we will ignore).

Same can be said about the operator

Bj2,s(λ) = (ϕU(t0))j2 ·(1−ϕ)ϕt0X0U(s)Bs(λ)ϕt0(1−ϕ2)U(−s)·(U(−t0)·U(s)ϕ1U(−s))j2 .

(The operator U(s)ϕ1U(−s) is not pseudodifferential because ϕ1 is not compactly microlo-
calized, but this can be easily fixed by taking X̃0 ∈ Ψcomp equal to the identity on a suffi-
ciently large compact set and replacing U(s)ϕ1U(−s) by U(s)ϕ1X̃0U(−s) in B2,s(λ), with
an O(h∞) error.) Therefore,Bj1B

j
2,s(λ) also lies in Ψcomp

ρj/2
; moreover, it depends smoothly on s

and λ, uniformly in this operator class. (In principle, we get powers of l ∼ log(1/h) when dif-
ferentiating in s, due to the (U(−t0) · U(s)ϕ1U(s))j2 term, but they can be absorbed into the
powers of h in the expansion (3.32).)

We now use the trace formula of Lemma 3.12, writing

(5.56) Sf (λ) = (2πh)n
l∑

j=1

∫ T0

−T0

e−iλ
2s/(2h) Tr(U(s)Bj1B

j
2,s(λ)) ds.

The operator B2,s(λ)j is microsupported, in the sense of Definition 3.1, inside the set
g−j2t0({ϕ2 6= 1}) ∩ g−(j2−1)t0({ϕ1 6= 0}); by Lemma 5.5, this set lies inside g−j2t0( D E+)
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and in particular does not intersect any closed geodesics, therefore (3.31) holds. The es-
timate (5.55) now follows immediately from (3.32). The power h−kρe arises because we
integrate over the energy surface {|ν|g = λ} depending on λ; therefore, ∂kλSf (λ) will in-
volve kth derivatives of the full symbol of Bj1B

j
2,s(λ) in the direction transversal to the

energy surface, which are bounded by h−kρj . The sum (5.56) has l ∼ log(1/h) terms; how-
ever, our estimate is not multiplied by log(1/h) because one can see that the sum of Liouville
measures of the sets where these terms are microsupported is bounded.

As for the approximation (5.54), we write (note that we take s = 0 in B2,s)

σ(Bj1) = (σ(A) ◦ g−j1t0)

j1−1∏
k=1

ϕ ◦ g−kt0 ,

σ(Bj2,0(λ))|S∗M =
(
(1− ϕ)σ(B0(λ))

)
◦ gj2t0

j2−1∏
k=0

ϕ ◦ gkt0 .

Since the Liouville measure is invariant under the geodesic flow, the contribution of the
principal term of (3.32) to Sf (λ) for λ = 1 is∫

S∗M

σ(A)

l∑
j=1

(
(1− ϕ)σ(B0(λ))

)
◦ gjt0

j−1∏
k=1

ϕ ◦ gkt0 dµL.

Now, by (5.48), σ(B0(1)) = f(ξ+∞) on the support of the integrated expression; recombin-
ing the terms as in the proof of Proposition 5.11, we get the right-hand side of (5.54), with
an µL( T (lt0)) remainder. The subprincipal terms (and also the difference Sf (λ)− Sf (1)

for λ ∈ [1, 1 + h]) are estimated using the bound on the Liouville measure of the set where
Bj1B

j
2,s is microsupported; arguing as in the proof of Proposition 5.11, we see that they are

bounded by a constant times r(h,Λ0).

Expansion of the trace of spectral projectors in powers of h. – We now use the results obtained
so far to derive an asymptotic expansion for the trace of the product of the spectral projector
1l[0,λ2](P (h)) with a compactly supported pseudodifferential operator, with the remainder
depending on the classical escape rate for up to twice the Ehrenfest time. Here we denote

(5.57) P (h) := h2(∆− c0),

with the constant c0 from (A1). It will also be more convenient for us to use the spectral
parameter s = λ2 in the following corollary and theorem (not to be confused with the time
variable s used in Lemma 5.12).

We start with the following consequence of the decomposition (5.43), the bound (5.54),
and the spectral Formula (4.5):

C 5.14. – Take Λ0 > Λmax, with Λmax defined in (1.11), and let T (t) be defined
in (1.9). For ε > 0, let ϕ ∈ C∞0 ((1 − ε, 1 + ε)) equal to 1 near [1 − ε/2, 1 + ε/2] and
for s ∈ R, define ϕs := ϕ ·1l(−∞,s]. If ε > 0 is small enough, then for each compactly supported
A ∈ Ψ0(M), there exist some functions Sh(s), Qh(s) and some constants C > 0, Ck > 0 such
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that for all s ∈ R and all k ∈ N

Tr
(
Aϕs(P (h))

)
= Sh(s) +Qh(s), |∂ksSh(s)| ≤ Ckh−n−1−k/2,

|Qh(s+ u)−Qh(s)| ≤ Ch−nµL
(

T
(
| log h|

Λ0

))
+ O (h∞) for u ∈ [0, h].

(5.58)

Proof. – By (4.5),

Tr
(
Aϕs(P (h))

)
= (2πh)−n−1

√
1+ε∫

√
1−ε

λnfΠ(λ/h)ϕs(λ
2)

∫
∂M

〈AEh(λ, ξ), Eh(λ, ξ)〉 dξdλ.

By Proposition 5.1, we may assume thatA ∈ Ψcomp. Now, note that the decomposition (5.43)
(with l = 2le) is still valid in any O(h) sized interval inside (

√
1− ε,

√
1 + ε), if ε is small

enough. More precisely, if we write

Sh(s) := (2πh)−n−1

√
1+ε∫

√
1−ε

λnfΠ(λ/h)ϕs(λ
2)S1(λ) dλ,

where S1(λ) is defined by (5.53) with f(ξ) ≡ 1, then we have the expansion (5.58) withQh(s)

satisfying the required bound. To estimate the derivatives of Sh(s), it now suffices to use the
bound (5.55), noting that it is valid for |λ2 − 1| < ε if ε is small enough.

Using the last corollary, we can show the following trace decomposition with a fractal
remainder, the proof of which is based on a Tauberian argument:

T 4. – Let P (h) be defined in (5.57), let a ∈ S0(M) be compactly supported and
A = Oph(a) ∈ Ψ0(M) a compactly supported quantization. Then there exist some smooth
differential operators Lj of order 2j on T ∗M , depending on the quantization procedure Oph,
with L0 = 1, such that for any compact interval I ⊂ (0,∞), all s ∈ I, all h > 0 small, and
all N ∈ N

Tr
(
A 1l[0,s](P (h))

)
= (2πh)−n−1

N∑
j=0

hj
∫

|ν|2g≤s

Lja dµω + h−n O
(
µL( T (Λ−1

0 | log h|)) + hN
)

where the remainder is uniform in s. Here µω is the standard volume form on T ∗M ; we have
µω = ωn+1

S /(n+ 1)!, where ωS is the symplectic form.

Proof. – By rescaling h, it suffices to prove the result for |s− 1| ≤ ε/2 where ε > 0

is obtained in Corollary 5.14, we can thus assume |s− 1| ≤ ε/2. Let ϕs be defined as in
Corollary 5.14, and ψ ∈ C∞0 ((−1 + ε/2, 1− ε/2)) such that ψ + ϕ = 1 on [0, 1 + ε/2].
For s ∈ (1− ε/2, 1 + ε/2), one has 1l[0,s](P (h)) = ϕs(P (h)) + ψ(P (h)) and it suffices to
study the expansion in h of σA,h(s) and Tr(Aψ(P (h))) where

(5.59) σA,h(s) := Tr
(
Aϕs(P (h))

)
= Tr

(
Aϕs(P (h))χ

)
,

if χ ∈ C∞0 (M) is such thatA = χAχ. SinceA is compactly supported, one can use the func-
tional calculus of Helffer-Sjöstrand [8, Chapters 8-9] to deduce that Aψ(P (h))χ ∈ Ψcomp(M)
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is a compactly supported and microsupported pseudodifferential operator(4). Its trace has a
complete expansion in powers of h (see [8, Th 9.6]):

(5.60) Tr(Aψ(P (h))χ) = (2πh)−n−1
N∑
j=0

hj
∫
T∗M

L′′j a dµω + O(h−n+N )

where L′′j are some differential operators of order 2j and L′′0a(m, ν) = a(m, ν)ψ(|ν|2g).

Let us now analyze the function σA,h. This is a smooth function of s > 0 by the smooth-
ness assumption on the Eh(λ, ξ) in λ, it is constant in s for |1− s| > ε, and we know
that σA,h(s) = O(h−n−1) uniformly in s by Lemma 3.11. Let θ(s) ∈ S (R) be a Schwartz
function such that θ̂ ∈ C∞0 (−η, η) for some small η > 0 and θ̂(t) = 1 near t = 0, and
let θh(s) = h−1θ(s/h). We write

σ′A,h(s) := ∂sσA,h(s) = Tr(Aϕ(P (h))dΠs(P (h))χ) ∈ C∞0 ((0,∞)),

where dΠs(P (h)) is the spectral measure of P (h). The operator Aϕ(P (h))dΠs(P (h))χ has
a smooth compactly supported kernel and is trace class. We clearly have σ′A,h ? θh ∈ S (R)

and by a simple computation, its semi-classical Fourier transform is given by∫
R
e−i

t
h sσ′A,h ? θh(s)ds = Tr(Aϕ(P (h))e−i

t
hP (h))θ̂(t)

and thus

σ′A,h ? θh(s) =
1

2πh

∫
R
ei
s
h t Tr(Aϕ(P (h))e−i

t
hP (h))θ̂(t)dt.

Now we can apply Lemma 3.12 withBs = 1
2e
ic0hs/2θ̂(−s/2)Aϕ(P (h)); the condition (3.31)

is satisfied because θ̂ is supported in a small neighborhood of zero. This shows that, as h→ 0,
we have the expansion (locally uniformly in s)

σ′A,h ? θh(s) = (2πh)−n−1
( N∑
j=0

hj
∫
S∗M

L̃jb(m,
√
sν)dµL(m, ν) + O(hN+1)

)
for all N ∈ N, where b is a symbol such that Oph(b) = 1

2Aϕ(P (h)) + O(h∞), L̃j are

differential operators of order 2j on T ∗M , smooth in
√
s, with L̃0 = s

n−1
2 . In partic-

ular, one has L̃0b(m,
√
sν) = 1

2s
n−1

2 a(m,
√
sν)ϕ(s|ν|2g) + O(h). Notice that b is sup-

ported in {(m, ν) ∈ T ∗M | |ν|2g ∈ suppϕ} thus L̃jb(m,
√
sν) is smooth in s ∈ R when

(m, ν) ∈ S∗M . Since σA,h(s) is bounded in s, the convolution σA,h ? θh(s) is well defined
(as an element in L∞(R)) and we have for all N and for all s ≤ 2

σA,h ? θh(s) = (2πh)−n−1
( N∑
j=0

hj
∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du+ O(hN+1)

)
.

