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Abstract. We show that the only flow solving the stochastic differential equation (SDE) on R

dXt = 1{Xt>0}W+(dt) + 1{Xt<0} dW−(dt),

where W+ and W− are two independent white noises, is a coalescing flow we will denote by ϕ±. The flow ϕ± is a Wiener solution
of the SDE. Moreover, K+ = E[δϕ±|W+] is the unique solution (it is also a Wiener solution) of the SDE

K+
s,t f (x) = f (x) +

∫ t

s
Ks,u

(
1R+f ′)(x)W+(du) + 1

2

∫ t

s
Ks,uf ′′(x)du

for s < t , x ∈ R and f a twice continuously differentiable function. A third flow ϕ+ can be constructed out of the n-point motions
of K+. This flow is coalescing and its n-point motion is given by the n-point motions of K+ up to the first coalescing time, with
the condition that when two points meet, they stay together. We note finally that K+ = E[δϕ+|W+].

Résumé. Nous montrons que le seul flot solution de l’équation différentielle stochastique (EDS) sur R

dXt = 1{Xt>0}W+(dt) + 1{Xt<0} dW−(dt),

où W+ et W− sont deux bruits blancs indépendants, est un flot coalescent que nous noterons ϕ±. Le flot ϕ± est une solution
Wiener de l’équation. De plus, K+ = E[δϕ±|W+] est l’unique solution (c’est aussi une solution Wiener) de l’EDS

K+
s,t f (x) = f (x) +

∫ t

s
Ks,u

(
1R+f ′)(x)W+(du) + 1

2

∫ t

s
Ks,uf ′′(x)du

pour tout s < t , x ∈ R et f une fonction deux fois continûment mesurable. Un troisième flot ϕ+ peut être construit à partir des
mouvements à n points de K+. Ce flot est coalescent et ses mouvements à n points sont donnés par les mouvements à n points de
K+ jusqu’au premier temps de coalescence, avec comme condition que lorsque deux points se rencontrent, ils restent confondus.
On remarquera finalement que K+ = E[δϕ+|W+].
MSC: Primary 60H25; secondary 60J60
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1. Introduction

Our purpose in this paper is to study two very simple one dimensional SDE’s which can be completely solved,
although they do not satisfy the usual criteria. This study is done in the framework of stochastic flows exposed in
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[11–13] and [20] (see also [16] and [17] in an SPDE setting). There is still a lot to do to understand the nature of these
flows, even if one consider only Brownian flows, i.e. flows whose one-point motion is a Brownian motion. As in our
previous study of Tanaka’s equation (see [14] and also [7,8]), it is focused on the case where the singularity is located
at an interface between two half lines (see also [4] and references therein where a flow related to the skew Brownian
motion is studied and also [18] where pathwise uniqueness is proved for a perturbed Tanaka’s SDE). It should be
generalizable to various situations. The first SDE represents the motion of particles driven by two independent white
noises W+ and W−. All particles on the positive half-line are driven by W+ and therefore move parallel until they
hit 0. W− drives in the same way the particles while they are on the negative side. What should happen at the origin is
a priori not clear, but we should assume particles do not spend a positive measure of time there. The SDE can therefore
be written

dXt = 1{Xt>0}W+(dt) + 1{Xt<0}W−(dt)

and will be shown to have a strong, i.e. σ(W+,W−) (Wiener) measurable, solution which is a coalescing flow of
continuous maps. This is the only solution in any reasonable sense, even if one allows an extension of the probability
space, i.e. other sources of randomness than the driving noises, to define the flow.

If we compare this result with the one obtained in [14] for Tanaka’s equation, in which the construction of the
coalescing flow requires an additional countable family of independent Bernoulli variable attached to local minima
of the noise W , the Wiener measurability may seem somewhat surprising. A possible intuitive interpretation is the
following: In the case of Tanaka’s equation, if we consider the image of zero, a choice has to be made at the beginning
of every excursion outside of zero of the driving reflected Brownian motion. In the case of our SDE, an analogous
role is played by excursions of W+ and W−. These excursions have to be taken at various levels different of 0, but the
essential point is that at given levels they a.s. never start at the same time. And if we could a priori neglect the effect
of the excursions of height smaller than some positive ε, the motion of a particle starting at zero would be perfectly
determined.

The second SDE is a transport equation, which cannot be induced by a flow of maps. The matter is dispersed
according to the heat equation on the negative half line and is driven by W+ on the positive half line. A solution is
easily constructed by integrating out W− in the solution of our first equation. We will prove that also in this case,
there is no other solution, even on an extended probability space.

The third flow is not related to an SDE. It is constructed in a similar way as Arratia flow (see [1,5,6,12,20]) is
constructed: the n-point motion is given by independent Brownian motions that coalesce when they meet (without
this condition the matter is dispersed according to the heat equation on the line). Using the same procedure, each
particle is driven on the negative half line by an independent white noises and on the positive half line by W+. This
procedure allows to define a coalescing flow of maps, which is not Wiener measurable (i.e. not σ(W+)-measurable).

2. Notation, definitions and results

2.1. Notation

• For n ≥ 1, C(R+: Rn) (resp. Cb(R
+: Rn)) denotes the space of continuous (resp. bounded continuous) functions

f :R+ →Rn.
• For n ≥ 1, C0(R

n) is the space of continuous functions f :Rn → R converging to 0 at infinity. It is equipped with
the norm ‖f ‖∞ = supx∈Rn |f (x)|.

• For n ≥ 1, C2
0(Rn) is the space of twice continuously differentiable functions f :Rn → R converging to 0 at infinity

as well as their derivatives. It is equipped with the norm ‖f ‖2,∞ = ‖f ‖∞ + ∑
i ‖∂if ‖∞ + ∑

i,j ‖∂i ∂jf ‖∞.
• For a metric space M , B(M) denotes the Borel σ -field on M .
• For n ≥ 1, M(Rn) (resp. Mb(R

n)) denotes the space of measurable (resp. bounded measurable) functions
f :Rn →R.

• We denote by F the space M(R). It will be equipped with the σ -field generated by f �→ f (x) for all x ∈ R.
• P(R) denotes the space of probability measures on (R,B(R)). The space P(R) is equipped with the topology of

narrow convergence. For f ∈ Mb(R) and μ ∈ P(R), μf or μ(f ) denotes
∫
R

f dμ = ∫
R

f (x)μ(dx).
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• A kernel is a measurable function K from R into P(R). Denote by E the space of all kernels on R. For
f ∈ Mb(R), Kf ∈ Mb(R) is defined by Kf (x) = ∫

R
f (y)K(x,dy). For μ ∈ P(R), μK ∈ P(R) is defined by

(μK)f = μ(Kf ). If K1 and K2 are two kernels then K1K2 is the kernel defined by (K1K2)f (x) = K1(K2f )(x)(=∫
f (z)K1(x,dy)K2(y,dz)). The space E will be equipped with E the σ -field generated by the mappings K �→ μK ,

for every μ ∈ P(R).
• We denote by � (resp. �(n) for n ≥ 1) the Laplacian on R (resp. on Rn), acting on twice differentiable functions f

on R (resp. on Rn) and defined by �f = f ′′ (resp. �(n)f = ∑n
i=1

∂2

∂x2
i

f ).

2.2. Definitions: Stochastic flows and n-point motions

Definition 2.1. A measurable stochastic flow of mappings (SFM) ϕ on R, defined on a probability space (Ω,A,P),
is a family (ϕs,t )s<t such that

(1) For all s < t , ϕs,t is a measurable mapping from (Ω ×R,A⊗B(R)) to (R,B(R));
(2) For all h ∈R, s < t , ϕs+h,t+h is distributed like ϕs,t ;
(3) For all s < t < u and all x ∈ R, a.s. ϕs,u(x) = ϕt,u ◦ ϕs,t (x), and ϕs,s equals the identity;
(4) For all f ∈ C0(R), and s ≤ t , we have

lim
(u,v)→(s,t)

sup
x∈R

E
[(

f ◦ ϕu,v(x) − f ◦ ϕs,t (x)
)2] = 0;

(5) For all f ∈ C0(R), x ∈ R, s < t , we have

lim
y→x

E
[(

f ◦ ϕs,t (y) − f ◦ ϕs,t (x)
)2] = 0;

(6) For all s < t , f ∈ C0(R), lim|x|→∞ E[(f ◦ ϕs,t (x))2] = 0.

