Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur
We show that the only flow solving the stochastic differential equation (SDE) on
Mots-clés : stochastic flows, coalescing flow, Arratia flow or brownian web, brownian motion with oblique reflection on a wedge
@article{AIHPB_2014__50_4_1323_0, author = {Le Jan, Yves and Raimond, Olivier}, title = {Three examples of brownian flows on $\mathbb {R}$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1323--1346}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP541}, mrnumber = {3269996}, zbl = {06377556}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP541/} }
TY - JOUR AU - Le Jan, Yves AU - Raimond, Olivier TI - Three examples of brownian flows on $\mathbb {R}$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1323 EP - 1346 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP541/ DO - 10.1214/13-AIHP541 LA - en ID - AIHPB_2014__50_4_1323_0 ER -
%0 Journal Article %A Le Jan, Yves %A Raimond, Olivier %T Three examples of brownian flows on $\mathbb {R}$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1323-1346 %V 50 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP541/ %R 10.1214/13-AIHP541 %G en %F AIHPB_2014__50_4_1323_0
Le Jan, Yves; Raimond, Olivier. Three examples of brownian flows on $\mathbb {R}$. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1323-1346. doi : 10.1214/13-AIHP541. http://www.numdam.org/articles/10.1214/13-AIHP541/
[1] Brownian motion on the line. Ph.D. dissertation, Univ. Wisconsin, Madison, 1979.
.[2] On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations with jumps. Preprint, 2011. Available at arXiv:1108.4016.
, and .[3] The Skorokhod problem in a time-dependent interval. Stochastic Process. Appl. 119 (2009) 428-452. | MR | Zbl
, and .[4] Lenses in skew Brownian flow. Ann. Probab. 32 (2004) 3085-3115. | MR | Zbl
and .[5] The Brownian web. Proc. Natl. Acad. Sci. USA 99 (2002) 15888-15893 (electronic). | MR | Zbl
, , and .[6] The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857-2883. | MR | Zbl
, , and .[7] Discrete approximations to solution flows of Tanaka's SDE related to Walsh Brownian motion. In Séminaire de Probabilités XLIV 167-190. Lecture Notes in Math. 2046. Springer, Heidelberg, 2012. | MR | Zbl
.[8] Stochastic flows related to Walsh Brownian motion. Electron. J. Probab. 16 (2011) 1563-1599 (electronic). | MR | Zbl
.[9] A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab. 38 (2010) 1062-1105. | MR | Zbl
and .[10] Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springerg, New York, 1991. | MR | Zbl
and .[11] Integration of Brownian vector fields. Ann. Probab. 30 (2002) 826-873. | MR | Zbl
and .[12] Flows, coalescence and noise. Ann. Probab. 32 (2004) 1247-1315. | MR | Zbl
and .[13] Stochastic flows on the circle. In Probability and Partial Differential Equations in Modern Applied Mathematics 151-162. IMA Vol. Math. Appl. 140. Springer, New York, 2005. | MR | Zbl
and .[14] Flows associated to Tanaka's SDE. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 21-34. | MR | Zbl
and .[15] Flots stochastiques d'opérateurs dirigés par des bruits gaussiens et poissonniens. Ph.D. dissertation, Univ. Paris-Sud, 2007.
.[16] Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250-1310. | MR | Zbl
and .[17] Global -solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137-176. | MR | Zbl
and .[18] The solution of the perturbed Tanaka equation is pathwise unique. Preprint, 2011. Available at arXiv:1104.0740. | MR | Zbl
.[19] Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934-992 (electronic). | MR | Zbl
.[20] Nonclassical stochastic flows and continuous products. Probab. Surv. 1 (2004) 173-298 (electronic). | MR | Zbl
.[21] Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985) 405-443. | MR | Zbl
and .[22] Reflected Brownian motion in a wedge: Semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985) 161-176. | MR | Zbl
.Cité par Sources :