We are going to show that, uniformly in s ∈ R,

(5.61) σA,h(s)− σA,h ? θh(s) = O(h∞) + O
(
h−nµL( T (Λ−1

0 | log h|))
)
,

using the decomposition
σA,h(s) = Sh(s) +Qh(s)

(4) An alternative method in the Euclidean near infinity setting is the functional calculus of Helffer-Robert [26].
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defined in (5.58). Since ∂sSh(s) is a compactly supported symbol we get by integrating by
parts N times

(1−θ̂(t))
∫
e−i

t
h s∂sSh(s)ds = (1−θ̂(t))

∫
e−i

t
h s

(
h

it

)N
∂N+1
s (Sh(s))ds = O

(
hN/4

(1 + |t|)N

)
for all t ∈ R and all N � 1. Thus, taking the Fourier transform we deduce that
Sh(s)− Sh ? θh(s) = O(h∞) uniformly in s. From (5.58), we obtain by induction that
for all s, u

|Qh(s+ u)−Qh(s)| ≤ Ch−n
(

1 +
|u|
h

)
µL( T (Λ−1

0 | log h|)) + O(h∞).

Then, multiplying by θh(−u) and integrating in u, we obtain (5.61).
Given (5.61), we have

(5.62) σA,h(s) = (2πh)−n−1
N∑
j=0

hj
∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du

+ O
(
h−nµL( T (Λ−1

0 | log h|))
)

+ O(h−n+N ).

Since the symbol of b is explicitly obtained from a using Moyal product, we can rewrite
this expression with a instead of b and with some new differential operators with the same
properties as L̃j but supported in {|ν|2g ∈ suppϕ}; using polar coordinates S∗M × R+√

u

on T ∗M , we deduce that there exist some differential operators L′j of order 2j on T ∗M such
that ∫ s

0

∫
S∗M

L̃jb(m,
√
uν)dµL(m, ν)du =

∫
|ν|2g≤s

L′ja(m, ν)dµω(m, ν)

and L′0a(m, ν) = ϕ(|ν|2g)a(m, ν). Combining this with (5.62) and (5.60), we obtain the
desired result where Lj in the statement of the Theorem corresponds now to L′j + L′′j .

6. Euclidean near infinity manifolds

In this section, we assume that (M, g) is a complete Riemannian manifold such that there
exists a compact set K0 ⊂M such that for E := M \K0,

( E, g) is isometric to (Rn+1 \B(0, R), geucl)

whereR > 0,B(0, R) is the Euclidean ball of center 0 and radiusR and geucl is the Euclidean
metric. We will check that all the assumptions of Section 4 are satisfied.

6.1. Geometric assumptions

We let x ∈ C∞(M) be an everywhere positive function equal to x(m) = |m|−1 in E iden-
tified with Rn+1 \B(0, R), and such that x ≥ R−1 in K0. (We take it instead of the func-
tion (1 + |m|2)−1/2 used in Section 4 for the model case of Rn+1, to simplify the calcula-
tions and since we no longer need smoothness at zero.) We shall use the polar coordinates
m = ω/x in E, where ω ∈ Sn. Assumption (G1) is satisfied by taking the radial compactifica-
tion ofM , i.e., adding the sphere at infinity: the mapψ : Rn+1 \B(0, R)→ (0, 1/R)× Sn de-
fined by ψ(m) = (x(m), x(m)m) is a diffeomorphism and the radial compactification of M
is obtained by setting M = M t ∂M where ∂M := Sn, the smooth structure on M is the
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same as before onM but we extend it toM by asking that ψ extends smoothly to the bound-
ary ∂M and ψ(ξ) = (0, ξ) if ξ ∈ ∂M = Sn (see for instance [35] for more details). In other
words, smooth functions on M are smooth functions on M with an asymptotic expansion
in integer powers of 1/|m| to any order near infinity.

Assumption (G2) is clearly satisfied for ε0 := 1/2R since the trajectories of the geodesic
flow in x ≤ ε0 are simply gt(m, ν) = (m+ tν, ν). A point (m, ν) ∈ S∗M is directly escaping
in the forward direction in the sense of Definition 4.2 if and only if x(m) ≤ ε0 andm ·ν ≥ 0.
Now, (G3) is satisfied with ξ+∞(m, ν) = ν for (m, ν) ∈ D E+.

For the Assumption (G4), we define

Ũ∞ = {x < ε0} × ∂M ⊂M × ∂M,

φξ(m) = m · ξ, (m, ξ) ∈ U∞.

Then τ : U∞ → S∗M from (4.2) maps each (m, ξ) ∈ (Rn \B(0, 2R))× Sn to itself as an ele-
ment ofS∗(Rn \B(0, 2R)). Assumptions (G4) and (G5) follow immediately. To see Assump-
tion (G6), we note that for x(m), x(m′) < ε0 and some ξ ∈ Sn, we have ∂ξφξ(m) = ∂ξφξ(m

′)

if and only if m−m′ is a multiple of ξ.

6.2. Distorted plane waves and analytic assumptions

We recall a few well-known facts about scattering theory on perturbations of Rn, we refer
to [35] for a geometric approach and to [37, 23] in a more general setting (asymptotically
Euclidean case). A plane wave for the flat Laplacian onRn+1 is the function, for λ ∈ (1/2, 2),

(6.1) u(λ, ξ;m) := ce
iλ
h m·ξ, ξ ∈ Sn, m ∈ Rn+1, c ∈ C.

This is a semiclassical Lagrangian distribution, its oscillating phase has level sets given by
planes orthogonal to ξ. The continuous spectrum of the Laplacian ∆ associated to the
metric g is the half-line [0,∞). We will take the resolvent of h2∆ to be the L2-bounded
operator

(6.2) Rh(λ) := (h2∆− λ2)−1 in Im(λ) < 0.

This admits a continuous extension to {λ 6= 0, Im(λ) ≤ 0} as a bounded operator from
L2

comp to L2
loc. For λ > 0 we call Rh(λ) the incoming resolvent and Rh(−λ) the outgoing

resolvent. For λ > 0, h > 0, and m ∈M fixed, the Schwartz kernel Rh(λ;m,m′) of the in-
coming resolventRh(λ) has an asymptotic expansion along the linesm′ ∈ m′0 + Rξ directed
by ξ ∈ Sn given by

Rh(λ;m, ξ/x′) ∼x′→0 (x′)
n
2 e−

iλ
hx′ f(λ, ξ;m) + O((x′)

n
2 +1)

for some smooth function f and the remainder is uniform for m in compact sets (see for
example [37, 23]). Using this expansion, we define the distorted plane wave by

(6.3) Eh(λ, ξ;m) := 2iλh
(2πh

iλ

)n
2

lim
x′→0

[(x′)−n/2e
iλ
hx′Rh(λ;m, ξ/x′)],

with ξ ∈ Sn and ξ/x′ ∈ E. This is a smooth function of (m, ξ) ∈M × Sn, and in the
case of M = Rn+1 it is given by (6.1) with c = 1 (see [35, Chapter 1]). We shall use
the notation Eh(λ, ξ) for the C∞(M) function defined by m 7→ Eh(λ, ξ;m) and we
notice that (h2∆− λ2)Eh(λ, ξ) = 0 in M . One has Eh(λ, ξ;m) = Eh(−λ, ξ;m) since
Rh(λ)∗ = Rh(−λ) for λ ∈ R, and the decomposition of the spectral measure in terms of
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these functions is given as follows: by Stone’s formula, the semiclassical spectral measure is
given by

(6.4) dΠh(λ) =
iλ

π
(Rh(λ)−Rh(−λ)) dλ for λ ∈ (0,∞)

in the sense that F (h2∆) =
∫∞

0
F (λ2)dΠh(λ) for any bounded function F ; by combining

this with the Green’s type formula of [23, Lemma 5.2], we deduce that

dΠh(λ;m,m′) = λn(2πh)−n−1

∫
Sn
Eh(λ, ξ;m)Eh(λ, ξ;m′) dξdλ.

Here dξ corresponds to the standard volume form on the sphere Sn. The Assumptions (A1)
and (A2) are then satisfied. In fact, using [23], one can define distorted plane waves and verify
Assumptions (A1) and (A2) for the more general case of scattering manifolds.

Outgoing/incoming decomposition. – We now construct the decomposition (4.6) of Eh into
the outgoing and incoming parts and verify Assumptions (A3)–(A8). Take χ0 ∈ C∞(M)

(thus constant in ξ) supported in {x < ε0} and equal to 1 near {x ≤ ε0/2}, so that Assump-
tions (A3) and (A7) hold, where we put ε1 := ε0/2. We next put

E0
h(λ, ξ;m) := e

iλ
h m·ξ, x(m) < ε0,

so that (A4) holds with b0 ≡ 1 and (A8) follows. We then claim that

(6.5) Eh = χ0E
0
h + E1

h,

where

E1
h := −Rh(λ)Fh, Fh(λ, ξ) = (h2∆− λ2)(χ0E

0
h(λ, ξ)) = [h2∆, χ0]E0

h(λ, ξ).

We can apply Rh(λ) to Fh(λ, ξ) as the latter lies in C∞0 (M); in fact, suppFh ⊂ {ε0/2 < x < ε0}.
To show (6.5), note that the incoming resolvent Rh(λ) satisfies

(6.6) Rh(λ)χ1 = χ0R
0
h(λ)χ1 −Rh(λ)[h2∆, χ0]R0

h(λ)χ1

if χ1 ∈ C∞(M) is such that χ0 = 1 on supp(χ1) and R0
h(λ) is the incoming scattering

resolvent of the free semiclassical Laplacian h2∆ on Rn+1 (we use again the isometry
E ' Rn+1 \B(0, R)). To obtain Eh(λ, ξ) from (6.6), we shall use Definition (6.3); consider
the Schwartz kernels of the operators in (6.6) and multiply them by (x′)−

n
2 e

iλ
hx′ in the right

variable; since χ1 = 1 near infinity, one has by the remark following (6.3)

E0
h(λ, ξ;m) = 2iλh(

2πh

iλ
)
n
2 lim
x′→0

[(x′)−n/2e
iλ
hx′R0

h(λ;m, ξ/x′)χ1(ξ/x′)].