Definition 2.2. A measurable stochastic flow of kernels (SFK) K on R, defined on a probability space (Ω,A,P), is a
family (Ks,t )s<t such that

(1) For all s < t , Ks,t is a measurable mapping from (Ω ×R,A⊗B(R)) to (P(R),B(P(R)));
(2) For all h ∈R, s < t , Ks+h,t+h is distributed like Ks,t ;
(3) For all s < t < u and all x ∈ R, a.s. Ks,u(x) = Ks,tKt,u(x), and Ks,s equals the identity;
(4) For all f ∈ C0(R), and s ≤ t , we have

lim
(u,v)→(s,t)

sup
x∈R

E
[(

Ku,vf (x) − Ks,tf (x)
)2] = 0;

(5) For all f ∈ C0(R), x ∈ R, s < t , we have

lim
y→x

E
[(

Ks,tf (y) − Ks,tf (x)
)2] = 0;

(6) For all s < t , f ∈ C0(R), lim|x|→∞ E[(Ks,tf (x))2] = 0.

The law of a SFK (resp. of a SFM) is a probability measure on (
∏

s<t E,
⊗

s≤t E) (resp. on (
∏

s<t F,
⊗

s≤t F)). A
SFK K will be called a SFM when Ks,t (x) = δϕs,t (x) for some SFM ϕ.

Definition 2.3. Let (P(n)
t , n ≥ 1) be a family of Feller semigroups, respectively defined on Rn and acting on C0(R

n)

as well as on bounded continuous functions. We say that this family is consistent as soon as

(1) for all n ≥ 1, all permutation σ of {1, . . . , n} and all f ∈ C0(R
n),

P(n)
t

(
f σ

) = (
P(n)

t f
)σ

,

where f σ (x1, . . . , xn) = f (xσ1, . . . , xσn);
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(2) for all k ≤ n and all f ∈ C0(R
k), we have

P(n)
t (f ◦ πk,n) = (

P(k)
t f

) ◦ πk,n,

where πk,n :Rn → Rk is such that πk,n(x) = (x1, . . . , xk),

such that xi ≤ yi for i ≤ n. We will denote by P
(n)
x the law of the Markov process associated with P(n)

t and starting
from x ∈Rn. This Markov process will be called the n-point motion of this family of semigroups.

A general result (see Theorem 2.1 in [12]) states that there is a one to one correspondence between laws of SFK K

and consistent family of Feller semigroups P(n), with the semigroup P(n) defined by P(n)
t = E[K⊗n

0,t ]). It can be viewed
as a generalization of De Finetti’s Theorem (see [20]).

2.3. Definition: White noises

Let C :R×R→ R be a covariance function on R, i.e. C is symmetric and
∑

i,j λiλjC(xi, xj ) ≥ 0 for all finite family

(λi, xi) ∈R2. Assuming that the reproducing Hilbert space HC associated to C is separable, there exists (ei)i∈I (with
I at most countable) an orthonormal basis of HC such that C(x, y) = ∑

i∈I ei(x)ei(y).

Definition 2.4. A white noise of covariance C is a centered Gaussian family of real random variables (Ws,t (x), s <

t, x ∈R), such that

E
[
Ws,t (x)Wu,v(y)

] = ∣∣[s, t] ∩ [u,v]∣∣ × C(x, y).

A standard white noise is a centerd Gaussian family of real random variables (Ws,t , s < t) such that

E[Ws,tWu,v] = ∣∣[s, t] ∩ [u,v]∣∣.
Starting with (Wi)i∈I independent standard white noises, one can define W = (Ws,t )s<t a white noise of covariance

C by the formula

Ws,t (x) =
∑
i∈I

W i
s,t ei(x),

which is well defined in L2.
Although Ws,t doesn’t belong to HC , one can recover Wi

s,t out of W by Wi
s,t = 〈Ws,t , ei〉. Indeed, for any given i,

ei is the limit as n → ∞ in HC of en
i = ∑

k λn
kCxn

k
where for all n, (λn

k , x
n
k ) is a finite family in R2. Note that

∥∥en
i − em

i

∥∥2
HC

=
∑
k,�

λn
kλ

m
� C

(
xn
k , xm

�

)
.

Denote W
n,i
s,t = ∑

k λn
kWs,t (x

n
k ). Then for n and m,

E
[(

W
n,i
s,t − W

m,i
s,t

)2] = (t − s)
∥∥en

i − em
i

∥∥2
HC

.

Thus one can define Wi
s,t as the limit in L2 of W

n,i
s,t . Then one easily checks that Ws,t (x) = ∑

i W
i
s,t (x)ei(x) a.s.

For K a SFK (resp. ϕ a SFM or W a white noise), we denote for all s ≤ t by FK
s,t (resp. Fϕ

s,t or FW
s,t ) the σ -field

generated by {Ku,v; s ≤ u ≤ v ≤ t} (resp. by {ϕu,v; s ≤ u ≤ v ≤ t} or {Wu,v; s ≤ u ≤ v ≤ t}). A white noise W is said
to be a FK (resp. Fϕ-white noise) if FW

s,t ⊂ FK
s,t for all s < t (resp. FW

s,t ⊂ Fϕ
s,t for all s < t). In all the following, all

σ -fields will be completed by negligible events.
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2.4. Definition: The ( 1
2�,C)-SDE

Let ϕ be a SFM and W a Fϕ-white noise of covariance C. Then if for all s < t and all x ∈ R, we have

ϕs,t (x) = x +
∑
i∈I

∫ t

s

ei ◦ ϕs,u(x)Wi(du) (1)

then (ϕ,W) is said to solve the SDE (1). Since this SDE is determined by the covariance C, we will more simply say
that (ϕ,W) solves the C-SDE driven by W . Note that to find SFM’s solutions of the C-SDE for which the one-point
motion is a Brownian motion, we will need to assume that C(x, x) = 1 for all x ∈ R.

In all the following, we will be interested in constructing SFM and SFK for which the one-point motion is a
Brownian motion. Adding this condition, the C-SDE will be called the ( 1

2�,C)-SDE, since 1
2�f = 1

2f ′′ for f ∈
C2(R) is the generator of the Brownian motion on R.

The notion of solution of this SDE can be extended to stochastic flows of kernels: let K be a SFK and W =∑
i eiW

i , a FK -white noise of covariance C, then (K,W) is said to solve the ( 1
2�,C)-SDE driven by W if

Ks,tf (x) = f (x) +
∑
i∈I

∫ t

s

Ks,u

(
eif

′)(x)Wi(du) + 1

2

∫ t

s

Ks,uf
′′(x)du (2)

for all f ∈ C2
0(R), s < t and x ∈ R. Note that when C is continuous, then identity (2) implies that W is a FK -white

noise (see Section 5 and Lemma 5.3 in [12]). To find kernel solutions of the ( 1
2�,C)-SDE, we will only need to

assume that C(x, x) ≤ 1 for all x ∈R. (This condition comes from the fact that for all t ≥ 0,

Pt f
2 = E

[
K0,t f

2(x)
] ≥ E

[
(K0,t f )2(x)

] = P(2)
t f ⊗2f (x, x)

and that

Af 2(x) − A(2)f ⊗2(x, x) = (
1 − C(x, x)

)(
f ′(x)

)2
,

where A = 1
2� is the generator of Pt and A(2) is the generator of P(2)

t .) Having C stricly less than one means the flow
is a mixture of stochastic transport and deterministic heat flow. Note also that in this case there are no SFM’s solution
of the ( 1

2�,C)-SDE.
Taking the expectation in (2), we see that for a solution (K,W) of the ( 1

2�,C)-SDE, the one-point motion of K is
a standard Brownian motion. Note that if K is a SFK of the form δϕ , with ϕ a SFM, then (K,W) is a solution of the
( 1

2�,C)-SDE if and only if (ϕ,W) solves (1), and we must have C(x, x) = 1 for all x ∈ R.
In the following we will make the assumption that C(x, x) ≤ 1 for all x ∈ R.
A solution (K,W) of the ( 1

2�,C)-SDE is called a Wiener solution if for all s < t , FK
s,t = FW

s,t . A SFM ϕ will be
called coalescing when for all x, y, T = inf{t > 0;ϕ0,t (x) = ϕ0,t (y)} is finite a.s. A SFK K will be called diffusive
when it is not a SFM.

We will say the ( 1
2�,C)-SDE has a unique solution when all its solutions (K,W) have the same distribution.

2.5. Martingale problems related to the ( 1
2�,C)-SDE

Let (K,W) be a solution of the ( 1
2�,C)-SDE. Denote by P(n)

t , the semigroup associated with the n-point motion of

K , and by P
(n)
x the law of the n-point motion started from x ∈Rn.

