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Abstract. A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process
(K(t), i(t), Y (t)) on (T2 ×{1,2}×R

2), where T2 is the two-dimensional torus. Here (K(t), i(t)) is an autonomous reversible jump
process, with waiting times between two jumps with finite expectation value but infinite variance. Y (t) is an additive functional
of K , defined as

∫ t
0 v(K(s))ds, where |v| ∼ 1 for small k. We prove that the rescaled process (N lnN)−1/2Y (Nt) converges

in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann
equation converges to the solution of a diffusion equation.

Résumé. Une équation de Boltzmann linéaire est interprétée comme équation de Fokker–Planck associée à la densité de probabilité
d’un processus de Markov (K(t), i(t), Y (t)) sur (T2 × {1,2} × R

2), où T
2 est le tore bidimensionnel. Le processus Markovien

(K(t), i(t)) est ici un processus de sauts réversible avec des temps d’attente entre deux sauts à moyenne finie mais variance infinie.
Y (t) est une fonctionnelle additive de K , définie par Y (t) = ∫ t

0 v(K(s))ds, où |v| ∼ 1 pour k petit. Nous prouvons que le processus

(N lnN)−1/2Y (Nt) converge en distribution vers un mouvement brownien bidimensionnel. En conséquence, et moyennant un
changement d’échelle approprié, la solution de l’équation de Boltzmann converge vers celle d’ une équation de diffusion.
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1. Introduction

One of the most interesting aspects of the problem of energy transport in a solid is an anomalous thermal conduction
observed in low dimensional materials (see [8,19] for a general review; see also [16] for experimental data for graphene
materials). So far very few results are obtained by a rigorous analysis of microscopic dynamics, and even crucial
points, such as the exponent of the divergence of thermal conductivity in dimension one, are still debated.

The theoretical approach proposed by Peierls [26] intended to compute thermal conductivity in analogy with the
kinetic theory of gases, conforming to the idea that at low temperatures the lattice vibrations, responsible of energy
transport, can be described as a gas of interacting particles (phonons). The time-dependent distribution function of
phonons solves a Boltzmann type equation, and an explicit expression for the thermal conductivity is obtained, which
is of the form of the kinetic theory κ = ∫

dkCkv
2
kτk . Here Ck is the heat capacity of phonons with wave number k, vk

is their velocity and τk is the average time between two collisions. A goal of the kinetic approach is the prediction that
the mean free path λk = vkτk and thus thermal conductivity are infinite in dimension one when the phonon momentum
is conserved.
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Over the last years, several papers are devoted to achieve phononic Boltzmann-type equations from microscopic
dynamics (see [30] for main ideas and tools). In [2,18,22,27] a kinetic limit is performed for chains of an-harmonic
oscillators, and in [21] a linear Boltzmann equation is rigorously derived for the harmonic chain of oscillators with
random masses. In [5] the authors consider a system of harmonic oscillators in d dimensions, perturbed by a weak
conservative stochastic noise. The following linear Boltzmann-type equation is deduced for the energy density dis-
tribution, over the space R

d , of the phonons, characterized by a vector valued wave-number k ∈ T
d (d-dimensional

torus)

∂tuα(t, r, k) + v(k) · ∇uα(t, r, k)

= 1

d − 1

∑
β �=α

∫
Td

dk′R
(
k, k′)[uβ

(
t, r, k′) − uα(t, r, k)

]
, (1)

α = 1, . . . , d , d ≥ 2. Equation in dimension one is similar, except for the mixing of the components. The kernel R is
not negative and symmetric. Despite the exact expressions of R and v (the velocity), the crucial features are that v is
finite for small k, i.e. |v| → 1 as |k| → 0, while R behaves like |k|2 for small k, and like |k′|2 for small k′. Naïvely, it
means that phonons with small wave numbers travel with finite velocity, but they have low probability to be scattered,
thus one expects that the their mean free paths have a macroscopic length (ballistic transport). This is in accordance
with rigorous results showing that thermal conductivity is infinite in dimension one and two for a system of harmonic
oscillators perturbed by a conservative noise ([4,5]).

A probabilistic interpretation of (1) provides an exact statement of that intuition. The equation describes the evolu-
tion of the probability density of a Markov process (K(t), i(t), Y (t)) on (Td × {1, . . . , d} × R

d), where (K(t), i(t))

is a reversible jump process and Y(t) is a vector-valued additive functional of K , namely Y(t) = ∫ t

0 dsv(Ks). K and
i can be interpreted, respectively, as the wave number and the “polarization” of a phonon, while Y(t) denotes its
position. In order to investigate the property of the process Y(t), one can look at the Markov chain {Xi} on T

d given
by the sequence of states visited by K(t), and at the waiting times {τ(Xi)}, where τ(Xi) is the (random) time that the
process spends at the ith visited state. The vector-valued function Sn = ∑n

i=1 τ(Xi)v(Xi) gives the value of Y at the
time of the nth jump Tn = ∑n

i=1 τ(Xi), then Y(t) is just the piecewise interpolation of Sn at the random times Tn.
The behaviour of the rate R implies that the stationary distribution of the chain is of the form π(dk) ∼ |k|2 dk

for k small, and since the average of τ(k) goes like |k|−2 for k 	 1, the tail distribution of the random variables
{τ(Xi)v(Xi)} behaves like

π
[∣∣τ(Xi)v(Xi)

∣∣ > λ
] ∼ 1

λ1+d/2
∀d ≥ 1. (2)

Therefore, in dimension one and two the variables τ(Xi)v(Xi) have infinite variance with respect to the stationary
measure. We remark that the variance has the same expression of the thermal conductivity obtained in [5].

The one dimensional case is discussed in [3], where the authors prove that the rescaled process N−2/3Y(N ·)
converges in distribution to a symmetric Lévy process, stable with index 3/2. Convergence of finite dimensional
marginals has been proven earlier in [15]. Here we consider the other critical case d = 2. Sn is now a sum of variables
with tail distribution ∼ 1

λ2 , which means that if they were independent, they would be in the domain of attraction of a
multivariate normal distribution. Looking at the behaviour of the variance

π
[(

τ(Xi)vα(Xi)
)21{|τ(Xi)vα(Xi)|≤

√
λ}

] ∼ lnλ, α ∈ {1,2},

it turns out that the proper scaling contains an extra factor (lnn)1/2. The rescaled process (n lnn)−1/2Snt has a central
part, given by the sum of truncated variables τ(Xi)vα(Xi)1{|τ(Xi)vα(Xi)|≤√

n}, with finite variance and an extremal

part that goes to zero in probability, due to the extra term (lnn)−1/2. This is a standard argument used for sums of
i.i.d. random variables with tail distribution (2), introduced for the first time by Kolmogorov and Gnedenko in [14],
that we adapt to the case of dependent variables.

Then we are reduced to the problem of convergence of a sum of centered, dependent, bounded random variables
to a Wiener process. We propose two different approaches. In Section 5.1, we will use an abstract theorem due to
Durrett and Resnick [9], based on the invariance principle for martingale difference arrays with bounded variables
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(Freedman, [12] and [13]), together with a random change of time (see, for example, Helland [17] and Billingsley
[7]). The underlying central limit theorem for martingale difference arrays can be found in Dvoretzky [10,11] (see
also [17,23] and references therein). The alternative proof, in Section 6, is based on the convergence of the moments
to the moments of a Brownian motion, under some asymptotic factorization conditions, and it uses combinatorial
techniques. In this case we will only show convergence of the finite dimensional marginals. The multidimensional
generalization is based a Cramér–Wold argument (see for example [1,7,17,29]).

