Le but de cet article est de généraliser à certains groupes formels, commutatifs, de dimension un, de hauteur supérieure à un et définis sur l’anneau des entiers d’une extension finie de , quelques résultats sur l’interpolation -adique développés par Kubota, Leopoldt, Iwasawa, Mazur, Katz et d’autres, notamment pour le groupe multiplicatif , dont se sont servis ces auteurs pour la construction des fonctions -adiques.
The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of , some results on -adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group , and which they used to construct -adic -functions.
@article{AIF_1986__36_3_1_0, author = {Boxall, John L.}, title = {$p$-adic interpolation of logarithmic derivatives associated to certain {Lubin-Tate} formal groups}, journal = {Annales de l'Institut Fourier}, pages = {1--27}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {3}, year = {1986}, doi = {10.5802/aif.1056}, mrnumber = {88f:11113}, zbl = {0587.12007}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1056/} }
TY - JOUR AU - Boxall, John L. TI - $p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups JO - Annales de l'Institut Fourier PY - 1986 SP - 1 EP - 27 VL - 36 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1056/ DO - 10.5802/aif.1056 LA - en ID - AIF_1986__36_3_1_0 ER -
%0 Journal Article %A Boxall, John L. %T $p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups %J Annales de l'Institut Fourier %D 1986 %P 1-27 %V 36 %N 3 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1056/ %R 10.5802/aif.1056 %G en %F AIF_1986__36_3_1_0
Boxall, John L. $p$-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups. Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 1-27. doi : 10.5802/aif.1056. http://www.numdam.org/articles/10.5802/aif.1056/
[1] Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inventiones Math., 51 (1979), 29-59. | MR | Zbl
,[2] Division values in local fields, Inventiones Math., 53 (1979), 91-116. | MR | Zbl
,[3] Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). | MR | Zbl
,[4] Uber eine allgemeine Eigenschaft der rationale Entwicklungscoefficienten eines bestimmten Gattung analytischer Functionen, Crelle's J., 41 (1851) 368-372, (= collected works vol. 1, pp. 358-362, Springer-Verlag (1975)).
,[5] Eine p-adische Theorie der Zetawerte, Crelle's J, 214/215 (1964), 328-339. | MR | Zbl
and ,[6] Formal groups and p-adic interpolation, Astérisque, 41-42 (1977) 55-65. | Numdam | MR | Zbl
,[7] Divisibilities, congruences and Cartier duality, J. Fac. Sci. Univ. Tokyo, Ser. 1 A, 28 (1982), 667-678. | Zbl
,[8] Cyclotomic fields, Graduate texts in Math, Springer-Verlag (1978). | MR | Zbl
,[9] Eine p-adiche Theorie der Zetewerte II, Crelle's J., 274/275 (1975), 225-239.
,[10] On p-adic L-functions associated to elliptic curves, Inventiones Math., 56 (1980), 19-55. | MR | Zbl
,[11] One-parameter formal Lie groups over p-adic integer rings, Annals of Math., 80 (1964), 464-484. | MR | Zbl
,[12] Arithmetic of Weil curves, Inventiones Math., 25 (1974), 1-61. | MR | Zbl
and ,[13] Congruences for special values of L-functions of elliptic curves with complex multiplication, Inventiones Math., 71 (1983), 339-364. | MR | Zbl
,[14] Formes modulaires et fonction zêta p-adiques, In Springer Lecture Notes in Math., 350 (1973), 191-268. | MR | Zbl
,[15] p-divisible groups, Proc. Conf. On local fields, ed. T. Springer, Springer-Verlag, (1967), 153-183. | Zbl
,Cité par Sources :