Proposition 2.5. Let X(n) be distributed like P
(n)
x with x ∈Rn. Then it is a solution of the martingale problem:

f
(
X

(n)
t

) −
∫ t

0
A(n)f

(
X(n)

s

)
ds (3)



1328 Y. Le Jan and O. Raimond

is a martingale for all f ∈ C2
0(Rn), where

A(n)f (x) = 1

2
�(n)f (x) +

∑
i<j

C(xi, xj )
∂2

∂xi ∂xj

f (x).

Proof. When f is of the form f1 ⊗ · · · ⊗ fn, with f1, . . . , fn in C2
0(R), then it is easy to verify (3) when (K,W)

solves (2). This extends to the linear space spanned by such functions, and by density, to C2
0(Rn). (A proof of this

fact can be derived from the observation that, on the torus, Sobolev theorem shows that trigonometric polynomials are
dense in C2.) �

Remark 2.6. If one can prove uniqueness for these martingale problems, then this implies there exists at most one
solution to the ( 1

2�,C)-SDE. (Indeed, using Itô’s formula, the expectation of any product of Ks,tf (x) and Ws,t (y)’s

can be expressed in terms of P(n)
t ’s.)

Remark 2.7. When C is smooth, then the martingale problem (3) is well posed. This implies that the n-point motion
of K is uniquely determined and that the ( 1

2�,C)-SDE has a unique solution, which is a Wiener solution. If one
assumes in addition that C(x, x) = 1, then the usual theory applies, and the solution is a flow of diffeomorphisms.

2.6. Statement of the main theorems

Theorem 2.8. Let C±(x, y) = 1{x>0}1{y>0} + 1{x<0}1{y<0}. Then there is a unique solution (K,W) of the ( 1
2�,C±)-

SDE. Moreover, this solution is a Wiener solution and K is a coalescing SFM.

Denote by ϕ± the coalescing flow defined in Theorem 2.8. The white noise W of covariance C± can be written in
the form W = W+1R+ + W−1R− , with W+ and W− two independent standard white noises. Then (2) is equivalent
to

ϕ±
s,t (x) = x +

∫ t

s

1{ϕ±
s,u(x)>0}W

+(du) +
∫ t

s

1{ϕ±
s,u(x)<0}W

−(du). (4)

A consequence of this theorem, with Proposition 4.1 below, is Theorem 2.9 below. In this theorem, the solutions of
the SDE (5) are in the usual sense, that is they are single paths. After completing this work, we were informed by H.
Hajri that a result proved in [18] and in [2] implies that pathwise uniqueness holds for this SDE.

Theorem 2.9. The SDE driven by B+ and B−, two independent Brownian motions,

dXt = 1{Xt>0} dB+
t + 1{Xt<0} dB−

t (5)

has a unique solution. Moreover, this solution is a strong solution.

Proof. We recall that saying (5) has a unique solution means that for all x ∈ R, there exists one and only one proba-
bility measure Qx on C(R+: R3) such that under Qx(dω), the canonical process (X,B+,B−)(ω) = ω satisfies (5),
with B+ and B− two independent Brownian motions, and X a Brownian motion started at x. Proposition 4.1 states
that (5) has a unique solution. Since (4) holds, one can take (Xt ,B

+
t ,B−

t ) = (ϕ±
0,t (x),W+

0,t ,W
−
0,t ) for this solution.

A solution (X,B+,B−) is a strong solution if X is measurable with respect to the σ -field generated by B+ and
B−, completed by the events of probability 0. Since ϕ± is a Wiener solution, one can conclude. �

Theorem 2.10. Let C+(x, y) = 1{x>0}1{y>0}.

(i) There is a unique solution (K+,W) solution of the ( 1
2�,C+)-SDE.

(ii) The flow K+ is diffusive and is a Wiener solution.
(iii) The flow K+ can be obtained by filtering ϕ± with respect to the noise generated by W+: K+

s,t = E[δϕ±
s,t

|W+].
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Theorem 2.11. There exists a unique coalescing SFM ϕ+ such that its n-point motions coincide with the n-point
motions of K+ before hitting �n = {x ∈ Rn; ∃i �= j, xi = xj }. Moreover

(i) (ϕ+,W+) is not a solution of the ( 1
2�,C±)-SDE but it satisfies∫ t

s

1{ϕ+
s,u(x)>0} dϕ+

s,u(x) =
∫ t

s

1{ϕ+
s,u(x)>0}W

+(du).

(ii) K+ can be obtained by filtering ϕ+ with respect to the noise generated by W+: K+
s,t = E[δϕ+

s,t
|W+].

Remark 2.12. Following [12], it should be possible to prove that he linear part of the noise generated by ϕ+ is the
noise generated by W+.

We refer to Section 3.2 for more precise definitions of noises, extension of noises, filtering by a subnoise, and linear
part of a noise.

3. General results

In this section C is any covariance function on R satisfying C(x, x) ≤ 1 for all x ∈ R.

3.1. Chaos decomposition of Wiener solutions

Proposition 3.1. Let (K,W) be a Wiener solution of the ( 1
2�,C)-SDE. Then for all s < t , f a bounded measurable

function on R and x ∈ R, a.s.,

Ks,tf (x) =
∑
n≥0

Jn
s,tf (x) (6)

with J n defined by J 0
t = Pt , where Pt is the heat semigroup on R, and for n ≥ 0,

J n+1
s,t f (x) =

∑
i

∫ t

s

J n
s,u

(
(Pt−uf )′ei

)
(x)Wi(du). (7)

This implies that there exists at most one Wiener solution to the ( 1
2�,C)-SDE.

Proof. We essentially follow the proof of Theorem 3.2 in [11], with a minor correction at the end noticed by Bertrand
Micaux during his Ph.D. [15].

Let us first remark that the stochastic integral
∑

i

∫ t

0 Ks(ei(Pt−sf )′)(x)Wi(ds) do converge in L2 for all bounded
measurable function f since (using in the fourth inequality that C(x, x) ≤ 1 for all x ∈ R)

∑
i

E

[(∫ t

s

Ks,u

(
(Pt−uf )′ei

)
(x)Wi(du)

)2]

≤
∑

i

∫ t

s

E
[(

Ks,u

(
(Pt−uf )′ei

)
(x)

)2]du

≤
∑

i

∫ t

s

E
[
Ks,u

(
(Pt−uf )′ei

)2
(x)

]
du

≤
∫ t

s

Pu−s

((
(Pt−uf )′

)2 ∑
i

e2
i

)
(x)du

≤
∫ t

s

Pu−s

(
(Pt−uf )′

)2
(x)du
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which is finite (since, using that d
du

(Pu−s(Pt−uf )2) = Pu−s((Pt−uf )′)2, it is equal to Pt−sf
2(x) − (Pt−sf )2(x)).

Take f a C3 function with compact support. For t > 0, denote K0,t simply Kt . Then for t > 0, n ≥ 1 and x ∈ R

Ktf (x) − Pt f (x) =
n−1∑
k=0

(
Kt(k+1)/n(Pt (1−(k+1)/n)f ) − Ktk/n(Pt (1−k/n)f )

)

=
n−1∑
k=0

(Kt(k+1)/n − Ktk/n)(Pt (1−(k+1)/n)f )

+
n−1∑
k=0

Ktk/n(Pt (1−(k+1)/n)f − Pt (1−k/n)f )

=
n−1∑
k=0

∑
i

∫ t (k+1)/n

tk/n

Ks

(
ei(Pt (1−(k+1)/n)f )′

)
(x)Wi(ds)

+
n−1∑
k=0

∫ t (k+1)/n

tk/n

Ks

(
1

2
(Pt (1−(k+1)/n)f )′′

)
(x)ds

−
n−1∑
k=0

Ktk/n(Pt (1−k/n)f − Pt (1−(k+1)/n)f )

since (K,W) solves the ( 1
2�,C)-SDE. This last expression implies that for t > 0, n ≥ 1 and x ∈R,

Ktf (x) − Pt f (x) −
∑

i

∫ t

0
Ks

(
ei(Pt−sf )′

)
(x)Wi(ds) =

3∑
k=1

Bk(n)

with

B1(n) =
n−1∑
k=0

∑
i

∫ t (k+1)/n

tk/n

Ks

(
ei(Pt (1−(k+1)/n)f − Pt−sf )′

)
(x)Wi(ds),

B2(n) = −
n−1∑
k=0

Ktk/n

(
Pt (1−k/n)f − Pt (1−(k+1)/n)f − t

2n
(Pt (1−(k+1)/n)f )′′

)
(x),

B3(n) =
n−1∑
k=0

∫ t (k+1)/n

tk/n

(Ks − Ktk/n)

(
1

2
(Pt (1−(k+1)/n)f )′′

)
(x)ds.