Convergence of (n lnn)−1/2Sn· to a two-dimensional Wiener process is in the Skorokhod J1-topology. Moreover,
since the random times Tn are sums of positive variables with finite expectation, one can prove, using the arguments
in [3], that (n lnn)−1/2Y(n·) converges to a two dimensional Wiener process in the uniform topology.

Finally we show that the properly rescaled solution of the linear Boltzmann equation in dimension two converges
to diffusion. The proof includes a result on the algebraic L2-convergence rate of the semi-group (Section 4.4). The
key point is the derivation of a Nash type inequality which provides an estimate for convergence rates slower than
exponential ([6,20,28]). The diffusion coefficient is given by an infrared regularization of the thermal conductivity
obtained in [4,5], with a proper renormalization (13).

Convergence of solutions of linear kinetic equations to a diffusion under an anomalous scaling was also proved by
Mellet et al. [24], using an analytical approach. We remark that they assume a collision frequency strictly positive,
while in our case it is zero in k = 0.

The case d ≥ 3 can be easily treated with the same strategy. In particular the rescaled solution of the Boltzmann
equation converges to a diffusion equation, with a diffusion coefficient given by the thermal conductivity obtained in
[4,5].

2. The model

We consider Eq. (1) in dimension two, namely

∂tuα(t, r, k) + v(k) · ∇uα(t, r, k)

=
∑
β �=α

∫
Td

dk′R
(
k, k′)[uβ

(
t, r, k′) − uα(t, r, k)

]
, (3)

∀α = 1,2, t ≥ 0, x ∈R
2, k ∈ T

2, with a (vector valued) velocity v and a scattering kernel R given by:

vα(k) = sin(πkα) cos(πkα)

(
∑2

β=1 sin2(πkβ))1/2
, ∀k ∈ T

2,∀α ∈ {1,2}, (4)

R
(
k, k′) = 16

2∑
α=1

sin2(πkα) sin2(πk′
α

)
, ∀k, k′ ∈ T

2. (5)

We denote with (K(t), i(t)) the jump process with values in T
2 × {1,2}, defined by the generator

Lf (α, k) =
∑
β �=α

∫
T2

dk′R
(
k, k′)[f (

β, k′) − f (α, k)
]
, (6)

with f : {1,2} × T
2 → R continuous on T

2. The process waits in the state (k, i) an exponential random time τ with
parameter Φ(k, i)

Φ(k, i) =
2∑

j=1

(1 − δi,j )

∫
Td

dk′R
(
k, k′) = 8

2∑
α=1

sin2(πkα), (7)

then it jumps to another state (j, k′) with probability ν[i, k; j,dk′] = (1 − δi,j )P (k,dk′), where

P
(
k,dk′) := Φ(k)−1R

(
k, k′)dk′ = 2

∑
α sin2(πkα) sin2(πk′

α)∑
β sin2(πkβ)

dk′. (8)
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Observe that the two processes K(t) and i(t) are independent. Disregarding the time, the stochastic sequence {Xn}n≥0
of states visited by K(t) is a Markov chain with value in T

2, with probability kernel P(k,dk′), which is strictly
positive. Moreover, there exists a probability measure λ on T

2, strictly positive on open sets, such that for any k ∈ T
2 it

holds P(k, ·) ≥ c0λ(·) for some c0 > 0. This implies the Doeblin condition for kernel P . In view of [25], Thm. 16.0.2,
the discrete time Markov chain {Xn}n≥0 is uniform ergodic. That is there exists a probability π on T

2 such that
P n(k, ·) converges to π in total variation uniformly with respect to the initial condition k. Moreover, π is strictly
positive on open sets. By direct computation π(dk) = 1

8Φ(k)dk.
The process Y(t), with value in R

2, is an additive functional of K(t)

Y (t) = Y(0) +
∫ t

0
dsv(Ks)ds. (9)

We choose Y(0) = 0. In order to investigate its properties, we define two functions of the Markov chain {Xn}n≥0, the
clock, Tn, with values in R+ and the position, Sn, with values in R

2

Tn =
n−1∑
�=0

e�Φ(X�)
−1, Sn =

n−1∑
�=0

e�v(X�)Φ(X�)
−1.

Here {e�}�≥0 are i.i.d. exponential random variables with parameter 1, and we take S0 = 0. The clock Tn is the time of
the n – the jump of the process K(t) and it is a sum of positive random variables with finite expectation with respect
to the invariant measure, i.e. Eπ [e1Φ(X1)

−1] = 1. Sn is a two-components vector which gives the value of Y(t) at
time Tn, i.e. Sn = Y(Tn). It is a sum of centered random vectors whose components show a tail behavior given in
(2). Moreover, the covariance matrix of each of these vectors is diagonal. By denoting with T −1 the right-continuous
inverse function of Tn, i.e. T −1(t) := inf{n :Tn ≥ t}, we can represent process Y(t) as follows:

Y(t) = ST −1(t)−1� + v(XT −1(t)−1�)(t − TT −1(t)−1�),

where ·� denotes the lower integer part. In particular, Y(t) is the (vector valued) function defined by linear interpola-
tion between its values Sn at the random points Tn.

3. Main results

For every N ≥ 2, t ≥ 0, we define the rescaled processes

TN(t) = 1

N
TNt�, T −1

N (t) = 1

N
T −1(Nt), (10)

ZN(t) = 1√
N lnN

SNt� + (
Nt − Nt�) 1√

N lnN
v(XNt�−1). (11)

Observe that ZN is a two-dimensional continuous vector defined by linear interpolation between its values 1√
N lnN

Sn

at the points n/N .
We assume that the initial distribution μ of the process Kt is not concentrated in k = 0, namely ∀ε > 0 exists δ

such that

μ
[|k| < δ

]
< ε. (12)

This includes all the absolutely continuous measures w.r.t. Lebesgue measure and delta distributions δk0(dk), with
k0 ∈ T

2/{0}.
Let us denote with

σ 2 := lim
N→∞

1

lnN
Eπ

[∣∣∣∣e1v1(X1)

Φ(X1)

∣∣∣∣
2

1{|e1v1(X1)/Φ(X1)|≤
√

N}
]
. (13)
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We remark that this limit exists and one can prove by direct computation that it is equal to 1
64

1
2π

. By symmetry, in this
definition we can replace v1(X1) with v2(X1) . We use the notation W̄σ for the vector valued process W̄σ = (W 1

σ ,W 2
σ ),

where W 1
σ and W 2

σ are independent Wiener processes with marginal distribution Wα
σ (t) − Wα

σ (s) ∼ N (0, σ 2(t − s))

∀0 ≤ s < t , ∀α = 1,2.

Theorem 3.1. Let ZN be the process defined in (11). Then for any 0 < T < ∞, {ZN(t)}0≤t≤T converges to the
two-dimensional Wiener process {W̄σ (t)}0≤t≤T . Convergence is in distribution on the space of continuous functions
C([0,T ],R2) equipped with the uniform topology.

Then we will prove that {T −1
N (t)}t∈[0,T ] converges in distribution to the function t . Combining these two results,

we can show that ZN ◦ T −1
N converges in distribution to W̄σ . Observing that ZN ◦ T −1

N is the process

YN(t) = 1

(N lnN)1/2

∫ Nt

0
dsv(Ks),

this implies our main theorem.

Theorem 3.2. For any 0 < T < ∞, {YN(t)}0≤T converges to the two-dimensional Wiener process {W̄σ (t)}0≤t≤t≤T .
Convergence is in distribution on the space of continuous functions C([0,T ],R2) equipped with the uniform topology.

