[Sur les réalisations de de Rham et -adiques du polylogarithme elliptique des courbes elliptiques à multiplication complexe]
Dans cet article, nous donnons une description explicite des réalisations de de Rham et -adiques des polylogarithmes elliptiques en utilisant la fonction thêta de Kronecker. Considérons en particulier une courbe elliptique définie sur un corps quadratique imaginaire , à multiplication complexe par l’anneau des entiers de , et ayant bonne réduction en chaque place au-dessus d’un nombre premier non ramifié dans . On notera que le nombre de classe de est nécessairement égal à un. Nous montrons alors que les spécialisations des polylogarithmes -adiques aux points de torsion de d’ordre premier à sont reliées aux nombres d’Eisenstein-Kronecker -adiques. Ce résultat est valable même si a une réduction supersingulière en . C’est un analogue -adique d’un cas spécial du résultat de Beilinson et Levin exprimant la réalisation de Hodge du polylogarithme elliptique en utilisant les séries d’Eisenstein-Kronecker-Lerch. Si est quelconque, nous établissons un lien entre les nombres d’Eisenstein-Kronecker -adiques et les valeurs spéciales des fonctions associées aux caractères de Hecke de .
In this paper, we give an explicit description of the de Rham and -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve defined over an imaginary quadratic field with complex multiplication by the full ring of integers of . Note that our condition implies that has class number one. Assume in addition that has good reduction above a prime unramified in . In this case, we prove that the specializations of the -adic elliptic polylogarithm to torsion points of of order prime to are related to -adic Eisenstein-Kronecker numbers. Our result is valid even if has supersingular reduction at . This is a -adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When is ordinary, then we relate the -adic Eisenstein-Kronecker numbers to special values of -adic -functions associated to certain Hecke characters of .
Keywords: elliptic curves, complex multiplication, elliptic polylogarithms, $p$-adic $L$-functions
Mot clés : courbes elliptiques, multiplication complexe, polylogarithmes elliptiques, fonctions $L$ $p$-adiques
@article{ASENS_2010_4_43_2_185_0, author = {Bannai, Kenichi and Kobayashi, Shinichi and Tsuji, Takeshi}, title = {On the de {Rham} and $p$-adic realizations of the elliptic polylogarithm for {CM} elliptic curves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {185--234}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {2}, year = {2010}, doi = {10.24033/asens.2119}, mrnumber = {2662664}, zbl = {1197.11073}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2119/} }
TY - JOUR AU - Bannai, Kenichi AU - Kobayashi, Shinichi AU - Tsuji, Takeshi TI - On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 185 EP - 234 VL - 43 IS - 2 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2119/ DO - 10.24033/asens.2119 LA - en ID - ASENS_2010_4_43_2_185_0 ER -
%0 Journal Article %A Bannai, Kenichi %A Kobayashi, Shinichi %A Tsuji, Takeshi %T On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 185-234 %V 43 %N 2 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2119/ %R 10.24033/asens.2119 %G en %F ASENS_2010_4_43_2_185_0
Bannai, Kenichi; Kobayashi, Shinichi; Tsuji, Takeshi. On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 2, pp. 185-234. doi : 10.24033/asens.2119. http://www.numdam.org/articles/10.24033/asens.2119/
[1] Weierstrass elliptic and related functions, Ch. 18, in Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., 1992, p. 627-671. | MR | Zbl
& (éds.),[2] Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, 1994, 11-50. | MR | Zbl
& ,[3] Rigid syntomic cohomology and -adic polylogarithms, J. reine angew. Math. 529 (2000), 205-237. | MR | Zbl
,[4] On the -adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J. 113 (2002), 193-236. | MR | Zbl
,[5] -adic elliptic polylogarithm, -adic Eisenstein series and Katz measure, preprint arXiv:0707.3747, to appear in Amer. J. Math. | MR | Zbl
& ,[6] Algebraic theta functions and -adic interpolation of Eisenstein-Kronecker numbers, preprint arXiv:math.NT/0610163, to appear in Duke Math. J. | MR | Zbl
& ,[7] The elliptic polylogarithm, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 123-190. | MR | Zbl
& ,[8] Géométrie rigide et cohomologie des variétés algébriques de caractéristique , Mém. Soc. Math. France (N.S.) 23 (1986), 7-32. | Numdam | MR | Zbl
,[9] Cohomologie rigide et cohomologie rigide à support propre, première partie, preprint IRMAR 96-03, 1996.
,[10] Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329-377. | MR | Zbl
,[11] A new construction of -adic -functions attached to certain elliptic curves with complex multiplication, Ann. Inst. Fourier (Grenoble) 36 (1986), 31-68. | Numdam | MR | Zbl
,[12] -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 1-27. | Numdam | MR | Zbl
,[13] Fonctions -adiques, Séminaire Bourbaki, vol. 1998/99, exposé no 851, Astérisque 266 (2000), 21-58. | Numdam | MR | Zbl
,[14] -functions of elliptic curves with complex multiplication. I, Acta Arith. 17 (1970), 287-301. | Zbl
,[15] -functions of elliptic curves with complex multiplication. II, Acta Arith. 19 (1971), 311-317. | Zbl
,[16] Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3-80. | Numdam | Zbl
,[17] Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math. 135 (1999), 545-594. | Zbl
& ,[18] Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27-133; correction: idem, 297-299. | Zbl
& ,[19] -adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571. | Zbl
,[20] Elliptic polylogarithms: an analytic theory, Compositio Math. 106 (1997), 267-282. | Zbl
,[21] Towards multiple elliptic polylogarithm, preprint arXiv:math/0703237.
& ,[22] -adic Hecke series of imaginary quadratic fields, Mat. Sb. (N.S.) 95 (1974), 357-383. | Zbl
& ,[23] Formal cohomology. I, Ann. of Math. 88 (1968), 181-217. | Zbl
& ,[24] Fonctions -adiques des représentations -adiques, Astérisque 229 (1995). | Numdam | Zbl
,[25] -adic Fourier theory, Doc. Math. 6 (2001), 447-481. | MR | Zbl
& ,[26] Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3, Academic Press Inc., 1987. | MR | Zbl
,[27] Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163. | MR | Zbl
,[28] -adic elliptic polylogarithms and arithmetic applications, Thèse, Ben-Gurion University, 2009.
,[29] On base change theorem and coherence in rigid cohomology, Doc. Math. extra vol. (2003), 891-918. | MR | Zbl
,[30] Elliptic functions according to Eisenstein and Kronecker, Ergebn. Math. Grenzg. 88, Springer, 1976. | MR | Zbl
,[31] Weierstrass sigma function, http://mathworld.wolfram.com/WeierstrassSigmaFunction.html.
,[32] Realizations of polylogarithms, Lecture Notes in Math. 1650, Springer, 1997. | MR | Zbl
,[33] On -adic -functions for CM elliptic curves at supersingular primes, Mémoire, University of Tokyo, 2002.
,Cité par Sources :