The terms in the expression of B1(n) being orthogonal,

E
[(

B1(n)
)2] =

n−1∑
k=0

∑
i

∫ t (k+1)/n

tk/n

E
[(

Ks

(
ei(Pt (1−(k+1)/n)f − Pt−sf )′

))2
(x)

]
ds

≤
n−1∑
k=0

∑
i

∫ t (k+1)/n

tk/n

Ps

(
ei(Pt (1−(k+1)/n)f − Pt−sf )′

)2
(x)ds

≤
n−1∑
k=0

∫ t (k+1)/n

tk/n

Ps

(
(Pt (1−(k+1)/n)f − Pt−sf )′

)2
(x)ds,
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where we have used Jensen inequality in the second inequality and the fact that
∑

i e
2
i (x) = C(x, x) ≤ 1 in the last

inequality. This last term is less that n
∫ t/n

0 ‖Psf
′ − f ′‖2∞ ds = O(‖f ′′‖2∞t2/n).

By using triangular inequality, E[(B2(n))2]1/2 is less than

n−1∑
k=0

E

[
Ktk/n

(
Pt (1−k/n)f − Pt (1−(k+1)/n)f − t

2n
(Pt (1−(k+1)/n)f )′′

)2

(x)

]1/2

≤
n−1∑
k=0

[
Ptk/n

(
Pt (1−k/n)f − Pt (1−(k+1)/n)f − t

2n
(Pt (1−(k+1)/n)f )′′

)2

(x)

]1/2

.

Using moreover that ‖Pt/nf − f − t/(2n)f ′′‖∞ = O((t/n)3/2‖f ′′′‖∞), we get that E[(B2(n))2]1/2 =
O(t3/2n−1/2‖f ′′′‖∞).

By using again triangular inequality, E[(B3(n))2]1/2 is less than

n−1∑
k=0

E

[(∫ t (k+1)/n

tk/n

(Ks − Ktk/n)

(
1

2
(Pt (1−(k+1)/n)f )′′

)
(x)ds

)2]1/2

≤
n−1∑
k=0

(
t

n

∫ t (k+1)/n

tk/n

E

[(
(Ks − Ktk/n)

(
1

2
(Pt (1−(k+1)/n)f )′′

))2

(x)

]
ds

)1/2

.

For f a Lipschitz function and 0 ≤ s < t , we have (with (X,Y ) the two point motion of K of law P
(2)
(x,x) and E(2)

(x,x)

the expectation with respect to P
(2)
(x,x)

)

E
[
(Ktf − Ksf )2(x)

] = E(2)
(x,x)

[(
f (Xt ) − f (Xs)

)(
f (Yt ) − f (Ys)

)]
≤ (t − s)

(
Lip(f )

)2

with Lip(f ) the Lipschitz constant of f . From this estimate, and since Lip(Pt (1−(k+1)/n)f
′′) ≤ Lip(f ′′), we deduce

that E[(B3(n))2]1/2 = O(t3/2 Lip(f ′′)n−1/2). The estimates we gave for E[(Bi(n))2], for i ∈ {1,2,3}, implies that for
f a C3 function with compact support,

Ktf (x) = Pt f (x) +
∑

i

∫ t

0
Ks

(
ei(Pt−sf )′

)
(x)Wi(ds).

This implies that

Ks,tf (x) = Pt−sf (x) +
∑

i

∫ t

s

Ks,u

(
(Pt−uf )′

)
(x)Wi(du). (8)

Iterating n times relation (8), we get that

Ks,tf (x) =
n∑

k=0

J k
s,tf (x) + Rn

s,tf (x),

where Rn
s,tf (x) is a L2 random variable whose chaos expansion is such that its n first Wiener chaoses are 0. This

implies that for all k, J k
s,tf (x) is the kth Wiener chaos of Ks,tf (x). Thus, for f a C3 function with compact support,

the Wiener chaos expansion of Ks,tf (x) is given by (6). This extends to all bounded measurable functions. �
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3.2. Filtering a SFK by a subnoise

We follow here Section 3 in [12].

Definition 3.2. A noise consists of a separable probability space (Ω,A,P), a one-parameter group (Th)h∈R of P-
preserving L2-continuous transformations of Ω and a family Fs,t ,≤ s ≤ t ≤ ∞ of sub-σ -fields of A such that:

(a) Th sends Fs,t onto Fs+h,t+h for all h ∈ R and s ≤ t ,
(b) Fs,t and Ft,u are independent for all s ≤ t ≤ u,
(c) Fs,t ∧Ft,u =Fs,u for all s ≤ t ≤ u.

Moreover, we will assume that, for all s ≤ t , Fs,t contains all P-negligible sets of F−∞,∞, denoted F .

A subnoise N̄ of N is a noise (Ω,A,P, (Th), F̄s,t ), with F̄s,t ⊂ Fs,t . Note that a subnoise is characterized by a
σ -field invariant by Th for all h ∈R, F̄ = F̄−∞,∞. In this case, we will say that N̄ is the noise generated by F̄ .

A linear representation of N is a family of real random variables X = (Xs,t ; s ≤ t) such that:

(a) Xs,t ◦ Th = Xs+h,t+h for all s ≤ t and h ∈ R,
(b) Xs,t is Fs,t -measurable for all s ≤ t ,
(c) Xr,s + Xs,t = Xr,t a.s., for all r ≤ s ≤ t .

Define F lin be the σ -field generated by the random variables Xs,t where X is a linear representation of N and s ≤ t .
Define N lin to be the subnoise of N generated by F lin. This noise is called the linear part of the noise N .

Let P0 be the law of a SFK, it is a law on (Ω0,A0) = (
∏

s<t E,
⊗

s<t E), and let K be the canonical SFK of
law P0. For h ∈ R, define T 0

h :Ω → Ω by T 0
h (ω0)s,t = ω0

s+h,t+h. For s < t , F0
s,t is the σ -field FK

s,t completed by

P0-negligible sets of A0. This defines a noise N0 called the noise of the SFK K .
Let N̄ be a subnoise of N0. In Section 3.2 in [12], a SFK K̄ is defined as the filtering of K with respect to N̄ : for

s < t , f ∈ C0(R) and x ∈R, K̄ is such that

K̄s,t f (x) = E
[
Ks,tf (x)|F̄s,t

] = E
[
Ks,tf (x)|F̄]

.

Suppose now P0 is the law of a SFK that solves the ( 1
2�,C)-SDE. Writing C in the form C(x, y) =∑

i∈I ei(x)ei(y), there is a FK -white noise W = ∑
i∈I W iei such that:

Ks,tf (x) = f (x) +
∑
i∈I

∫ t

s

Ks,u

(
eif

′)(x)Wi(du) + 1

2

∫ t

s

Ks,uf
′′(x)du (9)

(i.e. the ( 1
2�,C)-SDE is transported on the canonical space).

Proposition 3.3. Let J ⊂ I and N̄ the noise generated by {Wj ; j ∈ J }, and W̄ = ∑
j∈J Wjej . Let K̄ be the SFK

obtained by filtering K with respect to N̄ . Then (9) is satisfied with K replaced by K̄ and W by W̄ (or I by J ). If
σ(W̄ ) ⊂ σ(K̄), then K̄ solves the ( 1

2�, C̄)-SDE with C̄(x, y) = ∑
j∈J ej (x)ej (y), and driven by W̄ .

Proof. This proposition reduces to prove that

K̄s,t f (x) = f (x) +
∑
j∈J

∫ t

s

K̄s,u

(
ejf

′)(x)Wj (du) + 1

2

∫ t

s

K̄s,uf
′′(x)du

which easily follows by taking the conditional expectation with respect to σ(Wj ; j ∈ J ) in equation (9). �
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4. C±(x,y) = 1{x<0}1{y<0} + 1{x>0}1{y>0}

In this section, we will prove Theorem 2.8. In order to do this we will prove that the n-point motion of a solution is
uniquely determined and has the coalescing property (when two points meet, they stay together).

In Section 4.2, we prove that such a n-point motion is uniquely determined up two the first time to of them meet.
In Section 4.3, we show that the process obtained from the two-point motion after deleting its excursions out of

D = {(x, y) ∈ R2;xy ≤ 0}, and stopped when it reaches (0,0) is a Brownian motion with oblique reflection at the
boundary of D, stopped when it reaches (0,0).