Finally, we will use the previous result to show that the rescaled solution of the Boltzmann equation converges to
a diffusion. We denote with uN the two dimensional vector-valued measure defined as

uN(t, k, x) := u
(
Nt, k, (N lnN)1/2x

)
, ∀t ≥ 0,∀k ∈ T

2,∀x ∈R
2,

where u is solution of (3) in d = 2 with initial condition u(0, k, x) = u0(k, (N lnN)−1/2x). Given a function f ∈
S(R2 ×T

2) – the Schwarz space, for any a ≥ 1 we define the norm

‖f ‖Aa
=

(∫
R2×T2

dp dk
∣∣f̂ (p, k)

∣∣a)1/a

,

where f̂ is the Fourier transform of f in the first variable. We denote with Aa the completion of S in the norm ‖ · ‖Aa
.

Observe that A2 = L2(R2 ×T
2).

Theorem 3.3. Assume that u0 ∈ L2(R2 × T
2;R2) ∩ Aa , with a > 2. Then, ∀t ∈ (0,T ], uN(t, ·, ·) converges in

L2(R2 ×T
2;R2) – weak to ū(t, ·), which solves the following diffusion equation

∂t ū(t, r) = 1

2
σ 2�ū(t, r),

(14)

ūα(0, r) = 1

2

∑
β=1,2

∫
T2

dku
β

0 (r, k) ∀α ∈ 1,2,∀r ∈ R
2.

4. Sketch of the proof

We present an outline of the proof of the main theorems. Details are postponed in Section 5.

4.1. Theorem 3.1

Define the two-dimensional random vector

ψn := Φ(Xn)
−1v(Xn), n ∈N0. (15)
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We will denote with ψα
n , α = 1,2, the α-component of ψn.

We decompose ZN , defined in (11) in two parts, i.e. ZN = Z>
N + Z<

N , where ∀t ≥ 0, ∀α = 1,2

Zα>
N (t) = (N lnN)−1/2

Nt�−1∑
n=0

enψ
α
n 1{en|ψα

n |>√
N}

+ (N lnN)−1/2eNt�ψαNt�1{eNt�|ψαNt�|>
√

N}
(
Nt − Nt�),

Zα<
N (t) = (N lnN)−1/2

Nt�−1∑
n=0

enψ
α
n 1{en|ψα

n |≤√
N}

+ (N lnN)−1/2eNt�ψαNt�1{eNt�|ψαNt�|≤
√

N}
(
Nt − Nt�).

At first we will show that Z>
N

P→ 0 when N → ∞. It is enough to show that for every unitary vector λ := (λ1, λ2)

λ1Z
1>
N + λ2Z

2>
N

P→ 0, N → ∞.

This is stated in the next lemma.

Lemma 4.1. For every δ > 0

lim
N→∞P

[
sup

t∈[0,T ]

∣∣λ1Z
1>
N (t) + λ2Z

2>
N (t)

∣∣ > δ
]

= 0, (16)

∀λ ∈ R
2 such that |λ| = 1.

Proof. For every λ ∈R
2 with |λ| = 1

P

[
sup

t∈[0,T ]

∣∣λ1Z
1>
N (t) + λ2Z

2>
N (t)

∣∣ > δ
]

≤ P

[
sup

t∈[0,T ]
{∣∣Z1>

N (t)
∣∣ + ∣∣Z2>

N (t)
∣∣} > δ

]

≤
∑

α=1,2

P

[
sup

t∈[0,T ]

∣∣Zα>
N (t)

∣∣ >
δ

2

]
.

For every t ∈ [0,T ], ∀α = 1,2

∣∣Zα>
N (t)

∣∣ ≤ 1√
N lnN

NT �−1∑
n=0

en

∣∣ψα
n

∣∣1{en|ψα
n |>√

N}.

Then, by Chebyshev’s inequality

P

[
sup

t∈[0,T ]

∣∣Zα>
N (t)

∣∣ >
δ

2

]

≤ 2

δ

1√
N lnN

NT �−1∑
n=0

E
[
en

∣∣ψα
n

∣∣1{en|ψα
n |>√

N}
]

≤ 2

δ

1√
lnN

C0T ,
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where in the last inequality we used the fact that ∀n ≥ 0, ∀α = 1,2

E
[
en

∣∣ψα
n

∣∣1{en|ψα
n |>√

N}
] ≤ C0

1√
N

,

as one can easily compute, using the upper bound for P m (29) and the fact that |k|2|ψα(k)| is finite for every k ∈ T
2,

∀α = 1,2. �

Let us consider Z<
N . As first step, we will prove that for every unitary vector λ ∈ R

2, 〈Z<
N,λ〉 := λ1Z

1<
N +λ2Z

2<
N ⇒

Wσ , where Wσ is a one dimensional Wiener process such that Wσ (t)−Wσ (s) ∼N (0, σ 2(t − s)). This is stated in the
following proposition, the proof is postponed to the next section.

Proposition 4.2. Fix T > 0. Then as N → ∞, for every λ ∈ R
2, with |λ| = 1, 〈Z<

N,λ〉 converges weakly to the
one dimensional Wiener process Wσ . Convergence is in distribution on the space of continuous functions on [0,T ]
equipped with the uniform topology.

Now we have to show that Z<
N converges to W̄σ . We follow the approach of [29] (see the proof of Lemma 4). The

tightness of the sequence {Z<
N }N≥1 follows from the tightness of the sequence {〈Z<

N,λ〉}N≥1, for every unitary vector
λ. Thus we only have to prove the convergence of the finite dimensional distribution. In particular, we have to show
the following:

(i) Z<
N(t) − Z<

N(s) ⇒ W̄σ (t) − W̄σ (s), ∀0 ≤ s ≤ t ≤ T ;
(ii) Z<

N(s) and (Z<
N(t) − Z<

N(s)) are independent, as N → ∞, ∀0 ≤ s ≤ t ≤ T .

In order to verify the first condition, we observe that the convergence of the process 〈Z<
N(·), λ〉 to Wσ (·) im-

plies that (〈Z<
N(s), λ〉, 〈Z<

N(t), λ〉) ⇒ (Wσ (s),Wσ (t)), for every s, t ≥ 0. But (Wσ (s),Wσ (t)) has the same law of
(〈W̄σ (s), λ〉, 〈W̄σ (t), λ〉), then

〈
Z<

N(t), λ
〉 − 〈

Z<
N(s), λ

〉 ⇒ 〈
W̄σ (t), λ

〉 − 〈
W̄σ (s), λ

〉
for all ∀0 ≤ s ≤ t ≤ T , ∀λ ∈R

2 with |λ| = 1, and this implies (i).
In order to verify condition (ii) it is sufficient to prove that Z<

N(s) and Z<
N(t) − Z<

N(s) are asymptotically jointly
Gaussian and uncorrelated. This is stated in the next lemma.

Lemma 4.3. For all λ, μ ∈R
2

〈
Z<

N(s), λ
〉 + 〈(

Z<
N(t) − Z<

N(s)
)
,μ

〉 ⇒ N
(
0, σ 2{|λ|2s + |μ|2(t − s)

})
, (17)

∀0 ≤ s < t ≤ T .

We postpone the proof in Section 5.2.

4.2. Proof of Theorem 3.2

Converge in probability of T −1
N to the function χ , where χ(t) = t , in a compact [0,T ], is proved as in [3], see

Lemma 8.1 and Proposition 8.2. Then

(
ZN,T −1

N

) ⇒ (W̄σ ,χ)

(Theorem 3.9 in Billingsley [7]) and therefore ZN ◦ T −1
N ⇒ W̄σ ◦ χ (Billingsley [7], Lemma p. 151).
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4.3. Proof of Theorem 3.3

Given a vector valued, real function J ∈ S(R2;C(T2)), we define the Fourier transform in the first variable

Ĵ (p, k) =
∫
R2

due−ip·uJ (u, k), ∀p ∈R
2, k ∈ T

2,

and we introduce the norm on S(R2;C(T2))

‖J‖2
B2

=
∫
R2

dp
(

sup
k∈T2

∣∣Ĵ (p, k)
∣∣)2

.