Now the Schwartz kernel κ(m′′,m′) of [h2∆, χ0]R0
h(λ)χ1 is smooth inM ×M by ellipticity

and compactly supported in the first variable, moreoverRh(m,m′′) is in L1
loc in them′′ vari-

able for m ∈M fixed, thus we get by dominated convergence for fixed m, ξ

lim
x′→0

(
x′
−n2 e

iλ
hx′

∫
M

Rh(m,m′′)κ(m′′, ξ/x′)dvolM (m′′)
)

=∫
M

Rh(m,m′′)[h2∆, χ0]E0
h(λ, ξ;m′′)dvolM (m′′)

and by combining this with (6.6), this proves (6.5).
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Microlocalization of E1
h. – It remains to verify Assumptions (A5) and (A6). By rescaling h

and using that Eh(λ, ·) depends only on λ/h, we may assume that λ = 1. Fix ξ and take
χ2 ∈ C∞(M) equal to 1 near {x ≤ ε0}, but supported inside E. Then

(6.7) χ2E
1
h = R0

h(λ)F 0
h , F 0

h := (h2∆− λ2)(χ2E
1
h) = −Fh + [h2∆, χ2]E1

h.

The function F 0
h is supported inside {x > ε0/2} and

‖F 0
h‖H−1

h
≤ Ch(1 + ‖Eh‖L2({x≥ε0})).

The free resolvent R0
h(λ) is bounded H−1

h,comp → L2
loc with norm O(h−1) by [4, Proposi-

tion 2.1]; therefore, for each compact set K ⊂M , there exists a constant CK such that

‖E1
h‖L2(K) ≤ CK(1 + ‖Eh‖L2({x≥ε0})).

This shows (A5), namely that the function

Ẽ1
h :=

E1
h

1 + ‖Eh‖L2({x≥ε0})

is h-tempered. To prove (A6), we use semiclassical elliptic estimate and propagation of
singularities (see for example [54, Section 4.1]). We have

(h2∆− λ2)Ẽ1
h = −F̃h, F̃h :=

Fh
1 + ‖Eh‖L2({x≥ε0})

.

Now, Fh is a Lagrangian distribution associated to {(m, ξ) | m ∈ supp(dχ0)}; therefore,

WFh(F̃h) ⊂WFh(Fh) ⊂Wξ,

with Wξ ⊂ S∗M defined in (4.9).
Take (m, ν) ∈WFh(Ẽ1

h). By the elliptic estimate, (m, ν) ∈ S∗M . Next, if γ(t) = gt(m, ν),
then by propagation of singularities, either γ(t) ∈WFh(F̃h) ⊂Wξ for some t ≥ 0 or
γ(t) ∈WFh(Ẽ1

h) for all t ≥ 0. Now, the free resolvent R0
h(λ) is semiclassically incom-

ing in the following sense: if f is a compactly supported h-tempered family of distributions,
then for each (m′, ν′) ∈WFh(R0

h(λ)f), there exists t ≥ 0 such that gt(m′, ν′) ∈ supp f . This
can be seen for example from the explicit formulas for R0

h(λ), see [35]. By (6.7) and since
supp(F 0

h ) ⊂ {x > ε0/2}, we see that for (m′, ν′) ∈WFh(Ẽ1
h), we cannot have x(m′) < ε0/2

and m′ · ν′ ≥ 0. Therefore, if γ(t) 6∈Wξ for all t ≥ 0, then γ(t) is trapped as t→ +∞; this
proves (A6).

7. Hyperbolic near infinity manifolds

In this section, we verify the assumptions of Section 4 for certain asymptotically hyper-
bolic manifolds. Let (M, g) be an (n + 1)-dimensional asymptotically hyperbolic manifold
as defined in the introduction. It has a compactification M = M ∪ ∂M and the metric can
be written in the product form (1.3):

g =
dx2 + h(x)

x2

where x is a boundary defining function and h(x) a smooth family of metrics on ∂M defined
near x = 0. The function x putting the metric in the form (1.3) is not unique, and those
functions (thus satisfying |d log(x)|g = 1 near ∂M ) are called geodesic boundary defining
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functions. The set of such functions parametrizes the conformal class of h(0), as shown
in [17, Lemma 5.2]. The metric is called even if h(x) is an even function of x, this condition
is independent of the choice of geodesic boundary defining function. A choice of geodesic
boundary defining function induces a metric on ∂M by taking h0 = h(0) = x2g|T∂M , and
therefore one has a Riemannian volume form, denoted dξ, on ∂M induced by the choice of x.
Any other choice x̂ = eωx of boundary defining function induces a volume form

(7.1) d̂ξ = enω0dξ where ω0 = ω|∂M .

We will further assume thatM has constant sectional curvature−1 outside of some compact
set, even though some of the assumptions of Section 4 hold for general asymptotically hyper-
bolic manifolds with no simplification provided by the additional assumption on curvature—
we will give the proofs in higher generality where appropriate.

7.1. Geometric assumptions

Let (M, g) be an asymptotically hyperbolic manifold. The Assumption (G1) is satisfied.
We are now going to prove a Lemma which implies directly that the Assumptions (G2)
and (G3) are satisfied, except that this only proves continuous dependence of ξ+∞ in (m, ν)

in (G3). To prove C1 dependence in a general setting, a bit more analysis would be required,
but we shall later concentrate only on cases with constant curvature near infinity, in which
case the dependence is smooth (see below).

L 7.1. – Let (M, g) an asymptotically hyperbolic manifold. Then there exists ε0 > 0

such that the function x satisfies (4.1) and for any unit speed geodesic γ(t) = (m(t), ν(t)) with
x(m(0)) ≤ ε0 and ∂tx(m(t))|t=0 ≤ 0, one has the following: ∂tx(m(t)) ≤ 0 for all t ≥ 0 and
m(t) converges in the topology of M to some point ξ+∞ ∈ ∂M . More precisely, the distance
with respect to the compactified metric ḡ = x2g between m(t) and ξ+∞ is bounded by

dḡ(m(t), ξ+∞) ≤ Ct−1.

Proof. – Consider coordinates (m, ν) = (x, y; ρdx+ θ · dy) on T ∗M near the boundary
∂M = {x = 0}. The geodesic flow is the Hamiltonian flow of p/2, where we have p(m, ν) =

x2(ρ2 + |θ|2hm); if dots denote time derivatives with respect to the geodesic flow, we get

(7.2) ẋ = ρx2, ρ̇ = −x−1p(m, ν)− x2∂xh(x,y)(θ, θ)/2.

Since ∂xh(x,y) is smooth up to x = 0, there exists a constant C such that

|x2∂xh(x,y)(θ, θ)/2| ≤ Cx2h(x,y)(θ, θ) ≤ Cp(m, ν).

Therefore, there exists ε0 > 0 such that along any unit speed geodesic, we have

(7.3) x ≤ ε0 =⇒ ρ̇ = −x−1 + O(1) ≤ −x−1/2 < 0.

This in particular implies (4.1).

Now, let γ(t) = (x(t), y(t); ρ(t), θ(t)) be a unit speed geodesic and assume that x(0) ≤ ε0

and ẋ(0) ≤ 0. It follows from (4.1) that for t ≥ 0, we have ẋ(t) ≤ 0 and thus x(t) ≤ ε0.
(Indeed, for each s ≥ 0 the minimal value of x(t) on the interval [0, s] has to be achieved
at t = s.) It remains to show that as t→ +∞, x(t) converges to 0 and y(t) converges to
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some ξ+∞ ∈ ∂M . For that, note that by (7.3), ρ̇(t) ≤ −ε−1
0 /2 for t ≥ 0; since ẋ(0) ≤ 0, we

have ρ(0) ≤ 0 and thus

ρ(t) ≤ −ε
−1
0

2
t.

Setting u(t) := x(t)−1, we find u̇(t) = −ρ(t) ≥ (ε−1
0 /2)t; therefore,

x(t) ≤ ε0

1 + t2/4
.

In particular, x(t)→ 0 as t→ +∞. Now the equation for ẏ(s) tells us that

ẏi(t) = x

n∑
k=1

hki(x,y)xθk = O(x(t)) = O(t−2)

and therefore |y(t)− y(t′)| ≤ C/t′ for any t > t′ > 0, which implies limt→∞m(t) = ξ∞ for
some ξ∞ ∈ ∂M and |m(t)− ξ∞| = O(1/t).

The geometric Assumption (G4) is a more complicated one, and we will restrict ourselves
to asymptotically hyperbolic manifolds with constant curvature −1 in a neighborhood
of ∂M and x a geodesic boundary defining function. Let ξ ∈ ∂M , then there exist a neigh-
borhood Vξ of ξ in M , and an isometric diffeomorphism ψξ from Vξ ∩M into the following
neighborhood Vq0 of the north pole q0 in the unit ball B := {m ∈ Rn+1; |m| < 1} equipped
with the hyperbolic metric g0

(7.4) Vq0 := {q ∈ B | |q − q0| < 1/4}, g0 = 4
dq2

(1− |q|2)2

where ψξ(ξ) = q0 and | · | denotes the Euclidean length. This statement is proved for instance
in [22, Lemma 3.1]. We shall choose the boundary defining function on the ball B to be

(7.5) x0 = 2
1− |q|
1 + |q|

and the induced metric x2
0g0|Sn on Sn = ∂B is the canonical one with curvature +1. The

function x0 can be viewed locally as a boundary defining function (through the chart ψξ)
near a point ξ ∈ ∂M but in general there does not exist a global geodesic boundary defining
function x on M so that x = ψ∗ξx0 in a whole family of charts Vξ covering a neighborhood
of ∂M . We define for each p ∈ Sn the Busemann function on B

φBp(q) = log
(1− |q|2

|q − p|2
)
.

The geodesic trajectory gt(q, dφBp(q)) generated by the differential dφBp converges (in the
Euclidean ball topology) to p and the Lagrangian manifold

ΛB
p := {(q, dφBp(q)) ∈ S∗Hn+1 | q ∈ B}

is the stable manifold of the geodesic flow associated to p on B. The level sets of φBp are
horospheres based at p. We cover a neighborhood of ∂M by finitely many Vξj for some
ξj ∈ ∂M and take a partition of unityχj ∈ C∞(∂M) on ∂M withχj supported inVξj ∩ ∂M .
Then there exists ε > 0 such that for all j and all ξ ∈ suppχj , the set

(7.6) Uξ := {m ∈M | dḡ(m, ξ) < ε}
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lies inside Vξj , where ḡ = x2g is the compactified metric. Put

U∞ := {(m, ξ) ∈M × ∂M | m ∈ Uξ}.