In Section 4.4, after having shown that the two-point motion of a solution reaches (0,0) in finite time, we construct
a consistent family of n-point motions verifying the coalescing property. This allows to construct a coalescing SFM
and a solution to the ( 1

2�,C±)-SDE.
In Section 4.5, we show that any two point-motion of a solution cannot leave {(x, y) ∈ R2;x = y}. This is done by

studying the process obtained from the two-point motion after deleting its excursions out of D.

4.1. The SDE dXt = 1{Xt>0} dB+
t + 1{Xt<0} dB−

t

Let B1 and B2 be two independent Brownian motions. For x ∈ R, define Xx , Bx,+ and Bx,− by

Xx
t = x + B1

t , (10)

B
x,−
t =

∫ t

0
1{Xx

s <0} dXx
s +

∫ t

0
1{Xx

s >0} dB2
s , (11)

B
x,+
t =

∫ t

0
1{Xx

s <0} dB2
s +

∫ t

0
1{Xx

s >0} dXx
s . (12)

Then Xx , Bx,− and Bx,+ are Brownian motions respectively started at x, 0 and 0. Moreover Bx,− and Bx,+ are
independent, and we have

Xx
t = x +

∫ t

0
1{Xx

s >0} dBx,+
s +

∫ t

0
1{Xx

s <0} dBx,−
s . (13)

Denote by Qx the law of (Xx,Bx,−,Bx,+).

Proposition 4.1. Let x ∈ R, X, B+ and B− be real random processes such that B+ and B− are independent Brown-
ian motions. Then if

Xt = x +
∫ t

0
1{Xs>0} dB+

s +
∫ t

0
1{Xs<0} dB−

s , (14)

the process (X,B+,B−) has for law Qx .

Proof. Assume (X,B+,B−) satisfy (14), with B+ and B− two independent Brownian motions. Let

Bt =
∫ t

0
1{Xs<0} dB+

s + 1{Xs>0} dB−
s .

Observe that X − x and B are two independent Brownian motions. Moreover

B−
t =

∫ t

0
1{Xs<0} dXs +

∫ t

0
1{Xs>0} dBs, (15)

B+
t =

∫ t

0
1{Xs<0} dBs +

∫ t

0
1{Xs>0} dXs. (16)

Note that (X,B+,B−) is defined out of (X − x,B) exactly in the same way as (Xx,Bx,+,Bx,−) is defined out of
(B1,B2). This implies the proposition ((X,B+,B−) is distributed like (Xx,Bx,+,Bx,−)). �



1334 Y. Le Jan and O. Raimond

4.2. Construction of the n-point motions up to T (n)

Let x /∈ �n = {x ∈Rn; ∃i �= j, xi = xj }. For convenience, we will assume that x1 < x2 < · · · < xn and set i the integer
such that xi ≤ 0 < xi+1, with i = 1 when x1 > 0 and i = n when xn ≤ 0. Let B1 and B2 be two independent Brownian
motions. In the following construction, Xi follows B1. Out of Xi and B2, we construct B+ and B− two independent
Brownian motions, and for j > i (resp. for j < i), Xj follows B+ (resp. B−), this until the first time τ when Xi+1 or
Xi−1 hits 0. After time τ , we follow the same procedure by replacing i by i − 1 when Xi−1(τ ) = 0 or by i + 1 when
Xi+1(τ ) = 0. More precisely, define for t > 0, the processes

X0
i (t) = xi + B1

t ,

B
0,−
t =

∫ t

0
1{X0

i (s)<0} dB1
s +

∫ t

0
1{X0

i (s)>0} dB2
s ,

B
0,+
t =

∫ t

0
1{X0

i (s)<0} dB2
s +

∫ t

0
1{X0

i (s)>0} dB1
s ,

X0
j (t) = xj + B

0,−
t for j ≤ i − 1,

X0
j (t) = xj + B

0,+
t for j ≥ i + 1.

Set

τ1 = inf
{
t > 0: X0

i−1(t) = 0 or X0
i+1(t) = 0

}
and set for t ≤ τ1, (X,B−,B+)(t) = (X0,B0,−,B0,+)(t). Set i1 = i + 1 if Xi+1(τ1) = 0 and i1 = i − 1 if
Xi−1(τ1) = 0.

Then X1(τ1) < X2(τ1) < · · · < Xi1(τ1) = 0 < · · · < Xn(τ1) (it can be shown this is almost surely true, al-
though actually the same proof would work even if two points could coalesce at τ1). Assume now that (τk)k≤� and
(X,B−,B+)(t) have been defined for t ≤ τ� such that a.s.

• (τk)1≤k≤� is an increasing sequence of stopping times with respect to the filtration associated to X;
• X1(τk) < · · · < Xn(τk) for 1 ≤ k ≤ �;
• for all k, there exists an integer ik such that Xik (τk) = 0.

We then define τl+1 and (Xt ,B
−
t ,B+

t )t∈]τ�,τ�+1] as are defined τ1 and (Xt ,B
−
t ,B+

t )t≤τ1 by replacing i by i�, x by
Xτ�

and (B1· ,B2· ) by (B1
τ�+· − B1

τ�
,B2

τ�+· − B2
τ�

). Let T = lim�→∞ τ�. Note that T = inf{t ≥ 0;Xt ∈ �n} (with the

convention inf∅ = +∞). Denote by P
(n),0
x the law of (Xt )t≤T .

Lemma 4.2. Let X(n) be a solution to the martingale problem (3), with X
(n)
0 = x. Let T (n) = inf{t;X(n)

t ∈ �n)}. Then

(X
(n)
t )t≤T (n) is distributed like P

(n),0
x .

Proof. Let x = (x1, . . . , xn) ∈Rn be such that x1 < · · · < xn. Again, let i be such that xi ≤ 0 < xi+1, with i = 1 when
x1 > 0 and i = n when xn ≤ 0. Let X(n) be a solution of the martingale problem. This implies that for all j , X

(n)
j is a

Brownian motion and for all j and k,

〈
X

(n)
j ,X

(n)
k

〉
t
=

∫ t

0
C±

(
X

(n)
j (s),X

(n)
k (s)

)
ds. (17)

Let B0 be a Brownian motion, independent of X(n). Set

τ1 = inf
{
t > 0: ∃j �= i,X

(n)
j (t) = 0

}
.



Three examples of Brownian flows on R 1335

Define for t ≤ τ1,

B+
t = X

(n)
i+1(t) − xi+1, when i ≤ n − 1,

B+
t =

∫ t

0
1{X(n)

i (s)>0} dX
(n)
i (s) +

∫ t

0
1{X(n)

i (s)<0} dB0
s , when i = n.

Define also for t ≤ τ1

B−
t = X

(n)
i−1(t) − xi−1, when i ≥ 2,

B−
t =

∫ t

0
1{X(n)

i (s)<0} dX
(n)
i (s) +

∫ t

0
1{X(n)

i (s)>0} dB0(s), when i = 1.

Define for t ≤ τ1,

B1
t = X

(n)
i (t) − xi

and

B2
t =

∫ t

0
1{X(n)

i (s)>0} dB−
s +

∫ t

0
1{X(n)

i (s)<0} dB+
s .

Note that for t ≤ τ1, 〈B1,B2〉t = 0 and that

X
(n)
j (t) = xj + B−

t for j < i,

X
(n)
j (t) = xj + B+

t for j > i.

Assume now that (τk)k≤� and (B1
t ,B2

t ,B+
t ,B−

t )t≤τ�
have been defined such that a.s.

• (τk)1≤k≤� is an increasing sequence of stopping times with respect to the filtration associated to X(n);
• X

(n)
τk

/∈ �n for 1 ≤ k ≤ �;

• for all 1 ≤ k ≤ �, there exists an integer ik such that X
(n)
ik

(τk) = 0.

We then define τl+1 and (B1
t ,B2

t ,B+
t ,B−

t )τ�<t≤τ�+1 as are defined τ1 and (B1
t ,B2

t ,B+
t ,B−

t )0<t≤τ1 by replacing i

by i�, x by X(n)(τ�). Note that T (n) = lim�→∞ τ�. Define for t ≥ T (n), B1
t = B1

T (n) + X
(n)
1 (t) − X

(n)
1 (T (n)) and

B2
t = B2

T (n) +B0
t −B0

T (n) . Then B1 and B2 are two independent Brownian motions. We finally remark that (X
(n)
t )t≤T (n)

can be defined out of B1 and B2 in the same way P
(n),0
x is defined. This proves the lemma. �

4.3. Brownian motions with oblique reflection

Let X and B be two independent Brownian motions, with X started at x ∈ R. Let Y be a Brownian motion started at
y defined by

Yt = y +
∫ t

0
1{Xs<0} dBs +

∫ t

0
1{Xs>0} dXs.