We use a probabilistic representation of the solution of the rescaled Boltzmann equation, namely〈
J,uN(t)

〉
=

∑
α=1,2

∫
R2×T2

dp dkĴα(p, k)∗E(α,k)

[
û0(p,α(Nt),K(Nt))e

−ip·YN (t)
]
,

where E(α,k)[·] is the expectation starting from the state (α, k), and F̂ (p,β, k) := F̂β(p, k). The measure π̃ on {1,2}×
T

2, given by π̃(α,dk) = 1
2 dk, is invariant for the (reversible) process {(α(t),K(t)), t ≥ 0} on ({1,2} ×T

2).

Let us choose a sequence of real numbers {θN }N≥1 such that θN → ∞ for N ↑ ∞ and θN√
N lnN

→ 0. We show that

we can replace YN(t) with YN(t − θN t/N). Fix R > 0. Then∣∣∣∣ ∑
α=1,2

∫
R2×T2

dp dkĴα(p, k)∗

×E(α,k)

[
û0(p,α(Nt),K(Nt))

(
e−ip·YN (t) − e−ip·YN (t−(θN/N)t)

)]∣∣∣∣
≤

∫
R2

dp sup
k∈T2

∣∣Ĵ (p, k)
∣∣1{|p|≤R}

×
∫
T2

dk
∣∣E(α,k)

[
û0(p,α(Nt),K(Nt))

(
e−ip·YN (t) − e−ip·YN (t−(θN/N)t)

)]∣∣
+ 2

∫
R2

dp sup
k∈T2

∣∣Ĵ (p, k)
∣∣1{|p|>R}

∫
T2

dkE(α,k)

[∣∣û0(p,α(Nt),K(Nt))
∣∣]. (18)

Since

∣∣e−ip·YN (t) − e−ip·YN (t−(θN/N)t)
∣∣ ≤ C0

θN√
N lnN

|p|T ,

using Cauchy–Schwarz we have that the r.h.s. of (18) is bounded by

C0R
θN√

N lnN
T ‖J‖B2‖u0‖A2 + C1‖J‖B2

(∫
R2×T2

dp dk|û0|21{|p|>R}
)1/2

.

We send N → ∞ and then R → ∞.
Denoting with Ûp(αt ,Kt ) = û0(p,αt ,Kt ) − π̃ [û0](p), ∀p ∈ R

2, ∀t > 0, we have

E(α,k)

[(
û0(p,α(Nt),K(Nt)) − π̃ [û0](p)

)
e−ip·YN (t−(θN/N)t)

]
= E(α,k)

[
e−ip·YN (t−(θN/N)t)SθN t Ûp(αt−θN t ,Kt−θN t )

]
,
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where {St }t≥0 is the semigroup associated to the generator (6). Thus, using Cauchy–Schwarz,∣∣∣∣ ∑
α=1,2

∫
R2×T2

dp dkĴα(p, k)∗

×E(α,k)

[(
û0(p,α(Nt),K(Nt)) − π̃ [û0](p)

)
e−ip·YN (t−(θN/N)t)

]∣∣∣∣
≤ 2‖J‖A2

(∫
R2

dp‖SθN t Ûp‖2
L2

π̃

)1/2

. (19)

In order to prove that the last expression converges to zero, we use the following lemma on the L2-convergence.

Lemma 4.4. For every f ∈ L2
π̃

with π̃ [f ] = 0 the following inequality holds:

‖Stf ‖2
L2

π̃

≤ C‖f ‖2
L

q

π̃

1

t1−2/q
, q > 2, (20)

for every t ≥ 0.

We postpone the proof in Section 4.4. Then∫
R2

dp‖SθN t Ûp‖2
L2

π̃
≤ C

1

(θN t)1−2/q

∫
R2

dp‖Ûp‖2
L

q

π̃

and the r.h.s. of (19) is bounded by

C1‖J‖A2‖u0‖Aq

1

(θN t)(q−2)/(2q)
, q > 2,

which converges to zero for N → ∞. Finally, we can replace E(α,k)[e−ipYN(t)] with exp{− 1
2 |p|2σ 2t}. We have

∣∣∣∣∑
α

∫
R2×T2

dp dkĴα(p, k)π̃
[
û0(p)

]
E(α,k)

[
e−ipYN(t) − e−(1/2)|p|2σ 2t

]∣∣∣∣
≤ C0‖J‖B2

(∫
R2

dp
∣∣π̃[

û0(p)
]∣∣21{|p|≥R}

)1/2

+
∫
R2

dp sup
k∈T2

∣∣Ĵ (p, k)
∣∣∣∣π̃[

û0(p)
]∣∣1{|p|≤R}

×
∫
T2

dk
∣∣E(α,k)

[
e−ipYN(t) − e−(1/2)|p|2σ 2t

]∣∣, (21)

for any R > 0. By Theorem 3.2, the second integral on the r.h.s. converges to zero for N → ∞, ∀t ∈ [0,T ], then we
send R → ∞.

We conclude the proof by observing that, since

∥∥Stu
N(t)

∥∥2
L2(R2×T2)

≤ ‖u0‖2
L2(R2×T2)

, ∀N ≥ 1,∀t ≥ 0,

then there exists ũ(t) ∈ L2(R2 × T
2) such that uN(t) weakly converges to ũ(t) as N → ∞. Moreover, we have

just proved that for every J ∈ S 〈J,uN(t)〉 → 〈J, ū(t)〉 as N → ∞, for any t > 0, where ū(t) is solution of (14).
Therefore, using the fact that the Schwarz space S is dense in L2, we have uN(t) → ū(t) weakly in L2(R2 ×T

2).
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4.4. Algebraic convergence rate

Suppose that, for every f ∈ L2
π̃

such that π̃ [f ] = 0, the following weak Poincaré inequality holds:

‖f ‖2
L2

π̃

≤ C0

ra−1
E(f,f ) + r‖f ‖2

L
q

π̃

, a > 1, q > 2,∀r > 0, (22)

where E(f,f ) is the Dirichelet form. By optimizing on r , one gets the following Nash type inequality:

‖f ‖2
L2

π̃

≤ C
[
E(f,f )

]1/a(‖f ‖2
L

q

π̃

)1−1/a
, q > 2, a > 1.

The L
q

π̃
norm is defined in a dense subset of L2

π̃
. Moreover, the L

q

π̃
norm is monotone under the semi-group {St }t≥0,

namely ‖Stf ‖2
L

q

π̃

≤ ‖f ‖2
L

q

π̃

∀t ≥ 0, for every q ≥ 1 (contractivity property of a Markov semi-group). Therefore, we

can apply Theorem 2.2 of [20] (see also [28] and [6]) and we get the following algebraic rate of convergence

‖Stf ‖2
L2

π̃

≤ C‖f ‖2
L

q

π̃

1

t1/(a−1)
, q > 2,

which holds for every f ∈ L2
π̃

. Then, in order to prove Lemma 4.4, it suffices to show that (22) holds.
The Dirichelet form has the following expression:

E(f,f ) = 1

2

∑
α=1,2

∑
β �=α

∫
T2

dkf (α, k)

∫
T2

dk′R
(
k, k′)[f (

β, k′) − f (α, k)
]

= 1

2

∑
α=1,2

∫
T2×T2

dkΦ(k)f (α, k)[1 − P ]f (α, k),

where P is the operator acting the vector-valued functions f :T2 →R
2

Pf (α, k) =
∑
β �=α

∫
T2

P
(
k,dk′)f (

β, k′), ∀α = 1,2.

Here P(k,dk′) is the probability kernel defined in (8). The corresponding invariant measure is π(α,dk) = 1
16Φ(k)dk.