Define the function

(7.7) φξ(m) :=
∑
j

χj(ξ)φ
B
ψξj (ξ)(ψξj (m)), (m, ξ) ∈ U∞.

Since ψξj are isometries, each function φjξ(m) := φBψξj (ξ)(ψξj (m)) is such that dφjξ(m) is

the unit covector which generates the unique geodesic in M starting at m, staying in Uξ
for positive times, and converging to ξ (therefore, the difference of any two functions φjξ for

different j is a function of ξ only). Therefore ∂mφξ(m) =
∑
j χj(ξ)∂mφ

j
ξ(m) is also equal

to this unit covector; (G4) and (G5) follow. The dependence of all objects in m, ξ is smooth
here. Finally, (G6) can be reduced via ψξj to the following statement that can be verified by
a direct computation: if p ∈ Sn and q, q′ ∈ B, then ∂pφBp(q) = ∂pφ

B
p(q′) if and only if q and q′

lie on a geodesic converging to p, and the matrix ∂2
pqφ

B
p(q) has rank n.

7.2. Eisenstein functions and analytic assumptions

Let (M, g) be asymptotically hyperbolic. The Laplacian ∆ on (M, g) has absolutely
continuous spectrum on [n2/4,∞) and a possibly non-empty finite set of eigenvalues
in (0, n2/4). By [34, 19], if g is an even metric(5), the resolvent of the Laplacian

R(s) := (∆− s(n− s))−1 defined in the half plane Re(s) > n/2

admits a meromorphic continuation to the whole complex plane C, with poles of finite rank
(i.e., the Laurent expansion at each pole consists of finite rank operators), as a family of
bounded operators

R(s) : xNL2(M)→ x−NL2(M), if Re(s)− n/2 +N > 0,

moreover it has no poles on the line Re(s) = n
2 except possibly s = n

2 , as shown by Mazzeo [33].
The continuous spectrum for the spectral parameter s corresponds to Re(s) = n/2 and we
write s = n

2 + iλ/h with λ > 0 bounded and h > 0 small for the high-frequency regime.
Let us fix a geodesic boundary defining function x on M . By [34], the resolvent integral
kernel R(s;m,m′) near the boundary ∂M has an asymptotic expansion given as follows:
for any m ∈M fixed

m′ 7→ R(s;m,m′)x(m′)−s ∈ C∞(M)

and similarly for m′ ∈ M fixed and m → ∂M . Since we are interested in high frequency
asymptotics, we will consider the semiclassical rescaled versions

(7.8) Rh(λ) := h−2R(n/2 + iλ/h).

Note that the physical region Re s > n/2, in which the resolvent is bounded on L2,
corresponds to Imλ < 0, which agrees with our convention for Euclidean case, see (6.2).

(5) There is a simpler proof by Guillopé-Zworski [22] when the curvature is constant outside a compact set.
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D 7.2. – Let 1/2 ≤ |λ| ≤ 2 and h > 0, then Eisenstein functions are the
functions inC∞(M ×∂M) defined for any fixed ξ ∈ ∂M by the following limit of the resolvent
kernel at infinity

Eh(λ, ξ;m) :=
2iλh

C(λ/h)
lim
m′→ξ

x(m′)−n/2−iλ/hRh(λ;m,m′),

C(z) := 2−iz(2π)−
n
2

Γ(n2 + iz)

Γ(iz)
.

(7.9)

The normalisation constant in (7.9) is like the constant in (6.3) so that in B, Eh(λ) is a
horospherical wave as described below in (7.12). For any ξ ∈ ∂M , we will denote by Eh(λ, ξ)

the function m 7→ Eh(λ, ξ;m), and we observe that they solve (1.4):

(h2(∆− n2/4)− λ2)Eh(λ, ξ) = 0.

One also has Eh(λ, ξ;m) = Eh(−λ, ξ;m) as an easy consequence of Rh(λ)∗ = Rh(−λ)

for λ ∈ R. From its definition, Eh(λ, ξ) depends on the choice of the boundary defining
function x, but considering such a change we easily see from (7.1) that the density on ∂M

(7.10) 〈AEh(λ, ξ), Eh(λ, ξ)〉L2(M) dξ for A ∈ Ψcomp(M)

is independent of x.

Let us recall the decomposition of the spectral measure in terms of these functions. By
Stone’s formula, the semiclassical spectral measure is given by

dΠh(λ) =
iλ

π
(Rh(λ)−Rh(−λ)) dλ for λ ∈ (0,∞)

in the sense that F (h2(∆ − n2/4)) =
∫∞

0
F (λ2)dΠh(λ) for any bounded function F

supported in (0,∞). Now we can write (see [19]) for any m,m′

(7.11) dΠh(λ;m,m′) =
|C(λ/h)|2

2πh

∫
∂M

Eh(λ, ξ;m)Eh(−λ, ξ;m′)dξ dλ,

where (2πh)n|C(λ/h)|2 → λn as h → 0 uniformly in λ ∈ [1/2, 2]. The Assumptions (A1)
and (A2) are then satisfied in the general asymptotically hyperbolic case (without asking the
constant curvature near infinity).

Outgoing/incoming decomposition. – To check Assumptions (A3)–(A8), we give a repre-
sentation of the Eisenstein functions as sums of the ‘outgoing’ part E0

h and the ‘incoming’
part E1

h. We assume constant curvature near infinity in what follows. The expression
for EB

h(λ) on hyperbolic space Hn+1 viewed as a unit ball B, defined using the boundary
defining function x0 of (7.5), is given by [20, Section 2.2]

(7.12) EB
h(λ, p; q) =

(1− |q|2

|q − p|2
)n/2+iλ/h

, p ∈ Sn, q ∈ B.

We thus set E0
h(λ, ξ;m) to be

(7.13) E0
h(λ, ξ;m) := e(n/2+iλ/h)φξ(m),

where φξ is the Busemann function defined in (7.7). Viewing the neighborhoodUξ as a subset
of one of the Vξj 'ψξj Vq0 where Vq0 ⊂ B is defined in (7.4), the Laplacian in this hyperbolic
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chart pulls back to ∆Hn+1 . Since φξ(m) = φBψξj (ξ)(ψξj (m)) + cj(ξ) for some function cj(ξ)

independent of m, we directly have in Uξ (Uξ is defined in (7.6))

(h2(∆− n2/4)− λ2)E0
h(λ;m, ξ) = 0.

We let χ0 ∈ C∞(∂M ×M) be a function such that χ0(ξ, ·) is supported in Uξ, equal to 1

near ξ and smooth in x2. Therefore we obtain

Fh(λ, ξ) := (h2(∆− n2/4)− λ2)χ0E
0
h(λ, ξ) = [h2∆, χ0]E0

h(λ, ξ)(7.14)

and we claim that

Fh(λ, ξ) ∈ xn2 +2+ iλ
h C∞(M) and ‖x−1Fh(λ, ξ)‖L2(M) = O(h)

uniformly in ξ. Indeed, this is an elementary calculation since from (7.12) we see that
E0
h(λ, ξ) ∈ xn2 +iλhC∞(M \ {ξ}) and in geodesic normal coordinates near the boundary

[∆, χ0] = −x2(∂2
xχ0)−2x(∂xχ0)x∂x+x2[∆h(x), χ0]+n(x∂xχ0)−1

2
Trh(x)(∂xh(x))x2(∂xχ0)

is a first order operator with coefficients vanishing in a neighborhood of ξ. We thus correct
the error by the incoming resolvent Rh(λ) by setting

(7.15) Eh(λ, ξ) := χ0E
0
h(λ, ξ) + E1

h(λ, ξ), with E1
h(λ, ξ) := −Rh(λ)Fh(λ, ξ)

and this makes sense since for λ ∈ R, Rh(λ) : xαL2(M)→ x−αL2(M) for any α > 0 and
Fh ∈ xL2(M). We claim that

P 7.3. – The function Eh(λ, ξ) of (7.15) is the Eisenstein function defined in
(7.9) for a certain boundary defining function x.

Proof. – Let RB
h(λ) be the resolvent of the hyperbolic space (that is, the incoming right

inverse to h2(∆Hn+1 − n2/4) − λ2) in the ball model and let χ1 ∈ C∞(∂M ×M) be such
that χ1(ξ, ·) is supported in Uξ and χ1χ0 = χ1. Through the pull-back by ψξj (for each j),
the operatorRB

h(λ) induces an operatorRjh(λ) on Vξj ; ifUξ ⊂ Vξj , then we have the resolvent
identity

(7.16) Rh(λ)χ1 = χ0R
j
h(λ)χ1 −Rh(λ)[h2∆, χ0]Rjh(λ)χ1

for λ ∈ R, the composition makes sense as a map xαL2 → x−αL2 for any α > 0. Let x
be a boundary defining function, so in Vξj , one has ψ∗ξjx0 = xeωj for some function

ωj ∈ C∞(∂M ∩ Vξj ). Then multiplying (7.16) by x−n/2−iλ/h on the right, and taking
the restriction of the Schwartz kernels on M × ∂M , we have

Eh(λ, ξ) = χ0Ẽ
0
h(λ, ξ)−Rh(λ)[h2∆, χ0]Ẽ0

h(λ, ξ)

with Ẽ0
h(λ;m, ξ) = 2iλh

C(λ/h) limm′→ξ(x(m′)−
n
2−i

λ
hRjh(λ;m,m′)) a smooth function of m ∈ Uξ

and C(λ/h) the constant in (7.9). Note that the Schwartz kernels ofRjh andRkh are the same
on the intersection of their domains, therefore Ẽ0

h does not depend on the choice of j.
Now, since EB

h(λ;m, ξ) in (7.12) is the Eisenstein function on B for the defining func-
tion x0, we deduce that in Uξ ⊂ Vξj , one has Ẽ0

h(λ, ξ;m) = E0
h(λ, ξ;m)e(n2 +iλh )(ωj(ξ)−cj(ξ)).

