From a kinetic equation to a diffusion under an anomalous scaling
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1301-1322.

Une équation de Boltzmann linéaire est interprétée comme équation de Fokker-Planck associée à la densité de probabilité d’un processus de Markov (K(t),i(t),Y(t)) sur (𝕋 2 ×{1,2}× 2 ), où 𝕋 2 est le tore bidimensionnel. Le processus Markovien (K(t),i(t)) est ici un processus de sauts réversible avec des temps d’attente entre deux sauts à moyenne finie mais variance infinie. Y(t) est une fonctionnelle additive de K, définie par Y(t)= 0 t v(K(s))ds, où |v|1 pour k petit. Nous prouvons que le processus (NlnN) -1/2 Y(Nt) converge en distribution vers un mouvement brownien bidimensionnel. En conséquence, et moyennant un changement d’échelle approprié, la solution de l’équation de Boltzmann converge vers celle d’ une équation de diffusion.

A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K(t),i(t),Y(t)) on (𝕋 2 ×{1,2}× 2 ), where 𝕋 2 is the two-dimensional torus. Here (K(t),i(t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y(t) is an additive functional of K, defined as 0 t v(K(s))ds, where |v|1 for small k. We prove that the rescaled process (NlnN) -1/2 Y(Nt) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.

DOI : 10.1214/13-AIHP554
Classification : 82C44, 60K35, 60G70
Mots-clés : anomalous thermal conductivity, kinetic limit, invariance principle
@article{AIHPB_2014__50_4_1301_0,
     author = {Basile, Giada},
     title = {From a kinetic equation to a diffusion under an anomalous scaling},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1301--1322},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {4},
     year = {2014},
     doi = {10.1214/13-AIHP554},
     mrnumber = {3269995},
     zbl = {06377555},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/13-AIHP554/}
}
TY  - JOUR
AU  - Basile, Giada
TI  - From a kinetic equation to a diffusion under an anomalous scaling
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 1301
EP  - 1322
VL  - 50
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/13-AIHP554/
DO  - 10.1214/13-AIHP554
LA  - en
ID  - AIHPB_2014__50_4_1301_0
ER  - 
%0 Journal Article
%A Basile, Giada
%T From a kinetic equation to a diffusion under an anomalous scaling
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 1301-1322
%V 50
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/13-AIHP554/
%R 10.1214/13-AIHP554
%G en
%F AIHPB_2014__50_4_1301_0
Basile, Giada. From a kinetic equation to a diffusion under an anomalous scaling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1301-1322. doi : 10.1214/13-AIHP554. http://www.numdam.org/articles/10.1214/13-AIHP554/

[1] O. Aalen. Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete 38 (1977) 261-277. | MR | Zbl

[2] K. Aoki, J. Lukkarinen and H. Spohn. Energy transport in weakly anharmonic chain. J. Stat. Phys. 124 (2006) 1105-1129. | MR | Zbl

[3] G. Basile and A. Bovier. Convergence of a kinetic equation to a fractional diffusion equation. Markov Process. Related Fields 16 (2010) 15-44. | MR | Zbl

[4] G. Basile, C. Bernardin and S. Olla. Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287 (1) (2009) 67-98. | MR | Zbl

[5] G. Basile, S. Olla and H. Spohn. Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195 (1) (2009) 171-203. | MR | Zbl

[6] L. Bertini and B. Zegarlinsky. Coercive inequalities for Kawasaki dynamics. The product case. Markov Process. Related Fields 5 (1999) 125-162. | MR | Zbl

[7] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley-Interscience, New York, 1999. | MR | Zbl

[8] A. Dhar. Heat transport in low-dimensional systems. Adv. Phys. 57 (2008) 457-537. DOI:10.1080/00018730802538522.

[9] R. Durrett and S. Resnick. Functional limit theorems for dependent variables. Ann. Probab. 6 (1978) 829-849. | MR | Zbl

[10] A. Dvoretzky. Central limit theorems for dependent random variables. In Actes, Congrès int. Math. Tome 2 565-570. Gauthier-Villars, Paris, 1970. | MR | Zbl

[11] A. Dvoretzky. Asymptotic normality for sums of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probability 513-535. Univ. California Press, Berkeley, 1972. | MR | Zbl

[12] D. Freedman. Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971. | MR | Zbl

[13] D. Freedman. On tail probabilities for martingales. Ann. Probab. 3 (1975) 100-118. | MR | Zbl

[14] B. V. Gnedenko and A. N. Kolmogorov. Predel'nye raspredeleniya dlya summ nezavisimyh slučaĭnyh veličin. (Russian) [Limit Distributions for Sums of Independent Random Variables]. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1949. | MR

[15] M. Jara, T. Komorowski and S. Olla. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (6) (2009) 2270-2300. | MR | Zbl

[16] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau and A. A. Balandin. Dimensional crossover of thermal transport in few-layer graphene materials. Nature Materials 9 (2010) 555-558.

[17] I. S. Helland. Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9 (1982) 79-94. | MR | Zbl

[18] R. Lefevere and A. Schenkel. Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. 2006 (2006) L02001. DOI:10.1088/1742-5468/2006/02/L02001.

[19] S. Lepri, R. Livi and A. Politi. Thermal conduction in classical low-dimensional lattice. Phys. Rep. 377 (2003) 1-80. | MR

[20] T. M. Liggett. L 2 rates of convergence for attractive reversible nearest particle systems. Ann. Probab. 19 (1991) 935-959. | MR | Zbl

[21] J. Lukkarinen and H. Spohn. Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal. 183 (2007) 93-162. | MR | Zbl

[22] J. Lukkarinen and H. Spohn. Anomalous energy transport in the FPU-β chain. Comm. Pure Appl. Math. 61 (2008) 1753-1789. | MR | Zbl

[23] D. L. Mcleish. Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620-628. | MR | Zbl

[24] A. Mellet, S. Mischler and C. Mouhot. Fractional diffusion limit for collitional kinetic equations. Arch. Ration. Mech. Anal. 199 (2) (2011) 493-525. | MR | Zbl

[25] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl

[26] R. E. Peierls. Zur kinetischen Theorie der Waermeleitung in Kristallen. Ann. Phys. 3 (1929) 1055-1101. | JFM

[27] A. Pereverzev. Fermi-Pasta-Ulam β lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68 (2003) 056124. | MR

[28] M. Röckner and F.-Y. Wang. Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl

[29] S. J. Sepanski. Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law. J. Theoret. Probab. 10 (4) (1997) 153-1063. | MR | Zbl

[30] H. Spohn. The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124 (2-4) (2006) 1041-1104. | MR | Zbl

Cité par Sources :