Since the operator P is compact with a positive kernel P(k,dk′), using the same arguments of [15], Lemma 3.2, one
can show that 0 is a simple eigenvalue for 1 − P , and therefore the following gap estimate is obtained

E(f,f ) ≥ c
∑

α=1,2

∫
T2

dkΦ(k)
∣∣f (α, k) − π[f ]∣∣2

, (23)

with c > 0 and π[f ] the expectation value with respect to the measure π(α,dk). We define the set Aδ = {k ∈ T
2 : |k| >

δ}, with δ ∈ (0,1), and we denote by Ac
δ its complement. Then the r.h.s. of (23) is bounded from below by

c
∑

α=1,2

∫
T2

dkΦ(k)1{Aδ}
∣∣f (α, k) − π[f ]∣∣2

≥ c1 inf{k∈Aδ}
Φ(k)

∑
α=1,2

∫
Aδ

dk
∣∣f (α, k) − π[f ]∣∣2

.

We observe that∑
α=1,2

∫
Aδ

dk
∣∣f (α, k) − π[f ]∣∣2 ≥ ‖f 1{Aδ}‖2

L2
π̃

− 2π[f ]π̃ [f 1{Aδ}]

= ‖f 1{Aδ}‖2
L2

π̃

+ 2π[f ]π̃ [f 1{Ac
δ}]
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where in the last equality we use the fact that π̃ [f ] = 0. Since inf{k∈Aδ} Φ(k) = c1δ
2, we obtain

‖f 1{Aδ}‖2
L2

π̃

≤ C

δ2
E(f,f ) − 2π[f ]π̃ [f 1{Ac

δ}]

≤ C

δ2
E(f,f ) + C′‖f ‖2

L
p

π̃

(
π̃

[
Ac

δ

])1−1/p
, (24)

with p > 1. Now we observe that

‖f ‖2
L2

π̃

= ‖f 1{Aδ}‖2
L2

π̃

+ ‖f 1{Ac
δ}‖2

L2
π̃

≤ ‖f 1{Aδ}‖2
L2

π̃

+ ‖f ‖2
L2b

π̃

(
π̃

[
Ac

δ

])1−1/b
, b > 1

and since π̃ [Ac
δ] = δ2, finally we get

‖f ‖2
L2

π̃

≤ C

δ2
E(f,f ) + C′(δ2)1−1/b‖f ‖2

L2b
π̃

, b > 1.

Setting r = C′δ2(1−1/b) and q = 2b, we get the weak Poincaré inequality (22) with a − 1 = q
q−2 .

Remark. We can extend this proof to the general case of the process in d-dimensions. We get the following algebraic
convergence rate:

‖Stf ‖2
L2

π̃

≤ C‖f ‖2
L

p

π̃

1

t (d/2)(1−2/q)
, q > 2,∀d ≥ 1. (25)

5. Details

We start with some preliminary results on P m, the mth convolution integral of P , the probability kernel defined in (8).
By direct computation

P m
(
k,dk′) = 2∑2

γ=1 sin2(πkγ )

2∑
α=1

2∑
β=1

sin2(πkα)A
(m)
α,β sin2(πk′

β

)
dk′, (26)

where, ∀α,β ∈ {1,2},
A

(1)
α,β = δα,β, A

(m+1)
α,β = [

am
]
α,β

∀m ≥ 1. (27)

Here a is a 2 × 2 real matrix with elements

a11 = a22 = 2
∫
T2

dk
sin4(πk1)∑
α sin2(πkα)

,

a12 = a21 = 2
∫
T2

dk
sin2(πk1) sin2(πk2)∑

α sin2(πkα)
.

Observe that the condition∫
T2

P m
(
k,dk′) = 1 ∀m ≥ 1,

implies

2∑
β=1

A
(m)
α,β = 1, ∀α = 1,2,∀m ≥ 1, (28)
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and thus

P m
(
k,dk′) ≤ 2

∑
β=1,2

sin2(πk′
β

)
dk′, ∀k ∈ T

2,∀m ≥ 1. (29)

5.1. Proof of Proposition 4.2

Fix λ := (λ1, λ2) with λ2
1 + λ2

2 = 1. We will follow the strategy of Durrett and Resnick [9] to prove that 〈Z<
N,λ〉 :=

λ1Z
1<
N + λ2Z

2<
N converges weakly to a Wiener process Wc. They use a result of Freedman [12], pp. 89–93, on

martingale difference arrays with uniformly bounded variables. We start with the following

Definition 5.1. A collection of random variables {ξN,i}, N ≥ 1, i ≥ 1 and σ -fields FN,i , i ≥ 0, N ≥ 1 is a martingale
difference array if

(i) for all N ≥ 1, FN,i , i ≥ 0 is a nondecreasing sequence of σ -fields;
(ii) for all N ≥ 1, i ≥ 1, ξN,i is FN,i measurable;

(iii) for all N ≥ 1, E[ξN,i |FN,i−1] = 0 a.s.

We introduce the following notations:

〈λ, Ψ̄N,m〉 := λ1
emψ1

m√
N lnN

1{em|ψ1
m|≤√

N}

+ λ2
emψ2

m√
N lnN

1{em|ψ2
m|≤√

N}, (30)

∀N ≥ 2,m ≥ 0, and, for N = 1, m ≥ 0

〈λ, Ψ̄1,m〉 = λ1emψ1
m1{em|ψ1

m|≤1} + λ2emψ2
m1{em|ψ2

m|≤1}.

For all N ≥ 1, m ≥ 0, we denote with FN,m the σ -field generated by {X0, . . . ,Xm}×{e0, . . . , em}, where {Xm}m≥0
is the Markov chain with value in T

2. Then we observe that {〈λ, Ψ̄N,m〉,FN,m}N≥1,m≥1 is a martingale difference
array. In particular, condition (iii) of Definition 5.1 can be easily checked using the explicit form of probability kernel
P [k,dk′].

By definition, the variables 〈λ, Ψ̄N,m〉 are uniformly bounded in m, i.e. for all N ≥ 1 |〈λ, Ψ̄N,m〉| ≤ εN , ∀m ≥ 0,
where εN = 2√

lnN
if N ≥ 2, and ε1 = 2. In particular εN ↓ 0 when N → ∞.

For every N ≥ 1, j ≥ 1, let us define

〈λ,SN,j 〉 =
j∑

m=1

〈λ, Ψ̄N,m〉, (31)

〈λ,VN,j 〉 =
j∑

m=1

E
[〈λ, Ψ̄N,m〉2|FN,m−1

]
. (32)

We will prove in Lemma 5.2 that P[limj→∞〈λ,VN,j 〉 = ∞] = 1, for all N ≥ 1, i.e. the martingale difference array
{〈λ, Ψ̄N,m〉,FN,m}N≥1,m≥0 satisfies the hypotheses of Theorem 2.1 in [9]. Thus, setting

jN,λ(t) = sup
{
j |〈λ,VN,j 〉 ≤ t

}
,

we get that 〈λ,SN,jN,λ(·)〉 converges weakly as a sequence of random elements of D[0,T ] to a standard Wiener process
W .

