K-théorie algébrique et représentations de groupes
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 9 (1976) no. 3, pp. 309-377.
@article{ASENS_1976_4_9_3_309_0,
     author = {Loday, Jean-Louis},
     title = {$K$-th\'eorie alg\'ebrique et repr\'esentations de groupes},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {309--377},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 9},
     number = {3},
     year = {1976},
     doi = {10.24033/asens.1312},
     mrnumber = {56 #5686},
     zbl = {0362.18014},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/asens.1312/}
}
TY  - JOUR
AU  - Loday, Jean-Louis
TI  - $K$-théorie algébrique et représentations de groupes
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1976
SP  - 309
EP  - 377
VL  - 9
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.24033/asens.1312/
DO  - 10.24033/asens.1312
LA  - fr
ID  - ASENS_1976_4_9_3_309_0
ER  - 
%0 Journal Article
%A Loday, Jean-Louis
%T $K$-théorie algébrique et représentations de groupes
%J Annales scientifiques de l'École Normale Supérieure
%D 1976
%P 309-377
%V 9
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.24033/asens.1312/
%R 10.24033/asens.1312
%G fr
%F ASENS_1976_4_9_3_309_0
Loday, Jean-Louis. $K$-théorie algébrique et représentations de groupes. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 9 (1976) no. 3, pp. 309-377. doi : 10.24033/asens.1312. http://www.numdam.org/articles/10.24033/asens.1312/

[1] M. Barratt, D. Kahn and S. Priddy, On Ω∞ S∞ and the Infinite Symmetric Group (Proc. Symp. in Pure Math., vol. 22, 1971, p. 217-220, Amer. Math. Soc.).

[2] H. Bass, Algebraic K-Theory. Benjamin, 1968. | MR | Zbl

[3] H. Bass, Unitary Algebraic K-Theory (Springer Lecture Notes, n° 343, 1973, p. 57-265). | MR | Zbl

[4] A. Borel, Cohomologie réelle stable de groupes S-arithmétiques classiques (C. R. Acad. Sc. Paris, t. 274, série A, 1972, p. 1700-1702). | MR | Zbl

[5] P. E. Conner and E.E. Floyd, The Relation of Cobordism to K-Theories (Springer Lecture Notes, n° 28, 1966). | MR | Zbl

[6] S. M. Gersten, K3 of a Ring is H3 of the Steinberg Group (Proc. Amer. Math. Soc., vol. 37, 1973, p. 366-368). | MR | Zbl

[7] S. M. Gersten, On the Spectrum of Algebraic K-Theory (Bull. Amer. Math. Soc., vol. 78, 1972, p. 216-219). | MR | Zbl

[8] A. E. Hatcher and J. Wagoner, Pseudo-isotopies of Compact Manifolds. (Astérisque, vol. 6, 1973, Soc. Math. de France). | Numdam | MR | Zbl

[9] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe (Comment. Math. Helv., vol. 14, 1941-1942, p. 257-309). | JFM | MR | Zbl

[10] M. Karoubi. Communication privée.

[11] M. Karoubi, K-théorie algébrique. Localisation des formes quadratiques (C.R. Acad. Sc. Paris, t. 279, série A, 1974, p. 487-490). | MR | Zbl

[12] M. Karoubi, Périodicité de la K-théorie hermitienne (Springer Lecture Notes, n° 343, 1973, p. 301-411). | MR | Zbl

[13] M. Karoubi et O. Villamayor, K-théorie algébrique et K-théorie topologique I, II (Math. Scand., vol. 28, 1971, p. 265-307 et 32, 1973, p. 57-86). | Zbl

[14] G. G. Kasparov, Sur l'invariance homotopique des nombres de Pontrjagin rationnels [Dokl. Akad. Nauk. S.S.S.R., vol. 190, 1970, p. 1022-1025 (en russe)]. | MR | Zbl