Here cj(ξ) = φξ(m) − φBψξj (ξ)(ψξj (m)). Since E0
h(λ;m, ξ) does not vanish, this shows that

on any intersection ∂M ∩ Vξj ∩ Vξk of the cover of ∂M by the open sets Vξj ∩ ∂M , we get
ωj(ξ)− cj(ξ) = ωk(ξ)− ck(ξ) and therefore this defines a global smooth function θ on ∂M .
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ξ∂M

ε

F 4. Illustration of (A7) for the half-plane model of Hn+1: the set of points
on trajectories converging to ξ ∈ ∂Hn+1 with ẋ < 0 and x < ε is the triangle
formed by dashed lines, lying O(ε) close to ξ. For ε small enough, this triangle lies
inside the lighter shaded region, denoting the set {χ0 = 1}.

In its definition, Eh(λ, ξ) only depends on the first jet of x at ∂M and thus modifying x to
be xeθ, this shows the claim.

It follows that (A3) and (A4) are satisfied, with b0 = e
n
2 φξ(m). Assumption (A8) is then

checked by a direct calculation, with the measure dξ on ∂M corresponding to the choice of
the function x in Proposition 7.3.

Assumption (A7) can be reduced, using the isometries ψξj , to the following statement: if
(q, ν) ∈ S∗Hn+1 is directly escaping in the forward direction and converging to some p ∈ Sn,
then |q−p| ≤ Cx0(q) for some global constantC; the latter statement is verified directly, see
Figure 4.

Microlocalization of E1
h. – Finally, Assumptions (A5) and (A6) follow, by rescaling h and

using that Eh(λ, ·) is a function of λ/h, from

P 7.4. – Let K0 ⊂M be a compact set containing a neighborhood of the
trapped set. Assume that λ = 1 and define

(7.17) Ẽ1
h(λ, ξ) =

E1
h(λ, ξ)

1 + ‖Eh(λ, ξ)‖L2(K0)
.

Then:

1. Ẽ1
h(λ, ξ) is h-tempered in the sense of (3.2).

2. The wavefront set WFh(Ẽ1
h) is contained in S∗M .

3. If (m, ν) ∈ S∗M and gt(m, ν) escapes to infinity as t→ +∞ and never passes through
the set

Wξ := {(m, ∂mφξ(m)) | m ∈ supp(∂mχ0)}

for t ≥ 0, then (m, ν) 6∈WFh(Ẽ1
h).

Moreover, the corresponding estimates are uniform in λ ∈ [1/2, 2] and ξ ∈ ∂M .

Proof. – We will use the construction of [54]. (See also [55]; note however that in that
paperL+ andL− switch places compared to the notation of [54] that we are using.) LetM even

(called X0,even in [54]) be the space M with the smooth structure at the boundary ∂M
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ξ∂M

Fh

∂T
∗
XL−

Q F̂h

F 5. Left: physical space picture of geodesics converging to ξ. The darker
shaded region is the support of dχ0, and thus of Fh. In the lighter shaded region,
χ0 = 1. Right: phase space picture near ξ after the conjugation of [54]. L− is
the sink consisting of radial points, Q is the complex absorbing operator, and the
shaded region corresponds to the wavefront set of F̂h. The vertical line hitting
L− is the boundary of Meven, while the horizontal line is the fiber infinity. In
both pictures, we mark two points (m, ν) satisfying the assumption of part 3 of
Proposition 7.4 and the forward geodesics starting at these points.

changed so that x2 is the new boundary defining function. As in [54, (3.5)], introduce the
modified Laplacian

P1(λ) := x−2x−s(1 + x2)s/4−n/8(h2∆− s(n− s))(1 + x2)n/8−s/4xs, s := n/2 + iλ/h.

(The conjugation by (1 + x2)s/4−n/8 is irrelevant in our case, as s/4 − n/8 = iλ/(4h) is
purely imaginary. In [54], it is needed to show estimates far away in the physical plane, that
is for Re s � 1.) Note that we change the sign of λ in the conjugation (in the notation
of [54], P1(λ) = Pσ with σ = −λ/h); therefore, our resolvent will be semiclassically
incoming, instead of semiclassically outgoing, for λ > 0. The operator P1 is smooth up to
the boundary of M even; as in [54, Section 3.5], we embed M even as an open set in a certain
compact manifold without boundary X, and extend P1 to a differential operator in Ψ2(X).
We also consider the semiclassical complex absorbing operator Q(λ) ∈ Ψ2(X) satisfying
the assumptions of [54, Section 3.5]; in particular, Q(λ) is supported outside of M even ⊂ X.
Then (P1(λ) − iQ(λ))−1 : C∞(X) → C∞(X) is a meromorphic family of operators in λ,
and for f ∈ C∞(X), we have (see the proof of [54, Theorem 5.1])

xs(1 + x2)n/8−s/4(P1(λ)− iQ(λ))−1f |M = Rh(λ)(1 + x2)n/8−s/4xsx2(f |M ).

HereRh(λ) is the incoming scattering resolvent onM . In principle, depending on the choice
of Q(λ), the operator (P1(λ)− iQ(λ))−1 could have a pole at λ. However, as R(λ) does not
have a pole for λ ∈ [1/2, 2], the terms in the Laurent expansion of (P1(λ) − iQ(λ))−1 have
to be supported outside of M even and we can ignore them in the analysis.

Let F̂h ∈ C∞(X) be any function such that F̂h = O(h)HNh for all N , and

Fh = (1 + x2)n/8−s/4xs+2(F̂h|M ).

Such a function exists as x−sχ0E
0
h ∈ C∞(M even \ ξ), χ0 ∈ C∞(M even), and

Fh = x2+s(1 + x2)n/8−s/4[P1(s), χ0](1 + x2)s/4−n/8x−sE0
h
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is supported away from ξ. Define the function Ê1
h ∈ C∞(X) by

Ê1
h = − (P1(λ)− iQ(λ))−1F̂h

1 + ‖Eh(λ, ξ)‖L2(K0)
.

Then
Ẽ1
h = xs(1 + x2)n/8−s/4Ê1

h|M .
Consider the map ι : T ∗M → T ∗X given by

ι(m, ν) =

(
m, ν − d

(
lnx(m)− 1

4
ln(1 + x(m)2)

))
, m ∈M, ν ∈ T ∗mM ;

then for an h-tempered u ∈ C∞(X),

WFh(xs(1 + x2)n/8−s/4u|M ) = ι−1(WFh(u)).

Then

(7.18) WFh((P1(λ)− iQ(λ))Ê1
h) ∩ T ∗M ⊂ ι(WFh(Fh)) ⊂ ι(Wξ).

Now, as ‖E0
h‖L2(K0) ≤ C and thus ‖E1

h‖L2(K0) ≤ C + ‖Eh‖L2(K0), we have

‖Ê1
h‖L2(K0) ≤ C.

Consider an operator QK ∈ Ψcomp(X) supported in K0 such that σ(QK) ≤ 0 everywhere
and each unit speed geodesic γ(t) either escapes as t → +∞ or passes through the region
{σ(QK) < 0} at some positive time. This is possible sinceK0 contains a neighborhood of the
trapped set. Then the operator P1(λ)− iQ(λ)− iQK satisfies the semiclassical nontrapping
assumptions [54, Section 3.5]; therefore, by the nontrapping estimate [54, Theorem 4.8],

‖Ê1
h‖L2(X) ≤ Ch−1‖(P1(λ)− iQ(λ)− iQK)Ê1

h‖L2(X)

≤ Ch−1‖F̂h‖L2(X) + Ch−1‖QKÊ1
h‖L2(X).

However, ‖QKÊ1
h‖ is bounded by ‖Ê1

h‖L2(K0); therefore, ‖Ê1
h‖L2(X) = O(h−1) and in partic-

ular Ê1
h is tempered; it follows that Ẽ1

h is also tempered. This proves part 1 of the proposition;
part 2 follows by ellipticity (note that WFh(Fh) ⊂Wξ ⊂ S∗M ).

Now, assume that (m, ν) ∈ S∗M satisfies the assumption of part 3 of this proposition.
Then it follows directly from (7.18), the analysis of [54, Section 2.2], and the definition
of ι, that the Hamiltonian flow line of σ(P1) starting at ι(m, ν) converges to the set L− of
radial points as t→ +∞ and does not intersect WFh((P1(λ)− iQ(λ))Ê1

h) for t ≥ 0. In a
fashion similar to the global argument of [54, Section 4.4] (see also a similar semiclassical
outgoing property of [54, Theorem 4.9]), we combine elliptic regularity and propagation of
singularities (see [54, Section 4.1]) with the radial points lemma [54, Proposition 4.5] for L−,
to get ι(m, ν) 6∈WFh(Ê1

h). Therefore, (m, ν) 6∈WFh(Ẽ1
h) as required.

Appendix A

Limiting measures for hyperbolic quotients

In this appendix, we give an explicit description of the limiting measures µξ in case
when M is a hyperbolic quotient Γ\Hn+1, in terms of the group Γ. This is a particular case
of asymptotically hyperbolic manifolds discussed in Section 7.
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A.1. Convex co-compact groups

Let B be the unit ball in Rn+1, and Hn+1 the (n+ 1)-dimensional hyperbolic space, which we
view as B equipped with the constant negative curvature metric gHn+1 := 4|dm|2/(1− |m|2)2.
The boundary Sn = ∂B is the sphere of radius 1, which is also the conformal boundary
of Hn+1. A convex co-compact group Γ of isometries of Hn+1 is a discrete group of hy-
perbolic transformations (i.e., transformations having 2 disjoint fixed points on B) with
a compact convex core, and Γ is not co-compact. The convex core is the smallest convex
subset in Γ\Hn+1, which can be obtained as follows. The limit set ΛΓ of the group and the
discontinuity set ΩΓ are defined by

(A.1) ΛΓ := {γ(m) ∈ B; γ ∈ Γ} ∩ Sn , ΩΓ := Sn \ ΛΓ

where the closure is taken in the closed unit ball B and m ∈ B is any point (the set ΛΓ does
not depend on the choice of m). The group Γ acts on the convex hull of ΛΓ (with respect to
hyperbolic geodesics) and the convex core is the quotient space.

An important quantity is the Hausdorff dimension of ΛΓ

(A.2) δ := dimH ΛΓ < n

which in turn is, by Patterson [41] and Sullivan [50], the exponent of convergence of Poincaré
series: for any m ∈ B,

(A.3)
∑
γ∈Γ

e−sd(m,γm) <∞ ⇐⇒ s > δ;

we henceforth denote by d(·, ·) the distance function of the hyperbolic metric on B. Notice
that the series (A.3) is locally uniformly bounded in m ∈ B.

