[Classes de cohomologie représentées par des feuilletages mesurés et question de Mahler pour les échanges d'intervalles]
Une structure de translation sur une surface marquée donne lieu à deux feuilletages mesurés , sur à singularités dans et, par intégration, à un couple de classes de cohomologie relative , . Étant donné un feuilletage mesuré , nous caractérisons l'ensemble des classes de cohomologie pour lesquelles il existe un feuilletage mesuré comme ci-dessus tel que . Cela généralise des résultats antérieurs de Thurston [19] et Sullivan [18].
Nous appliquons ce résultat à deux problèmes : l'unique ergodicité des échanges d'intervalles et les flots sur l'espace des modules des surfaces de translation. Étant donnée une permutation , l'ensemble paramètre les échanges d'intervalles sur intervalles de permutation associée . Nous décrivons les droites de dont presque tout point est uniquement ergodique. Nous démontrons aussi que si est donnée par , pour presque tout , l'échange d'intervalles correspondant à et à est uniquement ergodique. Une autre application est que lorsque , l'opération consistant à « déplacer horizontalement les singularités » est bien définie. En notant le sous-groupe des matrices triangulaires supérieures de , nous prouvons qu'il y a une action bien définie du groupe sur l'ensemble des surfaces de translation de type sans connexion horizontale.
A translation structure on gives rise to two transverse measured foliations on with singularities in , and by integration, to a pair of relative cohomology classes . Given a measured foliation , we characterize the set of cohomology classes for which there is a measured foliation as above with . This extends previous results of Thurston [19] and Sullivan [18].
We apply this to two problems: unique ergodicity of interval exchanges and flows on the moduli space of translation surfaces. For a fixed permutation , the space parametrizes the interval exchanges on intervals with permutation . We describe lines in such that almost every point in is uniquely ergodic. We also show that for , for almost every , the interval exchange transformation corresponding to and is uniquely ergodic. As another application we show that when the operation of “moving the singularities horizontally” is globally well-defined. We prove that there is a well-defined action of the group on the set of translation surfaces of type without horizontal saddle connections. Here is the subgroup of upper triangular matrices.
DOI : 10.24033/asens.2214
Keywords: Cohomology classes, measured foliations, interval exchanges.
Mot clés : Classes de cohomologie, feuilletages mesurés, la question de Mahler, échanges d'intervalles.
@article{ASENS_2014__47_2_245_0, author = {Minsky, Yair and Weiss, Barak}, title = {Cohomology classes represented by measured foliations, and {Mahler's} question for interval exchanges}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {245--284}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {2}, year = {2014}, doi = {10.24033/asens.2214}, mrnumber = {3215923}, zbl = {1346.37039}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2214/} }
TY - JOUR AU - Minsky, Yair AU - Weiss, Barak TI - Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 245 EP - 284 VL - 47 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2214/ DO - 10.24033/asens.2214 LA - en ID - ASENS_2014__47_2_245_0 ER -
%0 Journal Article %A Minsky, Yair %A Weiss, Barak %T Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 245-284 %V 47 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2214/ %R 10.24033/asens.2214 %G en %F ASENS_2014__47_2_245_0
Minsky, Yair; Weiss, Barak. Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 245-284. doi : 10.24033/asens.2214. http://www.numdam.org/articles/10.24033/asens.2214/
Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math., Volume 5 (1996), pp. 233-297 (ISSN: 0240-2955) | DOI | Numdam | MR | Zbl
A divergent Teichmüller geodesic with uniquely ergodic vertical foliation, Israel J. Math., Volume 152 (2006), pp. 1-15 (ISSN: 0021-2172) | DOI | MR | Zbl
On unipotent flows in , Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 379-398 (ISSN: 0143-3857) | DOI | MR | Zbl
Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 129-162 (ISSN: 0143-3857) | DOI | MR | Zbl
, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math.), Volume 69, Amer. Math. Soc., 2001, pp. 639-660 | DOI | MR | Zbl
Ergodicity of billiard flows and quadratic differentials, Ann. of Math., Volume 124 (1986), pp. 293-311 (ISSN: 0003-486X) | DOI | MR | Zbl
Bounded geodesics in moduli space, Int. Math. Res. Not., Volume 2004 (2004), pp. 1551-1560 (ISSN: 1073-7928) | DOI | MR | Zbl
Badly approximable vectors on fractals, Israel J. Math., Volume 149 (2005), pp. 137-170 (ISSN: 0021-2172) | DOI | MR | Zbl
Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | DOI | MR | Zbl
Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., Volume 66 (1992), pp. 387-442 (ISSN: 0012-7094) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | MR | Zbl
Foliations of Hilbert modular surfaces, Amer. J. Math., Volume 129 (2007), pp. 183-215 (ISSN: 0002-9327) | DOI | MR | Zbl
Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., Volume 134 (1991), pp. 455-543 (ISSN: 0003-486X) | DOI | MR | Zbl
, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 1015-1089 | DOI | MR | Zbl
Nondivergence of horocyclic flows on moduli space, J. reine angew. Math., Volume 552 (2002), pp. 131-177 (ISSN: 0075-4102) | DOI | MR | Zbl
, Annals of Math. Studies, 125, Princeton Univ. Press, 1992, 216 pages (ISBN: 0-691-08764-4; 0-691-02531-2) | MR | Zbl
Asymptotic cycles, Volume 3 (2008) no. 12, 5463 pages ( http://www.scholarpedia.org/article/Asymptotic_cycles )
Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 (ISSN: 0020-9910) | DOI | MR | Zbl
Minimal stretch maps between hyperbolic surfaces (preprint arXiv:math.GT/9801039 ) | MR
Interval exchange transformations, J. Analyse Math., Volume 33 (1978), pp. 222-272 (ISSN: 0021-7670) | DOI | MR | Zbl
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | DOI | MR | Zbl
Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 1093-1109 (ISSN: 0143-3857) | DOI | MR | Zbl
Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996), pp. 779-817 | DOI | MR | Zbl
Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975), pp. 291-300 (ISSN: 0025-567X) | MR | Zbl
, Frontiers in number theory, physics, and geometry. I (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., eds.), Springer, 2006, pp. 437-583 | DOI | MR | Zbl
Cité par Sources :