Now let φN,λ(t) = 〈λ,VN,Nθ�〉, ∀t ∈ [0,T ]. By definition

jN,λ ◦ φN,λ(t) = Nt�.
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In order to prove that φN,λ converges in probability to the function φ :φ(t) = σ 2t , it suffices to show that φN,λ(t)
P→

σ 2t , ∀t ∈ [0,T ], since φ is continuous and φN,λ is monotone. That will be proved in Lemma 5.2. Then(〈λ,SN,jN,λ
〉, φN,λ

) ⇒ (W,φ)

(Billingsley [7], Theorem 3.9), and therefore

〈λ,SN,jN,λ
〉 ◦ φN,λ ⇒ W ◦ φ

(Billingsley [7], Lemma p. 151).
Finally,

〈λ,SN,N ·�〉 = 〈λ,SN,jN (φN (·))〉 ⇒ W 2
σ ,

where convergence is in distribution on the space D[0,T ] equipped with the Skorokhod J1-topology.
The process 〈λ, S̃N (t)〉 := ∑Nt�−1

m=0 〈λ, Ψ̄N,m〉 converges also to Wσ . For every N ≥ 2, 〈Z<
N,λ〉 = λ1Z

1<
N + λ2Z

2<
N

is the continuous function defined by linear interpolation between its values 〈λ, S̃N (m/N)〉 at points m/N . The two
sequences {〈λ, S̃N(t)〉,0 ≤ t ≤ T } and {〈ZN(θ), λ〉 0 ≤ t ≤ T } are asymptotically equivalent, i.e. if either converges
in distribution as N → ∞, then so does the other. Convergence of 〈Z<

N,λ〉 to Wσ is in distribution on the space of
continuous functions equipped with the uniform topology.

We conclude this subsection with the main lemma.

Lemma 5.2. For every N ≥ 1, for every unitary vector λ ∈R
2,

P

[
lim

j→∞〈λ,VN,j 〉 = ∞
]

= 1. (33)

Moreover, for every δ > 0, for every unitary vector λ ∈R
2,

lim
N→∞P

[∣∣〈λ,VN,Nθ�〉 − σ 2θ
∣∣ > δ

] = 0, (34)

∀θ ∈ [0,T ].

Proof. Fix λ ∈ R
2, with |λ|2 = 1. ∀N ≥ 2, we define fN :T2 → R

2

fN(k) =
∫ ∞

0
dze−z

×
∫
T2

P
(
k,dk′)( ∑

α=1,2

λα

zψα(k′)√
N lnN

1{z|ψα(k′)|≤√
N}

)2

. (35)

Using (26), we get fN(k) ≥ C0/N , with 0 ≤ C0 < ∞. Since

fN(Xm) = E
[〈Ψ̄N,m+1, λ〉2|Fm

]
, ∀m ≥ 0

then, for all N ≥ 1, 〈λ,VN,j 〉 ≥ jC0N
−1 which goes to infinity for j → ∞, a.s.

Now we focus on (34). By Chebychev inequality, for every N ≥ 1

P
[∣∣〈λ,VN,Nt�〉 − σ 2t

∣∣ > δ
]

≤ P

[∣∣∣∣∣
Nt�∑
n=1

(
E

[〈Ψ̄N,n, λ〉2|Fn−1
] − σ 2

N

)∣∣∣∣∣ > δ − 1

N

]

≤ 1

δ̃2
N

Nt�∑
n=1

E

[(
E

[〈Ψ̄N,n, λ〉2|Fn−1
] − σ 2

N

)2]
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+ 1

δ̃2
N

Nt�∑
n=1

∑
m �=n

E

[(
E

[〈Ψ̄N,n, λ〉2|Fn−1
] − σ 2

N

)

×
(
E

[〈Ψ̄N,m,λ〉2|Fm−1
] − σ 2

N

)]
, (36)

where δ̃N = δ − N−1. By (29), we get

E
[〈Ψ̄N,m,λ〉2|Fm−1

] = fN(Xm−1) ≤ C0

N
, (37)

thus the first sum on the r.h.s. of (36) is bounded by δ̃−2
N C1T/N , with C1 finite. Let us consider the second sum on the

r.h.s. of (36). For n > m

E
[
E

[〈Ψ̄N,n, λ〉2|Fn−1
]
E

[〈Ψ̄N,m,λ〉2|Fm−1
]]

= E
[
E

[〈Ψ̄N,m,λ〉2|Fm−1
]
E

[
E

[〈Ψ̄N,n, λ〉2|Fn−1
]|Fm−1

]]
.

We set

gn−m
N (Xm−1) := E

[
E

[〈Ψ̄N,n, λ〉2|Fn−1
]|Fm−1

]
,

where, for every l ≥ 1, N ≥ 1, the function g :T2 → R
2 is given by

gl
N (k) =

∫
T2

dk′P l
(
k,dk′)fN

(
k′),

with fN defined in (35). By (29) and (37) we get

gl
N (k) ≤ C0

N
, ∀k ∈ T

2,∀l ≥ 1. (38)

We fix M , 1 ≤ M < N and we get

Nt�∑
n=1

∑
m �=n

E
[
E

[〈Ψ̄N,n, λ〉2|Fn−1
]
E

[〈Ψ̄N,m,λ〉2|Fm−1
]]

= 2
M∑

m=1

Nt�∑
n=m+1

E
[
fN(Xm−1)g

n−m
N (Xm−1)

]

+ 2
Nt�∑

m=M+1

m+M∑
n=m+1

E
[
fN(Xm−1)g

n−m
N (Xm−1)

]

+ 2
Nt�∑

m=M+1

Nt�∑
n=m+M+1

E
[
fN(Xm−1)g

n−m
N (Xm−1)

]
.

By (38), the first and the second sum on the r.h.s. are bounded form above by CT M/N , with C finite. We denote by
μP m−1 the convolution integral of the initial measure μ and the probability P m−1. For every l ≥ 1,

E
[
fN(Xm−1)g

l
N (Xm−1)

] = Eπ

[
fN(Xm−1)g

l
N (Xm−1)

]
+

∫
T2

[
μP m−1(dk) − π(dk)

]
fN(k)gl

N (k)
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where the last term is bounded by C′N−2
∫
T2 |μP m−1(dk) − π(dk)|. Moreover, for every l ≥ 1

Eπ

[
fN(Xm−1)g

l
N (Xm−1)

]
=

∫
T2

π(dk)fN(k)

∫
T2

dk′P l
(
k,dk′)fN

(
k′)

≤
(∫

T2
π(dk)fN(k)

)2

+ C′

N2

∫
T2

∣∣μP m−1(dk) − π(dk)
∣∣.

We get

Nt�∑
n=1

∑
m �=n

E
[
E

[〈Ψ̄N,n, λ〉2|Fn−1
]
E

[〈Ψ̄N,m,λ〉2|Fm−1
]]

≤ Nt�(Nt� − 1
)(
Eπ

[〈Ψ̄N,1, λ〉2])2

+ CT M

N
+ C′T

∫
T2

∣∣μP M(dk) − π(dk)
∣∣,

with C and C′ finite. In the same way one can prove that

Nt�∑
n=1

E
[〈Ψ̄N,n, λ〉2] ≤ Nt�Eπ

[〈Ψ̄N,n, λ〉2]

+ CT M

N
+ C′T

∫
T2

∣∣μP M(dk) − π(dk)
∣∣,

with some C, C ′ finite, and finally we get

P
[∣∣〈λ,VN,Nt�〉 − σ 2t

∣∣ > δ
] ≤ 1

δ̃2
N

CT M

N

+ 1

δ̃2
N

C′T
∫
T2

∣∣μP M(dk) − π(dk)
∣∣,

where C, C ′ are finite. (34) is proved by sending M,N → ∞ in such a way that M/N → 0. �

5.2. Proof of Lemma 4.3

We use the central limit theorem for martingale difference array ([10], Theorem 1; see also [11,17]) which states the
follows: fix t > 0, and let {ξN,i,FN,i}N≥1,i≥0 be a martingale difference array such that

(i)
Nt�∑
i=1

E
[
ξ2
N,i |FN,i−1

] P→ ct, N ↑ ∞;

(ii)
Nt�∑
i=1

E
[
ξ2
N,i1{|ξN,i |>ε}|FN,i−1

] P→ 0, N ↑ ∞,∀ε > 0.