The group Γ acts properly discontinuously on ΩΓ as conformal transformations of the
sphere and the quotient space Γ\ΩΓ is a smooth compact manifold of dimension n. The
quotient

M = Γ\Hn+1

is a smooth non-compact manifold equipped with the hyperbolic metric g induced by gHn+1 ,
and it admits a smooth compactification by settingM = M∪(Γ\ΩΓ), i.e., with ∂M = Γ\ΩΓ.
Then M is an asymptotically hyperbolic manifold in the sense of Section 7, of constant
sectional curvature −1. We shall denote the covering map by

π : B ∪ ΩΓ →M.

We refer the reader to [38] for more details and properties of convex co-compact groups.

A.2. Limiting measures in this setting

In constant curvature, it turns out that the limiting measure µξ exists for all ξ (rather than
for Lebesgue almost every ξ as in Section 4.3), and can be described as a converging sum over
the group. We give an expression below, which is the same as the one obtained in [20] when
δ < n/2.
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For ξ ∈ Sn, we let φξ be the Busemann function(6) on the unit ball B defined by

φξ(m) = log
(1− |m|2

|m− ξ|2
)
.

The map Φ defined by

(A.4) Φ : B× Sn → S∗Hn+1, Φ : (m, ξ) 7→ (m, ∂mφξ(m))

gives a diffeomorphism between the unit cotangent bundle S∗Hn+1 and B×Sn, and satisfies

Φ∗dµL = enφξ(m) dvolHn+1(m) ∧ dξ, with enφξ(m) =
(1− |m|2

|m− ξ|2
)n
,

if dµL is the Liouville measure (viewed as a volume form on the unit cotangent bundle) and
dξ the canonical measure on Sn. (This is a more general version of (A8) for the considered
case.) Any isometry γ of Hn+1 acts on both spaces by

γ.(m, ν) = (γm, (dγ(m)ν∗)∗), for (m, ν) ∈ S∗Hn+1;

γ.(m, ξ) = (γm, γξ), for (m, ξ) ∈ B× Sn,

where ∗ denotes the map identifying T ∗Hn+1 with THn+1 through the metric. We have
Φ(γ.(m, ξ)) = γ.Φ(m, ξ) and thus Φ descends to a map Γ\(Hn+1 × Sn) → S∗(Γ\Hn+1),
which we also denote by Φ.

The limiting measure µξ in the considered case is given by

L A.1. – Let M = Γ\Hn+1 be a quotient of Hn+1 by a convex co-compact group Γ

of isometries, let F be a fundamental domain. Then the measure µπ(ξ) of (4.12) exists for all
ξ ∈ ΩΓ and is described as a converging series by the following expression: if ξ ∈ ΩΓ ∩ F and
a ∈ C∞0 (S∗M), then∫

M

a dµπ(ξ) =

∫
F

∑
γ∈Γ

a(m, dφγξ(m))en(φγξ(m)+log |dγ(ξ)|) dvolHn+1(m)

where φξ(m) is the Busemann function on B associated to ξ ∈ Sn and |dγ(ξ)| is the Euclidean
norm of dγ(ξ).

Proof. – We can view a as a compactly supported function on the unit cotangent bun-
dle S∗ F over a fundamental domain F ⊂ B and we extend a by 0 in S∗Hn+1\S∗ F (the
resulting function might not be smooth, but it does not matter here). The flow gt on S∗M is
obtained by projecting down the geodesic flow g̃t of the cover S∗Hn+1. Let ξ ∈ ΩΓ∩ F , then
small neighborhoods of π(ξ) inM are isometric through π to small neighborhoods of ξ in the
unit ball B. By the construction of the decomposition (4.6) for the asymptotically hyperbolic
case in Section 7.2, the function E0

h(λ, π(ξ);π(m)) is equal to e(n/2+iλ/h)φξ(m) for m near ξ
(ξ being fixed) and thus |b0|2 = enφξ(m). One has∫

M

a(g−t(m, dφξ(m)))enφξ(m) dvolM (m) =

∫
F
ã(g̃−tΦ(m, ξ))enφξ(m) dvolHn+1(m),

(6) In Section 7, we used the coordinate q ∈ B, p ∈ Sn for certain charts near infinity ofM , and the notation φBp(q)
for the Busemann function on the ball. This was to avoid confusion with the coordinate m, ξ on M,∂M . We keep
in this appendix the notation φξ(m) to match the notation of the general setting of the article.
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where ã(m, ν) :=
∑
γ∈Γ a(γ.(m, ν)) is the lift to S∗Hn+1 of the function a on S∗M and

dvolHn+1(m) is the Riemannian measure on Hn+1. Using the map Φ of (A.4), one can define
a map g̃tξ : B→ B by

g̃tΦ(m, ξ) = Φ(g̃tξ(m), ξ),

this is a diffeomorphism which preserves the measure enφξ(m) dvolHn+1 . By [20, Lemma 4],
we have enφξ(γ

−1m) = enφγξ(m)|dγ(ξ)|n, but we also have γ.Φ(m, ξ) = Φ(γm, γξ). Let U+
∞

be defined in (G4) and put U := {m | (m,π(ξ)) ∈ U+
∞}, then U lies in a small neighborhood

of π(ξ) inM . We can identify U with a small neighborhood Ũ of ξ in F and we get for µ̃π(ξ)

defined in (4.10),∫
S∗M

(a ◦ g−t) dµ̃π(ξ) =

∫
U

a(g−t(m, dφξ(m)))enφξ(m) dvolM (m)

=

∫
Ũ

∑
γ∈Γ

a(γ.g̃−tΦ(m, ξ))enφξ(m) dvolHn+1(m)

=
∑
γ∈Γ

∫
Ũ

a(Φ(γg̃−tξ m, γξ))enφξ(m) dvolHn+1(m)

=
∑
γ∈Γ

∫
γg̃−tξ (Ũ)

a(m, dφγξ(m))enφξ(γ
−1m) dvolHn+1(m).

(A.5)

We now observe that for all γ ∈ Γ, limt→+∞ 1lγg̃−tξ Ũ = 1, since Ũ is a neighborhood of ξ

in B containing all points directly escaping to ξ. This achieves the proof by recalling the
Definition (4.12) of µπ(ξ) and taking the limit in (A.5) and using the dominated convergence
theorem, as there exist C,C ′ > 0 such that for all m in the compact set supp(a)∑

γ∈Γ

enφξ(γ
−1m) =

∑
γ∈Γ

( 1− |γ−1m|
|γ−1m− ξ|2

)n
≤ C sup

m∈supp(a)

e−nd(γ−1m,0) ≤ C ′

by locally uniform (in m) convergence of Poincaré series (A.3) at s = n.

Appendix B

The escape rate

Let us discuss the classical escape rate in some particular cases, following the work of
Bowen-Ruelle [3], Young [57], and Kifer [30].

B.1. Escape rate and the pressure of the unstable Jacobian

We consider (M, g) a complete non-compact Riemannian manifold and say that a com-
pact setK0 ⊂ S∗M is geodesically convex if any geodesic trajectory in S∗M which leavesK0

never comes back:
(B.1)
∃t1,∃t0 < t1, g

t0(m, ν) ∈ K0 and gt1(m, ν) ∈M \K0 =⇒ ∀t ≥ t1, gt(m, ν) ∈M \K0.

A compact set K0 ⊂M is said geodesically convex if π−1(K0) is geodesically convex where
π : S∗M →M is the natural projection. Let K0 ⊂ S∗M be a geodesically convex compact
set containing a neighborhood of the trapped set K. The examples we consider are (M, g)
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which are hyperbolic or Euclidean near infinity, and K0 = S∗M ∩{x ≥ ε0} with x, ε0 given
in (G2). The trapped set from Definition 4.1 can be written as

K =
⋂
t∈R

gt(K0) =
⋂
j∈Z

gj(K0).

This is a compact maximal invariant set for the flow gt. We define the escape rate as in [57, 30]
by

Q := lim sup
t→∞

1

t
logµL( T (t)),

with µL the Liouville measure and T (t) defined in (1.9). Note that, since K0 is geodesically
convex, we have T (t2) ⊂ T (t1) for 0 ≤ t1 ≤ t2. The escape rate is clearly non-positive.

In this section, we assume thatµL(K) = 0 and writeQ in terms of the topological pressure
of the flow, under certain dynamical assumptions. More precisely, we assume that the trapped
setK is uniformly partially hyperbolic, in the following sense: there exist εf > 0 and a splitting
of T (S∗M) over K into continuous subbundles invariant under the flow

TzS
∗M = Ecsz ⊕ Euz , ∀z ∈ K

such that the dimensions of Eu and Ecs are constant on K and for all ε > 0, there is t0 ∈ R
such that

∀z ∈ K, ∀t ≥ t0,

{
∀v ∈ Euz , |dgtzv| ≥ eεf t|v|,
∀v ∈ Ecsz , |dgtzv| ≤ eεt|v|.

Let Ju be the unstable Jacobian of the flow, defined by

Ju(z) := −∂t(det dgtz|Euz )|t=0,

where dgt : Euz → Eugtz
and the determinant is defined using the Sasaki metric for choosing

orthonormal bases in Eu. If µ is a gt-invariant measure on K, one has∫
K

Judµ = −
∫
K

∑
j

Λ+
j dµ,

where Λ+
j (z) are the positive Lyapunov exponents at a regular point z ∈ K counted with

multiplicity (regular points are points where the exponents are well defined, and this is a
set of full µ-measure by the Oseledec theorem). It is also direct to see that

∫
K
Judµ =

−
∫
K

log det(dg1|Eu)dµ.
The topological pressure of a continuous function ϕ : K → R with respect to the flow can

be defined by the variational formula

(B.2) P (ϕ) := sup
µ∈M(K)

(
hµ(g1) +

∫
K

ϕdµ

)
where M(K) is the set of gt-invariant Borel probability measures and hµ(g1) is the measure
theoretic entropy of the flow at time 1 with respect to µ. In particular P (0) is the topological
entropy of the flow.

A particular case of uniformly partially hyperbolic dynamics is when K is uniformly
hyperbolic, that is when there is a continuous gt-invariant splitting Ecs = RHp ⊕ Es into
flow direction (Hp is the vector field generating the geodesic flow) and stable directions Es

where for t ≥ t0
∀v ∈ Esz , |dgtzv| ≤ e−εf t|v|.
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The flow is said to be Axiom A when the trapped set K is a uniformly hyperbolic set such
that the periodic orbits of gt on K are dense in K.