Let At = ∫ t

0 1{Xs<0} ds and κt = inf{s > 0;As > t}. Then define (Xr,Y r)t = (X,Y )κt , it is a continuous process
taking its values in {x ≤ 0}. Denote by Lt the local time at 0 of Xt . Then Xr is a Brownian motion in R− reflected at
0 and that if Lr

t = 1
2Lκt , B1

t = Xr
t − Lr

t − Xr
0 is a Brownian motion.

Lemma 4.3. Set B2
t = ∫ κt

0 1{Xs<0} dBs . Then B2 is a Brownian motion independent of B1 and we have

Y r
t = B2

t − Lr
t + Y r

0 .
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Thus (Xr,Y r) is a Brownian motion in {x ≤ 0} reflected at {x = 0} with oblique reflection with angle of reflection
equal to π/4, i.e.(

Xr
t , Y

r
t

) = (
Xr

0, Y
r
0

) + (
B1

t ,B2
t

) − (
Lr

t ,L
r
t

)
(note that (Xr

0, Y
r
0 ) = (x, y) if x ≤ 0 and (Xr

0, Y
r
0 ) = (0, y − x) if x > 0).

Proof. Note that B1
t = ∫ κt

0 1{Xs<0} dXs . Since 〈B1〉t = 〈B2〉t = ∫ κt

0 1{Xs<0} ds and since 〈B1,B2〉t = 0, B1 and B2

are two independent Brownian motions. Let ε be a small positive parameter and define the sequences of stopping
times σε

k and τ ε
k such that σε

0 = 0 and for k ≥ 0

τ ε
k = inf

{
t ≥ σ ε

k ;Xt = 0
}
,

σ ε
k+1 = inf

{
t ≥ τ ε

k ;Xt = ε
}
.

Note that Xr
0 = x if x ≤ 0 and Xr

0 = 0 if x > 0, and for t > 0

Xr
t =

∑
k≥1

(Xτε
k ∧κt

− Xτε
k−1∧κt

) + Xτε
0 ∧κt

,

with Xτε
0 ∧κt

= Xt if x ≤ 0 and κt < τε
0 and Xτε

0 ∧κt
= 0 if κt > τε

0 (which holds if x > 0). We have that Xr
t =

−L
ε,r
t + B

ε,1
t + Xr

0 with

L
ε,r
t = −

∑
k≥1

(Xτε
k ∧κt

− Xσε
k ∧κt

),

B
ε,1
t =

∑
k≥1

(Xσε
k ∧κt

− Xτε
k−1∧κt

) + (
Xτε

0 ∧κt
− Xr

0

)
.

Then L
ε,r
t and B

ε,1
t both converges in probability respectively towards Lr

t and B1
t (see Theorem 2.23 in Chapter 6 of

[10]).
Note now that Y r

0 = y is x ≤ 0 and Y r
0 = y − x if x > 0, and for t > 0

Y r
t =

∑
k≥1

(Yτε
k ∧κt

− Yτε
k−1∧κt

) + Yτε
0 ∧κt

,

with Yτε
0 ∧κt

= Yt if x ≤ 0 and κt < τε
0 and Yτε

0 ∧κt
= y − x if κt > τε

0 (which holds if x > 0). Since when Xt is positive,

Xt − Yt remains constant, Y r
t = −L

ε,r
t + B

ε,2
t + Y r

0 , with

B
ε,2
t =

∑
k≥1

(Yσε
k ∧κt

− Yτε
k−1∧κt

) + (
Yτε

0 ∧κt
− Y r

0

)
.

It remains to observe that B
ε,2
t converges in probability towards B2

t . �

Denote now by (X,Y ) a solution of the martingale problem (3), for n = 2. Set T = inf{s ≥ 0;Xs = Ys}.
Let D+ = {(x, y) ∈ R2;x ≤ 0 and y ≥ 0}, D− = {(x, y) ∈ R2;x ≥ 0 and y ≤ 0} and D = D+ ∪ D−. Let A±

t =∫ t∧T

0 1{(Xs,Ys)∈D±} ds and At = A+
t + A−

t . Let κ±
t = inf{s;A±

s > t} and κt = inf{s;As > t}. Set for t ≤ A±
T ,

(X
r,±
t , Y

r,±
t ) = (X,Y )(κ±

t ) and for t ≤ AT , (Xr
t , Y

r
t ) = (X,Y )(κt ). Note that if X0 > Y0 (resp. if X0 < Y0) we

have for t ≤ AT (which then equals A−
T ), (Xr,Y r) = (Xr,−, Y r,−) (resp. for t ≤ AT (which then equals A+

T ),
(Xr,Y r) = (Xr,+, Y r,+)). Denote by Lt(X) and by Lt(Y ) the local times at 0 of X and of Y . And denote 1

2Lκt (X)

and 1
2Lκt (Y ) by L1

t and by L2
t .

The proof of Lemma 4.3 can be adapted to prove that:
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Lemma 4.4. The process (Xr,Y r) is a Brownian motion in D, with oblique reflection at the boundary of angle of
reflection equal to π/4, and stopped when it hits (0,0). More precisely, there exists B1 and B2 two independent
Brownian motions such that for all t ≤ AT , when X0 < Y0,

Xr
t = Xr

0 + B1
t − L1

t + L2
t ,

Y r
t = Y r

0 + B2
t − L1

t + L2
t

and when X0 > Y0,

Xr
t = Xr

0 + B1
t + L1

t − L2
t ,

Y r
t = Y r

0 + B2
t + L1

t − L2
t

with (Xr
0, Y

r
0 ) = (X0, Y0) if (X0, Y0) ∈ D, (Xr

0, Y
r
0 ) = (0, Y0 − X0) if Y0 < X0 < 0 or if 0 < X0 < Y0, and (Xr

0, Y
r
0 ) =

(X0 − Y0,0) if 0 < Y0 < X0 or if X0 < Y0 < 0.

This process is a special case of the class of processes studied in [21,22]: the process (Xr,Y r) is a Brownian
motion in the wedge D, with angle ξ = π/2 and angles of reflection θ1 = θ2 = π/4. An important parameter in the
study of these processes is α = (θ1 + θ2)/ξ = 1.

The fact that the reflected Brownian motion is a semimartingale on [0, τ0], where τ0 is the first time to hit the
origin, follows from Theorem 1 of [22]. An alternative proof, in a more general multi-dimensional and state-dependent
coefficient setting, is given in Theorem 1.4 (property 3) of [19].

The non-semimartingale property of the Markovian extension spending no time at zero follows from Theorem 5
(with α = 1) of [22]. Two alternative proofs, the first of which also generalizes to more general diffusions and higher
dimensions, are given in Theorem 3.1 of [9] and Proposition 4.13 of [3]. These results are essentially related to the
study of the local times which is done in the next section. We choose not to derive the results of this study from these
references in order to keep their proofs self contained and reasonably short.

4.4. Coalescing n-point motions

Without loss of generality, assume that (Xr
0, Y

r
0 ) ∈ D+. Let Ut = Y r

t +Xr
t√

2
and Vt = Y r

t −Xr
t√

2
. Then V is a Brownian

motion stopped when it hits 0. This implies in particular that T0 = inf{t ≥ 0;Xr
t = Y r

t = 0} is finite a.s. Denote by
Lr := L1 + L2 the local time at 0 of (Xr,Y r) at the boundary {x = 0} ∪ {y = 0}.

Lemma 4.5. P(Lr
T0

< ∞) = 1.

Proof. Fix M > 0 and denote TM = inf{t ≥ 0;Vt = M}. Note that the process (Ut ,Vt )t≤T0 is a Brownian motion with
oblique reflection in {−v ≤ u ≤ v}, stopped when it hits (0,0). For t < T0, one has that

Ut = U0 + W 1
t + √

2
∫ t

0
(1{Us=−Vs } − 1{Us=Vs })dLr

s ,

Vt = V0 + W 2
t ,

where W 1 = B2+B1√
2

and W 2 = B2−B1√
2

are two independent Brownian motions. Let h(u, v) = u2+v2

2v
. Then, when

u = ±v, ∂vh(u, v) = 0 and ∂uh(u, v) = ±1. Note also that in {−v < u < v},

�h(u, v) = u2 + v2

v3
≤ 2

v
.