Then

Nt�∑
i=1

ξN,i ⇒ N (0, ct).
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By definition of Z<
N , ∀λ ∈ R

2

〈
λ,Z<

N(t)
〉 = 〈λ,SN,Nt�〉 + (

Nt − Nt�)〈λ, Ψ̄Nt�〉, (39)

∀t ∈ [0,T ], where 〈λ,SN,·〉 is defined in (31). The rightmost term in (39) goes to zero in probability by Chebyshev’s
inequality. We fix λ,μ ∈R

2 and 0 ≤ s < t ≤ T , and we define the following array of variables:

ξ̃N,i =
{ 〈λ, Ψ̄N,i〉 if 0 ≤ i ≤ Ns� − 1,

〈μ, Ψ̄N,i〉 if Ns� ≤ i,∀N ≥ 1.

We denote with FN,i the σ -algebra generated by (X0, . . . ,Xi)×(e0, . . . , ei), ∀N ≥ 1, i ≥ 0. Then {ξ̃N,i ,FN,i}N≥1,i≥0
is a martingale difference array. In particular, since |〈ν, Ψ̄N,i〉| ≤ 2(lnN)−1/2 for every i ≥ 1, for every unitary vector
ν ∈R

2, it follows that ∀ε > 0, there exists N̄ such that |ξ̃N,i | < ε, ∀N ≥ N̄ , ∀i ≥ 1. Therefore condition (ii) is satisfied.
Moreover, with similar arguments of the proof of (34), one can prove that

Nt�∑
i=1

E
[
ξ̃2
N,i |FN,i−1

] P→ σ 2|λ|2s + σ 2|μ|2(t − s),

with σ 2 defined in (13). Thus

Ns�−1∑
i=1

〈λ, Ψ̄N,i〉 +
Nt�−1∑
i=Ns�

〈μ, Ψ̄N,i〉 =
Nt�∑
i=1

ξ̃N,i

⇒ N
(
0, σ 2{|λ|2s + |μ|2(t − s)

})
.

6. An invariance principle for centered, bounded random variables

In this section we present an alternative proof of Proposition 4.2. We start with a CLT for arrays of centered, uniformly
bounded random variables, based on the convergence of the moments to the moments of a normal distribution. Some
asymptotic factorization conditions, holding on average, are required. Then we will use it to show that for every
unitary vector λ ∈ R

2, 〈λ,Z<
N(t)〉 = λ1Z

1<
N (t) + λ2Z

2<
N (t) ⇒ Wσ (t), ∀t ∈ [0T ].

Proposition 6.1 (CLT). Let {X̄n,i i = 1, . . . , n, n ≥ 1} be an array of centered random variables and suppose that
exists εn ↓ 0 such that |X̄n,i | ≤ εn, for all n and i. Let S̄n = ∑n

i=1 X̄n,i . Then S̄n ⇒N (0, c), if the following conditions
hold:

(i) ∀� ≥ 1, for every sequence of positive integers {p1, . . . , p�} such that ∃pj = 1, j ∈ {1, . . . , �}
n∑

i1 �=i2 �=···�=i�

E
[
(X̄n,i1)

p1 · · · (X̄n,i� )
p�

] n↑∞
−→ 0

(ii) ∀� ≥ 1

n∑
i1 �=i2 �=···�=i�

E
[
(X̄n,i1)

2 · · · (X̄n,i� )
2] n↑∞

−→ c� .

Proof. The proof is based on the convergence of the moments of S̄n. Of course E[S̄n] = 0, while for the second
moment we have

E
[
(S̄n)

2] =
n∑

i=1

E
[
(X̄i,n)

2] +
n∑

i �=j

E[X̄i,nX̄j,n] → c,
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since the second sum goes to zero for condition (i).
Now let us compute the third moment:

E
[
(S̄n)

3] =
n∑

i=1

E
[
(X̄i,n)

3] + 3
n∑

i �=j

E
[
(X̄i,n)

2X̄j,n

] +
n∑

i �=j �=k

E[X̄i,nX̄j,nX̄k,n].

The last two sums go to zero for condition (i). For the first sum we have∣∣∣∣∣
n∑

i=1

E
[
(X̄i,n)

3]∣∣∣∣∣ ≤
n∑

i=1

E
[
(X̄i,n)

2|X̄i,n|
] ≤ εn

n∑
i=1

E
[
(X̄i,n)

2] ∼ εnc
n→∞−→ 0 .

In the general case, the mth moment E[(S̄n)
m] is made up of terms of the form

A(p1, . . . , p�)

n∑
i1 �=i2···�=i�

E
[
(X̄i1,n)

p1 · · · (X̄i�,n)
p�

]
, 1 ≤ � ≤ m

with {pi, i = 1, . . . , �} positive integers such that p1 + p2 + · · · + p� = m. Here A(p1, . . . , p�) is the number of all
possible partitions of m objects in � subsets made up of p1, . . . , p� objects. Since all sums containing a singleton (i.e.
there is a pi = 1) go asymptotically to zero, we consider just the cases with pi ≥ 2, ∀i = 1, . . . , �. Observe that this
implies in particular that � ≤ m/2. In this case∣∣∣∣∣

n∑
i1 �=i2···�=i�

E
[
(X̄i1,n)

p1 · · · (X̄i�,n)
p�

]∣∣∣∣∣ ≤ εm−2�
n

n∑
i1 �=i2···�=i�

E
[
(X̄i1,n)

2 · · · (X̄i�,n)
2]

∼ εm−2�
n c�,

which goes to zero if � �= m/2. Therefore all odd moments are asymptotically negligible, while for even moments
asymptotically

E
[
(S̄n)

2k
] ∼ Ak

n∑
i1 �=···�=ik

E
[
(X̄i1,n)

2 · · · (X̄ik,n)
2] → Akc

k,

where Ak is the number of all possible pairings of 2k objects, namely

Ak = (2k − 1)(2k − 3) · · ·1 = (2k − 1)!!.
Finally

E
[
(S̄n)

m
] n→∞−→

{
0 m odd
(m − 1)!!cm/2 m even,

which are the moments of a Gaussian variable N (0, c). �

Let us consider the array of variables {〈λ, Ψ̄N,m〉,N ≥ 2,m ≥ 0} defined in (30), (15), with λ ∈ R
2 unitary vector.

We have

〈
λ,Z<

N(t)
〉 = Nt�−1∑

m=0

〈λ, Ψ̄N,m〉 + (
Nt − Nt�〈λ, Ψ̄N,Nt�〉

)
,

∀t ∈ [0,T ], ∀N ≥ 2, where the rightmost term goes to zero in probability by Chebyshev’s inequality. By definition,
〈λ, Ψ̄N,m〉 ≤ 2√

lnN
for every m ≥ 0, ∀N ≥ 2. Moreover, since ψ(k) is an odd function, and the probability kernel
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P(k,dk′) has a density which is even in both k and k′, the array satisfies condition (i). In order to check condition (ii),
we will use the following lemma.

Lemma 6.2. For every � ≥ 1, for every sequence (m1, . . . ,m�) such that m1 ≥ 0, mi ≥ 1, for every N ≥ 2

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+···+m�

〉2] ≤ c�
0

N�
(40)

with c0 finite, ∀t ∈ [0,T ].

Proof. By definition

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+···+m�

〉2]
=

∫ ∞

0
dz1e−z1

∫
T2

μP m1(dk1)
〈
λ, Ψ̄N(k1, z1)

〉2 ∫
· · ·

×
∫ ∞

0
dzme−zm

∫
T2

P m�(km−1, km)
〈
λ, Ψ̄N(km, zm)

〉2

≤ 2�

(∫ ∞

0
dze−z

∫
T2

π(k)
〈
λ, Ψ̄N(k, z)

〉2)�

,

where in the last inequality we used (29). We conclude the proof by observing that

lim
N→∞N

∫ ∞

0
dze−z

∫
T2

π(k)
〈
λ, Ψ̄N(k, z)

〉2 = σ 2,

with σ defined in (13). �

We observe that∑
i1 �=i2 �=···�=i�

∈{0,...,Nt�−1}

E
[〈λ, Ψ̄N,i1〉2 · · · 〈λ, Ψ̄N,i�〉2]

= �!
∑
m1≥0

∑
m2,...,m�≥1

m1+···+m�≤Nt�−1

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+···+m�

〉2].

