@article{ASENS_1989_4_22_4_555_0, author = {Wingberg, Kay}, title = {On {Demuskin} groups with involution}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {555--567}, publisher = {Elsevier}, volume = {Ser. 4, 22}, number = {4}, year = {1989}, doi = {10.24033/asens.1593}, mrnumber = {90j:11121}, zbl = {0715.11064}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1593/} }
TY - JOUR AU - Wingberg, Kay TI - On Demuskin groups with involution JO - Annales scientifiques de l'École Normale Supérieure PY - 1989 SP - 555 EP - 567 VL - 22 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1593/ DO - 10.24033/asens.1593 LA - en ID - ASENS_1989_4_22_4_555_0 ER -
Wingberg, Kay. On Demuskin groups with involution. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 22 (1989) no. 4, pp. 555-567. doi : 10.24033/asens.1593. http://www.numdam.org/articles/10.24033/asens.1593/
[1] On a new Characterization of Demuškin Groups (Invent. Math., Vol. 73, 1983, pp. 413-418). | MR | Zbl
and ,[2] On ℤl-extensions of Algebraic Number fields (Ann. of Math., Vol. 98, 1973, pp. 246-326). | MR | Zbl
,[3] Freie Produkte pro-endlicher Gruppen und ihre Kohomologie (Archiv der Math., Vol. 22, 1971, pp. 337-357). | MR | Zbl
,[4] Einbettungsprobleme mit lokaler Vorgabe und freie Produkte lokaler Galoisgruppen (J. reine u. angew. Math., Vol. 259, 1973, pp. 1-47). | MR | Zbl
,[5] Structures de certains pro-p-groupes (Sém. Bourbaki, No. 252, 1962-1963, pp. 1-11). | Numdam | Zbl
,[6] Duality theorems for Γ-extensions of Algebraic Number Fields (Compositio Math., Vol. 55, 1985, pp. 333-381). | Numdam | MR | Zbl
,[7] Ein Analogon zur Fundamentalgruppe einer Riemann'schen Flöche im Zahlkörperfall (Invent. Math., Vol. 77, 1984, pp. 557-584). | MR | Zbl
,[8] Positiv-zerlegte p-Erweiterungen algebraischer Zahlkörper (J. reine u. angew. Math., Vol. 357, 1985, pp. 193-204). | MR | Zbl
,[9] Galois groups of Poincaré-type over Algebraic Number Fields, in : Y. IHARA, K. RIBET, J.-P. SERRE, Galois Groups over ℚ, Springer, New York, 1989. | MR | Zbl
,Cité par Sources :