Applying Itô’s formula, we get for t < T0 ∧ TM that

h(Ut ,Vt ) ≤ h(U0,V0) +
∫ t

0

ds

Vs

− √
2Lr

t + Mt,
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where Mt is a local martingale with quadratic variation given by

〈M〉t = 1

4

∫ t

0

(
1 + U2

s

V 2
s

)2

ds.

Since this quadratic variation is dominated by t , (Mt)t≤T0 is a martingale. This implies that

E
[
h
(
(U,V )t∧T0∧TM

)] ≤ E
[
h(U0,V0)

] + E

[∫ t∧T0∧TM

0

ds

Vs

]
− √

2E[Lt∧T0∧TM
].

It is well known that E[∫ T0∧TM

0
ds
Vs

] < ∞. For example, using Itô’s formula we get for t < T0 ∧ TM ,

d
(
Vt log(Vt )

) = (
1 + log(Vt )

)
dVt + dt

2Vt

.

Taking the limit as t → ∞, using dominated and monotone convergence theorems (using that h(u, v) is dominated
by M on {−v ≤ u ≤ v ≤ M}), we get

E
[
h
(
(U,V )T0∧TM

)] ≤ E
[
h(U0,V0)

] + E

[∫ T0∧TM

0

ds

Vs

]
− √

2E
[
Lr

T0∧TM

]
.

We then must have that E[Lr
T0∧TM

] < ∞. So a.s., Lr
T0∧TM

< ∞ for all M > 0. This proves the lemma. �

Lemma 4.6. Consider again (Xt , Yt ) a solution of the martingale problem (3) for n = 2. Then T = inf{t ≥ 0;Xt =
Yt } is finite a.s.

Proof. Suppose Y0 > X0, so that (Xr
0, Y

r
0 ) ∈ D+. To simplify a little, we will also assume that (X0, Y0) ∈ D. Note

first that when T < ∞, we must have XT = YT = 0. Since we are only interested to (X,Y ) up to T , when T < ∞ we
will replace (XT +t , YT +t )t>0 by (Bt ,Bt )t>0, with B a Brownian motion independent of (Xt , Yt ){t≤T }. Fix ε > 0 and
define the sequences of stopping times σε

k and τ ε
k , by τ ε

0 = 0 and for k ≥ 1

σε
k = inf

{
t ≥ τ ε

k−1,Xt = ε or Yt = −ε
}
,

τ ε
k = inf

{
t ≥ σ ε

k ,Xt = 0 or Yt = 0
}
.

Then all these stopping times are finite a.s. Let us also remark that T /∈ ⋃
k[σε

k , τ ε
k ] and that

∑
k(τ

ε
k ∧ T − σε

k ∧ T )

converges a.s. towards T − T0 (i.e. the time spent by (X,Y ) in Dc before T ). Take α > 0. Denoting Z = (X,Y ), Zτε
k

is a Markov chain. Note that Nε = inf{k,Zτε
k

= (0,0)} is a stopping time for this Markov chain. Moreover it is clear
that (τ ε

k − σε
k )k≥1 is a sequence of independent variables, and independent of the Markov chain Zτε

k
. And we have for

all k ≥ 1, E[e−α(τε
k −σε

k )] = e−ε
√

2α . Hence

E
[
e−∑

k α(τ ε
k ∧T −σε

k ∧T )
] = E

[
e−∑Nε−1

k=1 α(τε
k −σε

k )
]

=
∑
n

P[Nε = n]e−(n−1)ε
√

2α

which implies that

E
[
e−α

∑
k(τ

ε
k ∧T −σε

k ∧T )
] = E

[
e−(Nε−1)ε

√
2α

]
.

By taking the limit as ε → 0 in this equality, since εNε converges in probability towards LT (X) + LT (Y ). Denote
LT := LT (X)+LT (Y )

2 . Note that LT = Lr
T0

, so that we have

E
[
e−α(T −T0)

] = E
[
e
−2

√
2αLr

T0
]
.
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Since Lr
T0

is finite a.s., T − T0 is also finite a.s. �

Proposition 4.7. There exists a unique consistent family (P(n)
t , n ≥ 1) of Feller semigroups on R such that if X(n) is

its associated n-point motion started from x ∈Rn and T (n) = inf{t ≥ 0;X(n)
t ∈ �n}, then:

(i) (X
(n)
t )t≤T (n) is distributed like P

(n),0
x .

(ii) For t ≥ T (n), X
(n)
t ∈ �n.

Moreover, this family is associated to a coalescing SFM.

Proof. To prove the Feller property, it suffices to check condition (C) of Theorem 4.1 in [12]. Denoting by (X,Y ) the
two-point motion, condition (C) is verified as soon as for all positive t and ε (denoting d(x, y) = |y − x|)

lim
d(x,y)→0

P
(2)
(x,y)

[
d(Xt , Yt ) > ε

] = 0. (18)

Assume 0 < y − x = α < ε. Then

P
(2)
(x,y)

[
d(Xt , Yt ) > ε

] = P
(2)
(x,y)[Yt − Xt > ε and t < T ]

≤ P
(2)
(x,y)

[
sup
t≤T0

(
Y r

t − Xr
t

)
> ε

]

≤ P
(2)
(x,y)

[
sup
t≤T0

Vt >
ε√
2

]
.

This last probability is equal to the probability that a Brownian motion started at α/
√

2 hits ε/
√

2 before hitting 0,
which is equal to α/ε. This implies (18). �

Proposition 4.8. Let ϕ be the SFM associated to P(n). Then there exist W+ and W− two independent white noises,
σ(ϕ)-measurable, such that (4) is satisfied.

Proof. Define for s < t , W±
s,t = limx→±∞(ϕs,t (x)−x). This limit exists a.s. since one can check (using the martingale

problem) that for y > x > 0 (resp. y < x < 0) and t ≤ τx
s = inf{u > s;ϕs,u(x) = 0}, ϕs,t (x) − x = ϕs,t (y) − y. Using

that 〈W±
s,·, ϕs,·(y)〉t = limx→±∞〈ϕs,·(x),ϕs,·(y)〉t = ∫ t

s
1{±ϕs,u(y)>0} du, it is then easy to check (4). �

4.5. Uniqueness

Let P̃(n) be another consistent family solving the martingale problem (3). By uniqueness of the solution of this mar-
tingale problem up to the first coalescing time, if this consistent family is different to the family P(n)

t , then the n-
point motion should leave �n. After a time change, one may assume it spends no time in �n. Denote by (X̃, Ỹ )

the associated two-point motion starting from (0,0). Denote Ãt = ∫ t

0 1{(X̃s ,Ỹs )∈D} ds, κ̃t = inf{s ≥ 0; Ãs ≥ t} and

(X̃r
t , Ỹ

r
t ) = (X̃, Ỹ )κt . Denote Lt(X̃) and Lt(Ỹ ) the local times at 0 of X̃ and of Ỹ . Define also L̃t by 1

2 (Lt (X̃)+Lt(Ỹ ))

and L̃r
t by L̃r

κ̃t
. Denote Ũ r = Ỹ r+X̃r√

2
and Ṽ r = | Ỹ r−X̃r√

2
|.

Lemma 4.9. For all a > 0, T̃a = inf{t > 0;d(X̃t , Ỹt ) = a} is infinite a.s.