We split the sum on m1 in two part, namely
∑M−1

m1=0 +∑
m1≥M , with 0 < M < Nt� − 1. Using (40) and the relation

lim
N→∞

∑
m1,...,mk≥1

m1+···+mk≤N

N−k = 1

k! ,

we get that for every � ≥ 1, N ≥ 2, ∀t ∈ [0,T ]

�!
M−1∑
m1=0

∑
m2,...,m�≥1

m1+···+m�≤Nt�−1

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+···+m�

〉2]

≤ C�T �−1 M

N
.
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By repeating this procedure for all the sums, we have∑
i1 �=i2 �=···�=i�

∈{0,...,Nt�−1}

E
[〈λ, Ψ̄N,i1〉2 · · · 〈λ, Ψ̄N,i�〉2]

= �!
∑

m1,...,m�≥M

m1+···+m�≤Nt�−1

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+..+m�

〉2] + E�(M,N), (41)

with E�(M,N) ≤ C̃�T �−1M/N , ∀� ≥ 1.
Observe that for every m ≥ 2∫

T2
P m

(
k,dk′)〈λ, Ψ̄N

(
k′, z

)〉2 =
∫
T2

π
(
dk′)〈λ, Ψ̄N

(
k′, z

)〉2
+

∫
T2

[
P m−1(k,dk̃) − π(dk̃)

] ∫
T2

P
(
k̃,dk′)〈λ, Ψ̄N

(
k′, z

)〉2
,

where, using (29),

sup
k∈T2

∫
T2

∣∣P m−1(k,dk̃) − π(dk̃)
∣∣ ∫

T2
P

(
k̃,dk′)〈λ, Ψ̄N

(
k′, z

)〉2

≤ C0

N
sup
k∈T2

∫
T2

∣∣P m−1(k,dk̃) − π(dk̃)
∣∣.

Thus, thanks to (40), for every (m1, . . . ,m�) with mi ≥ M , i = 1, . . . , �,

E
[〈λ, Ψ̄N,m1〉2 · · · 〈λ, Ψ̄N,m1+···+m�

〉2]
=

(∫ ∞

0
dze−z

∫
T2

π
(
dk′)〈λ, Ψ̄N

(
k′, z

)〉2)�

+ ẽ�(M,N), (42)

where

ẽ�(M,N) ≤ �
C0

N�
sup

m≥M−1
sup
k∈T2

∫
T2

∣∣P m(k,dk̃) − π(dk̃)
∣∣.

Finally, by (41) and (42) we get∑
i1 �=i2 �=···�=i�

∈{0,...,Nt�−1}

E
[〈λ, Ψ̄N,i1〉2 · · · 〈λ, Ψ̄N,i�〉2]

= �!
∑

m1,...,m�≥M

m1+···+m�≤Nt�−1

(
Eπ

[〈λ, Ψ̄N,1〉2])� +R�(M,N),

where

R�(M,N) ≤ C�T �

(
M

N
+ sup

m≥M−1
sup
k∈T2

∫
T2

∣∣P m(k,dk̃) − π(dk̃)
∣∣). (43)

In the limit M,N → ∞ such that M
N

→ 0, R�(M,N) → 0 and

�!
∑

m1,...,m�≥M

m1+···+m�≤Nt�−1

(
Eπ

[〈λ, Ψ̄N,1〉2])� → (
σ 2)�

t�,



1320 G. Basile

with σ defined in (13). Thus the array of variables {〈λ, Ψ̄N,m〉,N ≥ 2,m ≥ 0} satisfies also condition (ii), and we get

S̄N (t) :=
Nt�−1∑

n=0

〈λ, Ψ̄N,n〉 N↑∞→ N
(
0, σ 2t

)
,

∀t ∈ [0,T ], ∀λ ∈R
2 such that |λ| = 1.

We can easily adapt the proof and show that ∀0 ≤ s < t ≤ T

S̄N (t) − S̄N (s) → N
(
0, σ 2(t − s)

)
.

In order to prove the convergence of the finite dimensional marginal to the Wiener process Wσ , we have to show that
∀n ≥ 2, for every partition 0 ≤ t1 < · · · < tn ≤ T the variables S̄N (t1), S̄N (t2) − S̄N (t1), . . . , S̄N (tn) − S̄N (tn−1) are
asymptotically jointly Gaussian and uncorrelated. This is stated in the next lemma.

Lemma 6.3. For every n ≥ 1, ∀α(n) := (α1, . . . , αn) ∈R
n such that |α(n)| = 1

n∑
k=1

αk

(
S̄N (tk) − S̄N (tk−1)

) ⇒N
(

0, σ 2
n∑

k=1

α2
k (tk − tk−1)

)
, (44)

∀0 = t0 < t1 < · · · < tn ≤ T .

Proof. The case n = 1 is proved. Let us consider the case n = 2. Fixed (α1, α2) ∈R
2, with α2

1 + α2
2 = 1, we consider

the following array of variables

ξN,m = (α11{m≤Nt1�−1} + α21{m≥Nt1�})〈λ, Ψ̄N,m〉, ∀N ≥ 2,∀m ≥ 0,

which are uniformly bounded by 2√
N

and satisfy condition (i). Let us define, ∀t ≥ 0, m ≥ 0, N ≥ 2,

aN,m(t) := α11{m≤Nt�−1} + α21{m≥Nt�},

which is uniformly bounded by 1. In order to check condition (ii), we repeat the steps done for S̄N (t) and we get∑
i1 �=i2 �=···�=i�

∈{0,...,Nt2�−1}

E
[
ξ2
N,i1

· · · ξ2
N,i�

]

= �!
∑

0≤i1<···<i�≤Nt2�−1

aN,i1(t1)
2 · · ·aN,i�(t1)

2(
Eπ

[〈λ, Ψ̄N,1〉2])�

+R�(M,N),

with R�(M,N) the same of (43). By direct computation

�!
∑

0≤i1<···<i�≤Nt2�−1

aN,i1(t1)
2 · · ·aN,i�(t1)

2

=
�∑

k=0

�!
∑

1≤i1<···<ik≤Nt1�
(α1)

2k
∑

Nt1�<ik+1<···<i�≤Nt2�
(α2)

2(�−k),

then using

∑
1≤i1<···<ik≤N

N−k N↑∞→ 1

k! , N�
(
Eπ

[〈λ, Ψ̄N,1〉2])� N↑∞→ (
σ 2)�

,
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with σ defined in (13), we get that condition (ii) is satisfied, i.e.

lim
N→∞

∑
i1 �=i2 �=···�=i�

∈{0,...,Nt2�−1}

E
[
ξ2
N,i1

· · · ξ2
N,i�

]

= (
σ 2)�

�∑
k=0

�!
k!(� − k)!α

2k
1 tk1 α

2(�−k)
2 (t2 − t1)

�−k

= (
σ 2)�[

α2
1 t1 + α2

2(t2 − t1)
]�

,

thus

α1S̄N (t1) + α2
[
S̄N (t2) − S̄N (t1)

] =
Nt2�−1∑

m=0

ξN,m

→ N
(
0,

(
σ 2)[α2

1 t1 + α2
2(t2 − t1)

])
.

The proof can be repeated for n ≥ 3, in that case we find the multinomial formula for a polynomial with n terms to
the power �. �
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