It is proved by Young [57, Theorem 4] that if K is uniformly partially hyperbolic, then

(B.3) Q = lim
t→∞

1

t
logµL( T (t)) = P (Ju).

In the Axiom A case, the same formula was essentially contained in the work of Bowen-
Ruelle (using the volume lemma [3, Lemmas 4.2 and 4.3]). Moreover by [3, Theorem 5], if the
incoming tail Γ− (which is the union of stable manifolds over the trapped set) has Liouville
measure 0, then P (Ju) < 0. Thus we deduce by (5.2)

µL(K) = 0 and gt is Axiom A =⇒ P (Ju) < 0.

Young [57, Theorem 4] gives a lower bound Q ≥ P (−
∑
j Λ+

j ) which applies without any
assumption on K (but we are more interested in an upper bound).

B.2. Relation with fractal dimensions in particular cases

Assume first that the metric has constant curvature −1 in a small neighborhood of the
trapped set K (this includes the case of convex co-compact hyperbolic quotients studied
in Appendix A). Then the geodesic flow on S∗M is uniformly hyperbolic on K and has
Lyapunov exponents 0 (with multiplicity 1) and±1 (each with multiplicity n). Therefore, the
maximal expansion rate Λmax from (1.11) is equal to 1, one has Ju(z) = −n for all z ∈ K,
and (see for example [14, Theorem 4])

(B.4) P (Ju) = htop(K)− n = (dimH(K)− 1)/2− n

where htop is the topological entropy of the flow on K, and dimH(K) ∈ (0, n) is the
Hausdorff dimension of K (which is equal to the Minkowski box dimension in this case).
For convex co-compact hyperbolic quotients Γ\Hn+1 (see Section A for definition), one has
by Sullivan [51]

(B.5) δ := dimH(ΛΓ) = htop(K)

where ΛΓ is the limit set of the group Γ defined in (A.1).

If g has negative pinched curvature near the trapped set, then one still has upper and
lower bounds on P (Ju) in terms of htop(K) and the pinching constant. If the trapped setK
is uniformly hyperbolic, it is also shown in [14] that dimH(K) ≤ 1 + 2htop(K)/Λmax. In
dimension 2 there is an explicit relation between the Hausdorff dimension dimH(K) and
pressures for Axiom A cases: if

au(z) = lim
t→0

1

t
log ‖dgt|Eu‖ > 0, as(z) = lim

t→0

1

t
log ‖Dgt|Eu‖ < 0

then Pesin-Sadovskaya [42] show the following formula

dimH(K) = 1 + tu + ts, with P (−tuau) = P (−tsas) = 0.
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Appendix C

Egorov’s theorem until Ehrenfest time

In this section, we prove Proposition 3.9, following the methods of [2], [1, Section 5.2],
and [62, Theorem 11.12]. See also [44, Theorem 7.1]. Without lack of generality, we assume
that t0 > 0.

C.1. Estimating higher derivatives of the flow

First of all, we need to estimate the derivatives of symbols under propagation for long
times. Consider the open set

U1 = {(m, ν) ∈ T ∗M | m ∈ U, 1− 2εe < |ν|g < 1 + 2εe}.

For each k, we fix a norm ‖ · ‖Ck(U1) for the space Ck(U1) of k times differentiable functions

on U1. (The particular choice of the norm does not matter, as long as it does not depend
on t.) The following estimate is an analogue of [1, (5.6)]; we include the proof for the case of
manifolds for the reader’s convenience.

L C.1. – Take Λ1 > (1 + 2εe)Λmax. Then for each k, there exists a constant C(k)

such that for each a ∈ C∞0 (U1) and each t ∈ R,

(C.1) ‖a ◦ gt‖Ck(U1) ≤ C(k)ekΛ1|t|‖a‖Ck(U1).

Proof. – Without loss of generality, we assume that t > 0. We first recall the formula for
derivatives of the composition b ◦ ψ of a function b ∈ C∞(Rd) with a map ψ : Rd → Rd:

(C.2) ∂α(b ◦ ψ) =
∑
α,j

cα,j(∂j1...jmb) ◦ ψ ·
m∏
l=1

∂αlψjl ,

where cα,j are constants, j1, . . . , jm ∈ {1, . . . , d}, and α1, . . . , αm are nonzero multiindices
whose sum equals α. We see from (C.2) that (C.1) is implied by the following estimate on the
derivatives of the flow gt (required to hold in any coordinate system):

(C.3) |α| ≤ k =⇒ sup
U1∩g−t(U1)

|∂αgt| ≤ Cαe|α|Λ1t.

The converse is also true, which can be seen by substituting coordinate functions in place of a
in (C.1).

To estimate higher derivatives of the flow, we will need several definitions from differential
geometry. For a vector field X on U1, define its pushforward gt∗X by

X(a ◦ gt) = ((gt∗X)a) ◦ gt, a ∈ C∞(gt(U1)).

Then gt∗X is a vector field on gt(U1). In local coordinates, we have

(gt∗X)j =
∑
l

(X l∂lg
t
j) ◦ g−t.

Note that since gt = exp(tHp/2) and gt∗Hp = Hp, we have

(C.4) ∂tg
t
∗X = −1

2
[Hp, g

t
∗X] = −1

2
gt∗[Hp, X].
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We fix a symmetric affine connection ∇ on T ∗M . For vector fields X and Y , consider the
differential operator ∇2

XY , acting on functions or on vector fields, defined as follows: for a
function f and a vector field Z,

(C.5) ∇2
XY f = XY f − (∇XY )f, ∇2

XY Z = ∇X∇Y Z −∇∇XY Z.

In local coordinates, we have (using Einstein’s summation convention)

∇2
XY f = XiY j(∂2

ijf − Γlij∂lf),

(∇2
XY Z)m = XiY j(∂2

ijZ
m + Γmjα∂iZ

α + Γmiα∂jZ
α − Γαij∂αZ

m

+ (∂iΓ
m
jα + ΓmiβΓβjα − ΓβijΓ

m
αβ)Zα).

Here Γlij are the Christoffel symbols of the connection ∇. The advantage of ∇2
XY over XY

is that the coefficients of this differential operator at any point depend (bilinearly) only on
the values of X and Y at this point, but not on their derivatives.

We now return to the proof of (C.1). The estimate (C.3) for k = 1 follows directly from
the Definition (3.17) of Λmax. It is then enough to assume that (C.3) holds for some k ≥ 1

and prove the estimate (C.1) for k+ 1. It suffices to show that for any two vector fields X,Y
on T ∗M and any a ∈ C∞0 (U1), we have the estimate

(C.6) ‖XY (a ◦ gt)‖Ck−1(U1) ≤ Ce
(k+1)Λ1t‖a‖Ck+1(U1).

The left-hand side of (C.6) is equal to ‖(gt∗Xgt∗Y a) ◦ gt‖Ck−1(U1). We first claim that

(C.7) ‖(∇2
gt∗Xg

t
∗Y
a) ◦ gt‖Ck−1(U1) ≤ Ce

(k+1)Λ1t‖a‖Ck+1(U1).

Indeed, in local coordinates

(C.8) (∇2
gt∗Xg

t
∗Y
a) ◦ gt = (Xα∂αg

t
i)(Y

β∂βg
t
j)
(
(∂2
ija− Γlij∂la) ◦ gt

)
.

We can now apply (C.2) to get an expression for any derivative of order no more than k − 1

of (C.8). The result will involve derivatives of orders 1, . . . , k of gt, but not its k + 1’st
derivative; therefore, we can apply (C.3) to get (C.7).

Given (C.7) and (C.5), it is enough to show

(C.9) ‖((∇gt∗Xg
t
∗Y )a) ◦ gt‖Ck−1(U1) ≤ Ce

(k+1)Λ1t‖a‖Ck(U1).

The vector field ∇gt∗Xg
t
∗Y involves the second derivatives of gt, therefore the left-hand side

of (C.9) depends on the k+ 1’st derivatives of gt and we cannot apply (C.3) directly. We will
instead use the method of the proof of [2, Lemma 2.2], computing by (C.4)

∂t(g
−t
∗ (∇gt∗Xg

t
∗Y )) =

1

2
g−t∗ ([Hp,∇gt∗Xg

t
∗Y ]−∇[Hp,gt∗X]g

t
∗Y −∇gt∗X [Hp, g

t
∗Y ]) =

1

2
g−t∗ Zt,

whereZt is the vector field given byZt = ∇2
gt∗Xg

t
∗Y
Hp +R∇(Hp, g

t
∗X)(gt∗Y ). HereR∇ is the

curvature tensor of the connection∇. Then

(C.10) ∇gt∗Xg
t
∗Y = gt∗(∇XY ) +

1

2

∫ t

0

gt−s∗ Zs ds.

We have

‖(gt∗(∇XY )a) ◦ gt‖Ck−1(U1) = ‖∇XY (a ◦ gt)‖Ck−1(U1)

≤ C‖a ◦ gt‖Ck(U1) ≤ Ce
kΛ1t‖a‖Ck(U1).
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It is then enough to handle the integral part of (C.10). The field Zs depends quadratically on
the first derivatives of gs, but does not depend on its higher derivatives; therefore, writing an
expression for Zs in local coordinates similar to (C.8), we get for a ∈ C∞0 (U1),

‖(Zsa) ◦ gs‖Ck−1(U1) ≤ Ce
(k+1)Λ1s‖a‖Ck(U1).

Applying (C.1) for the Ck norm (given by the induction hypothesis) and using the geodesic
convexity of U , we get∫ t

0

‖((gt−s∗ Zs)a) ◦ gt‖Ck−1(U1) ds =

∫ t

0

‖(Zs(a ◦ gt−s)) ◦ gs‖Ck−1(U1) ds

≤ C
∫ t

0

e(k+1)Λ1s‖a ◦ gt−s‖Ck(U1) ds

≤ C
∫ t

0

e(k+1)Λ1sekΛ1(t−s)‖a‖Ck(U1) ds

≤ Ce(k+1)Λ1t‖a‖Ck(U1)

and the proof is finished.

C.2. Proof of Proposition 3.9

The proof of Proposition 3.9 is based on repeatedly applying the following corollary of
Lemma C.1. The functions b(j) below will be the remainders in the formula for the commu-
tator [h2∆, A(j)(t)], while the functions c(j) will be the errors arising from multiplying our
operators by X1 and X2.