[15] M. Kervaire, Multiplicateurs de Schur et K-théorie. Essays on Topology and related topics, Springer, 1970, p. 212-225. | MR | Zbl

[16] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie (Astérisque, vol. 12, 1974, Soc. Math. de France). | Numdam | MR | Zbl

[17] J. L. Loday, Structure multiplicative en K-théorie algébrique (C.R. Acad. Sc. Paris, t. 279, série A, 1974, p. 321-324). | MR | Zbl

[18] G. Lusztig, Novikov's Higher Signature and Families of Elliptic Operators (J. Diff. Géom., vol. 7, 1972, p. 229-256). | MR | Zbl

[19] Y. Matsushima, On Betti Numbers of Compact, Locally Symmetric Riemanian Manifolds (Osaka Math. J., vol. 14, 1962, p. 1-20). | MR | Zbl

[20] J. Milnor, Introduction to Algebraic K-Theory (Annals of Math. Studies Princeton, vol. 72, 1971. | MR | Zbl

[21] J. Milnor, On Axiomatic Homology Theory (Pac. J. Math., vol. 12, 1962, p. 337-341). | MR | Zbl

[22] A. S. Miščenko, Homotopy Invariants of non Simply Connected Manifolds. Rationals Invariants (Math. of the U.R.S.S., vol. 4, 1970, p. 506-519). | Zbl

[23] S. P. Novikov, Hermitian Analogues of K-Theory I, II (Math. of the U.S.S.R., vol. 4, 1970, p. 257-292 et 479-505). | MR | Zbl

[24] S. P. Novikov, Analogues hermitiens de la K-théorie (Actes Congrès Intern. Math., t. II, 1970, p. 39-45). | MR | Zbl

[25] D. Quillen, Cohomology of Groups. (Actes Congrès Intern. Math., t. II, 1970, p. 47-51). | MR | Zbl

[26] D. Quillen, Higher Algebraic K-Theory I. (Springer Lecture Notes, n° 341, 1973, p. 85-147). | MR | Zbl

[27] J. L. Shaneson, Wall's Surgery Obstruction Groups for G × Z (Annals of Math., vol. 90, 1969, p. 296-334). | MR | Zbl

[28] N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951. | MR | Zbl

[29] I. A. Volodin, Groupes de Whitehead généralisés et pseudo-isotopie [Uspehi mat. Nauk., vol. 27, 1972, p. 229-230 (en russe)]. | MR | Zbl

[30] J. Wagoner, Delooping Classifying Spaces in Algebraic K-Theory. (Topology, vol. 11, 1972, p. 349-370). | MR | Zbl

[31] W. Waldhausen, Algebraic K-Theory of Generalised Free Products (preprint).

[32] C. T. C. Wall, Foundations of Algebraic L-Theory (Springer Lecture Notes, n° 343, 1973, p. 266-300). | MR | Zbl

[33] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1970. | MR | Zbl

[34] L. N. Wasserstein, Stability of Unitary and Orthogonal Groups Over Rings with Involution (Math. Sborn., vol. 81, 1970, p. 328-351 (en russe)). | Zbl

[35] G. W. Whitehead, Generalized Homology Theories (Trans. A.M.S., vol. 102, 1962, p. 227-283). | MR | Zbl

[36] J. H. C. Whitehead, Combinatorial Homotopy. (Bull. A.M.S., vol. 55, 1949, p. 213-245). | MR | Zbl

[37] J. H. C. Whitehead, Simple Homotopy Types. (Amer. J. Math., vol. 72, 1950, p. 1-57). | MR | Zbl

[38] J.-L. Loday, Higher Whitehead Groups and Stable Homotopy (Bull. A.M.S., vol. 82, 1976). | MR | Zbl

[39] F. T. Farrell and W. C. Hsiang, Manifolds with π1 = G×αT. (Amer. J. Math. vol. 95, 1973, p. 813-848). | MR | Zbl

Cité par Sources :