P C.2. – Take Λ1 > (1 + 2εe)Λmax. Fix t0 > 0 and let ϕ ∈ C∞0 (U1)

satisfy |ϕ| ≤ 1. Assume that a0 ∈ C∞(T ∗M) and for each j ≥ 0, b(j)(t) ∈ C∞([0, t0]× T ∗M),
and c(j) ∈ C∞(T ∗M), with support contained in some j-independent compact set. For j ≥ 0,
define a(j) ∈ C∞([0, t0]× T ∗M) inductively as the solutions to the equations

a(0)(0) = a0, a
(j+1)(0) = ϕ · a(j)(t0) + c(j+1);

∂ta
(j)(t) =

1

2
Hpa

(j)(t) + b(j)(t).

Then for each k, and each j, we have (bearing in mind that each a(j) is supported inside some
j-independent compact set and thus its Ck norm is well-defined up to a constant)

sup
t∈[0,t0]

‖a(j)(t)‖Ck(T∗M)

≤ C(k)
(
ejkΛ1t0‖a0‖Ck + max

0≤i≤j
e(j−i)kΛ1t0( sup

t∈[0,t0]

‖b(i)(t)‖Ck + ‖c(i)‖Ck)
)
,

where C(k) is a constant independent of j.

Proof. – We can write

a(j)(t) = a(j)(0) ◦ gt +

∫ t

0

b(j)(s) ◦ gt−s ds.
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Since t0 is fixed, it is enough to estimate the derivatives of a(j)(0). Define

ϕ(j) =
∏

0≤m<j

(ϕ ◦ gmt0);

applying the Leibniz rule to ϕ(j), estimating each nontrivial derivative of ϕ ◦ gmt0 by
Lemma C.1, using that |ϕ| ≤ 1 and absorbing the (polynomial in l) number of differ-
ent terms in the Leibniz formula into the exponential by increasing Λ1 slightly, we get
‖ϕ(j)‖Ck = O(ejkΛ1t0). Now,

a(j)(0) = ϕ(j) · (a0 ◦ gjt0) +

j−1∑
i=0

ϕ(j−i)
∫ t0

0

b(i)(s) ◦ g(j−i)t0−s ds

+

j∑
i=1

ϕ(j−i) · (c(i) ◦ g(j−i)t0).

Here we put ϕ(0) = 1. We can now apply Lemma C.1 again to get the required estimate.

We are now ready to prove Proposition 3.9. Fix a quantization procedure Oph on M ;
our symbols will be supported in a certain compact set (in fact, no more than distance t0
to the set U ) and we require that the corresponding operators be compactly supported. Put
Λ1 = Λ′0. Let l satisfy (3.18). We will construct the operators

A(j)
m (t) = Oph

( ∑
0≤m′≤m

a
(j)
m′(t)

)
, 0 ≤ t ≤ t0, 0 ≤ j ≤ l, m ≥ 0.

Here the symbols a(j)
m will be supported in a fixed compact subset of T ∗M and satisfy the

derivative bounds

(C.11) sup
t∈[0,t0]

‖a(j)
m (t)‖Ck ≤ C(k,m)h(1−2ρj)m−ρjk,

with the constantsC(k,m) independent on j and ρj defined by (3.19). The operatorsA(j)
m (t)

will satisfy the relations

A(0)
m (0) = A+ O(h∞)Ψ−∞ ,

A(j+1)
m (0) = X2A

(j)
m (t0)X1 + Oph(c(j)m ) + O(h∞)Ψ−∞ ,

hDtA
(j)
m (t) =

1

2
[h2∆, A(j)

m (t)] +
h

i
Oph(b(j)m (t)) + O(h∞)Ψ−∞ ,

(C.12)

where the symbols b(j)m (t) and c(j)m are supported in some fixed compact set and satisfy bounds

(C.13) sup
t∈[0,t0]

‖b(j)m (t)‖Ck , ‖c(j)m ‖Ck ≤ C(k,m)h(1−2ρj)(m+1)−ρjk,

with the constants C(k,m) again independent on j.

We construct the symbols a(j)
m iteratively, by requiring that they solve the equations

a(0)
m (0) = δm0 · a0, a

(j+1)
m (0) = ϕa(j)

m (t0)− c(j)m−1,

∂ta
(j)
m (t) =

1

2
Hpa

(j)
m (t)− b(j)m−1(t).
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Here A = Oph(a0) + O(h∞)Ψ−∞ and we put b(j)−1 = c
(j)
−1 = 0. The function ϕ ∈ C∞0 (U1) is

equal to σ(X1)σ(X2)ψ(|ν|), where ψ ∈ C∞0 (1− 2εe, 1 + 2εe) is such that ψ(|ν|) = 1 near
WFh(A). We use the fact that the function |ν| is invariant under the geodesic flow. The
estimate (C.11) follows immediately from (C.13) and Proposition C.2. As for the Equa-
tions (C.12) and the bounds (C.13), they follow from (C.11) and the following commutator
formula:

[h2∆,Oph(a)] =
h

i
Oph(Hpa) + Oph(b) + O(h∞)Ψ−∞ , b = O(h2−2ρ‖a‖Sρ)Sρ ,

true for any ρ < 1/2 and any a ∈ Scomp
ρ .

Now, consider the asymptotic sums

a(j)(t) ∼
∑
m≥0

a(j)
m (t)

and define the operators A(j)(t) = Oph(a(j)(t)). By (C.12), these operators satisfy

A(0)(0) = A+ O(h∞)Ψ−∞ , A
(j+1)(0) = X2A

(j)(t0)X1 + O(h∞)Ψ−∞ ,

hDtA
(j)(t) =

1

2
[h2∆, A(j)(t)] + O(h∞)Ψ−∞ .

We then have
(X2U(t0))lA(U(−t0)X1)l = A(l)(0) + O(h∞)L2→L2 .

It remains to recall that a(l)(0) ∈ Scomp
ρl

uniformly in l. The principal symbol and microlocal

vanishing statements follow directly from the procedure used to construct the symbols a(j)
m .

Appendix D

Proof of quantum ergodicity in the semiclassical setting

In this section, we illustrate how our methods yield a proof of the following integrated
quantum ergodicity statement in the semiclassical setting:

T 5. – Let (M, g) be a compact Riemannian manifold of dimension d and as-
sume that the geodesic flow gt on M is ergodic with respect to the Liouville measure µL
on the unit cotangent bundle S∗M . For each h > 0, let (ej)j∈N be an orthonormal basis of
eigenfunctions of h2∆ with eigenvalues λ2

j . Then for each semiclassical pseudodifferential
operator A ∈ Ψ0(M), we have

(D.1) hd−1
∑

λj∈[1,1+h]

∣∣∣∣〈Aej , ej〉L2(M) −
1

µL(S∗M)

∫
S∗M

σ(A) dµL

∣∣∣∣→ 0 as h→ 0.

A more general version of Theorem 5 was proved in [25], in particular relying on the result
of [9, 43] on o(h) remainders for the Weyl law when the closed geodesics form a set of measure
zero. The purpose of this Appendix is to provide a shorter proof. Theorem 5 is formulated
here for the semiclassical Laplacian for simplicity of notation, but it applies to any self-
adjoint semiclassical pseudodifferential operator P (h) with compact resolvent on a compact
manifold, if the Hamiltonian flow of the principal symbol p of P (h) has no fixed points and
is ergodic on the energy surface p−1(0) and we take eigenvalues in the interval [0, h].

The key component of our proof is the following estimate:
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L D.1. – Let M be as in Theorem 5. Then for each A ∈ Ψ0(M), we have

(D.2) hd−1
∑

λj∈[1,1+h]

‖Aej‖2L2(M) ≤ (C‖σ(A)‖L2(S∗M) + O(h))2.

Here ‖σ(A)‖L2(S∗M) is the L2 norm of the restriction of σ(A) to S∗M with respect to the
Liouville measure. The constant in O(h) depends on A, but the constant C does not.

Proof. – Assume first that A is compactly microlocalized. We can rewrite the left-
hand side of (D.2) as the square of the Hilbert-Schmidt norm of h(d−1)/2AΠ[1,1+h], where
Π[1,1+h] = 1l[1,(1+h)2](h

2∆) is a spectral projector. It can then be estimated using the local
theory of semiclassical Fourier integral operators, by (3.24) (applied to the adjoint of the
operator in interest).

To handle the case of a general A, it remains to note that if WFh(A) ∩ S∗M = ∅,
then the left-hand side of (D.2) is O(h∞), as each Aej is O(h∞) by the elliptic estimate
(Proposition 3.2; see also the proof of Proposition 4.5).

Putting A equal to the identity in (D.2), we get the following upper Weyl bound:

(D.3) #{j | λj ∈ [1, 1 + h]} ≤ Ch1−d.

We can now prove Theorem 5. Take A ∈ Ψ0(M); by subtracting a multiple of the identity
operator and applying the ellipticity estimate, we may assume that A is compactly microlo-
calized and

(D.4)
∫
S∗M

σ(A) dµL = 0.

Define the quantum average

〈A〉T =
1

T

∫ T

0

U(t)AU(−t) dt.

Here U(t) = eith∆/2 is the semiclassical Schrödinger propagator. By Egorov’s theorem
(Proposition 3.8), for any fixed T the operator 〈A〉T lies in Ψ0, modulo an O(h∞)L2→L2

remainder, and its principal symbol is

σ(〈A〉T ) = 〈σ(A)〉T :=
1

T

∫ T

0

σ(A) ◦ gt dt.

Note that for each j, we have U(t)ej = eitλj/(2h) and thus 〈〈A〉T ej , ej〉 = 〈Aej , ej〉. Using
Cauchy-Schwarz inequality in j and the bounds (D.2) and (D.3), we get

hd−1
∑

λj∈[1,1+h]

|〈Aej , ej〉| = hd−1
∑

λj∈[1,1+h]

|〈〈A〉T ej , ej〉|

≤ hd−1
∑

λj∈[1,1+h]

‖〈A〉T ej‖L2

≤ C
(
hd−1

∑
λj∈[1,1+h]

‖〈A〉T ej‖2L2

)1/2

≤ C‖〈σ(A)〉T ‖L2(S∗M) + OT (h).
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However, by (D.4) and the von Neumann ergodic theorem [62, Theorem 15.1], we have
‖〈σ(A)〉T ‖L2(S∗M) → 0 as T →∞. Therefore, for each ε > 0 we can choose T large enough
so that the left-hand side of (D.1) is bounded by ε/2 + O(h). Then for h small enough, it is
bounded by ε; since the latter was chosen arbitrarily small, we get (D.1).
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