Proof. Let T̃ r
a = inf{t > 0; Ṽ r

t = a√
2
}. Then one has ÃT̃a

= T̃ r
a . Let ε < a√

2
. Define σε

n and τ ε
n by τ ε

0 = 0 and for
n ≥ 1,

σε
n = inf

{
t ≥ τ ε

n−1; Ṽ r
t = ε

}
,

τ ε
n = inf

{
t ≥ σ ε

n ; Ṽ r
t = 0

}
.
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Recall h(u, v) = u2+v2

2v
. Applying Itô’s formula on the time intervals [σε

n ∧ T̃ r
a , τ ε

n ∧ T̃ r
a ], denoting Z̃r = (Ũ r , Ṽ r ),

and using �h(u, v) ≥ 1
v

for the second term,

h
(
Z̃r

T̃ r
a

) − h(0) ≥
∑
n≥1

(
h
(
Z̃r

τ ε
n∧T̃ r

a

) − h
(
Z̃r

σ ε
n−1∧T̃ r

a

))
(19)

+
∑
n≥1

∫ τ ε
n∧T̃ r

a

σ ε
n∧T̃ r

a

1

2Ṽ r
s

ds (20)

−
∑
n≥1

(
L̃r

τ ε
n∧T̃a

− L̃r
σ ε

n∧T̃a

)
(21)

+
∑
n≥1

(
M̃

n,ε

τε
n∧T̃ r

a

− M̃
n,ε

σ ε
n∧T̃ r

a

)
, (22)

where for all n ≥ 1 and all ε > 0, M̃n,ε is a martingale whose quadratic variation is such that d
dt

〈M̃n,ε〉t ≤ 1. Since∫ T B
r

0
ds

|Bs | = ∞ a.s. (see Corollary 6.28 Chapter 3 in [10]), with T B
r the first time a Brownian motion B hits −a/

√
2 or

a/
√

2, we get that term (20) goes to ∞ as ε → 0. Terms (19) is positive and is dominated by ε × #{n; τ ε
n ≤ T̃ r

a } which
converges in probability towards L0

T̃ r
a

, with L0 the local time at 0 of Ṽ , which is a reflected Brownian motion. Denote

by Mε the martingale defined by

Mε
t =

∑
n≥1

(
M̃

n,ε
τε
n∧t − M̃

n,ε
σ ε

n∧t

)
.

Then if ε′ < ε, 〈Mε − Mε′ 〉t = 〈Mε′ 〉t − 〈Mε〉t . Using that d
dt

〈M̃n,ε〉t ≤ 1, we get 〈Mε − Mε′ 〉T̃ r
a

≤ ∑
n≥1(σ

ε
n ∧ T̃ r

a −
τ ε
n−1 ∧ T̃ r

a ). Since E[∑n≥1(σ
ε
n ∧ T̃ r

a − τ ε
n−1 ∧ T̃ r

a )] converges towards 0 as ε → 0, we get that Mε

T̃ r
a

is a Cauchy

sequence in L2(̃P
(2)
(0,0)) and thus (22), which is equal to Mε

T̃ r
a

, converges in L2(̃P
(2)
(0,0)). This implies that term (21)

converges in probability towards ∞. Since it also converges towards L̃r
T̃ r

a

. One concludes that L̃r
T̃ r

a

= ∞ a.s. Since

T̃a = κ̃T̃ r
a

, L̃r
T̃ r

a

= L̃T̃a
and therefore L̃T̃a

= ∞ a.s. Since X̃ and Ỹ are two Brownian motions, one must have T̃a = ∞
a.s. �

This lemma implies that after hitting �2 = {x = y}, the two-point motion stays in �2. Thus P̃(2) = P(2). The same
argument applies to prove that P̃(n) = P(n). This proves that there exists only one flow which is a SFK solution of the
( 1

2�,C±)-SDE. Moreover this solution is a SFM ϕ±.
To prove ϕ± is a Wiener solution, define K̄ the SFK obtained by filtering ϕ± with respect to the noise N± generated

by W+ and W−. Then, like for Proposition 4.8 we have σ(W+,W−) ⊂ σ(K̄), and applying Proposition 3.3, K̄ also
solves the ( 1

2�,C±)-SDE driven by W+1R+ + W−1R− . Since there exists a unique solution, K̄ is distributed like
δϕ± . The noise of K̄ being N±, this implies that ϕ± is measurable with respect to σ(W+,W−), i.e. ϕ± is a Wiener
solution. This concludes the proof of Theorem 2.8.

5. C+(x,y) = 1{x>0}1{y>0}

In this section, we prove Theorem 2.10 and Theorem 2.11.
First (in Section 5.1), by filtering the solution of the ( 1

2�,C±)-SDE, we construct the Wiener solution to the
( 1

2�,C+)-SDE.
In Section 5.2, we determine the n-point motion of the ( 1

2�,C±)-SDE up to the first time two of them meet.
In Section 5.3, associating to the family of n-point motions of the Wiener solution a consistent family of coalescing

n-point motions, we construct a coalescing SFM. Using Section 5.2, this implies Theorem 2.11.
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In Section 5.4, we prove the uniqueness of the solution of the ( 1
2�,C+)-SDE. We first remark that this holds if

and only if the two-point motion of a solution is the one of the Wiener solution. We then show there is at most one
possible two-point motion.

5.1. The Wiener solution obtained by filtering

Let ϕ± be the SFM solution of the ( 1
2�,C±)-SDE, and N+ the noise generated by W+. Define K+ the SFK obtained

by filtering ϕ± with respect to N+. Note that for x ∈ R, s ∈ R and t ∈ [s, τs(x)] with τs(x) = inf{u;W+
s,u = −x}, we

have ϕ±
s,t (x) = x +W+

s,t and thus that K+
s,t (x) = δx+W+

s,t
. This clearly implies that W = W+1R+ is a FK+

-white noise.

Then (see Section 3.2) K+ is a Wiener solution of the ( 1
2�,C+)-SDE driven W = W+1R+ . Proposition 3.1 implies

it is the unique Wiener solution.

5.2. Construction of the n-point motions

Let Dn = {x ∈Rn; ∃i �= j, xi = xj ≥ 0}. Let x ∈ Rn \ Dn.
The n-point motion has the property that at any time, the points located on the positive half line will move par-

allel to W+ and the points located on the negative half line will follow independent Brownian motions. Its law is
determined up to the first time it hits Dn. Indeed, denote I− = {j ;xj ≤ 0} and I+ = {j ;xj > 0}. Let i be such that
xi = max{xj ; j ∈ I−} when I− �= ∅ and xi = min{xj ;1 ≤ j ≤ n} when I− = ∅. Let (B1, . . . ,Bn,B) be n + 1 inde-
pendent Brownian motions. Define for t > 0, the processes

X0
j (t) = xj + Bj (t) for j ∈ I− ∪ {i},

B
0,+
t =

∫ t

0
1{X0

i (s)<0} dBs +
∫ t

0
1{X0

i (s)>0} dBi
s,

X0
j (t) = xj + B

0,+
t for j ∈ I+ \ {i}.

Set

τ1 = inf
{
t > 0; ∃j �= i,X0

j (t) = 0
}

and set for t ≤ τ1, Xt = X0
t and B+

t = B
0,+
t .

Assume now that (τk)k≤� and (X(t),W+(t))t≤τ�
have been defined such that a.s.

• (τk)1≤k≤� is an increasing sequence of stopping times with respect to the filtration associated to X;
• Xτk

/∈ Dn for 1 ≤ k ≤ �;
• for all k ≤ �, there exists an integer ik such that Xik (τk) = 0.

We then define (Xt ,B
+
t )τ�<t≤τ�+1 as is defined (Xt ,B

+
t )0<t≤τ1 by replacing i by i�, x by Xτ�

and (B1· , . . . ,Bn· ,B·)
by (B1

τ�+·, . . . ,Bn
τ�+·,Bτ�+·) − (B1

τ�
, . . . ,Bn

τ�
,Bτ�

). Let T = lim�→∞ τ�. Denote by P
(n),0
x the law of (Xt )t≤T .

Lemma 5.1. Let X(n) be a solution to the martingale problem (3), with X
(n)
0 = x. Let T (n) = inf{t; ∃i �= j,X

(n)
t ∈ Dn}.

Then (X
(n)
t )t≤T (n) is distributed like P(n),0

x .

Proof. Let x = (x1, . . . , xn) ∈ Rn \ Dn. As before I− = {j ;xj ≤ 0} and I+ = {j ;xj > 0}. Let i be such that xi =
max{xj ; j ∈ I−} when I− �= ∅ and xi = min{xj ; j ∈ I } when I− = ∅. Let X(n) be a solution of the martingale

problem. This implies that for all j , X
(n)
j is a Brownian motion and for all j �= k,

〈
X

(n)
j ,X

(n)
k

〉
t
=

∫ t

0
1{X(n)

j (s)>0}1{X(n)
k (s)>0} ds. (23)
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Let (B0,1, . . . ,B0,n,B0) be n + 1 independent Brownian motions, and independent of X(n). Define (B1, . . . ,Bn)

by

B
j
t =

∫ t

0
1{X(n)

j (s)<0} dX
(n)
j (s) +

∫ t

0
1{X(n)

j (s)>0} dB
0,j
s .

Note that (B1, . . . ,Bn) are n independent Brownian motions.
Set

τ1 = inf
{
t > 0; ∃j �= i,X

(n)
j (t) = 0

}
.

Define for t ≤ τ1, Bt = B0
t when I+ =∅ and

Bt =
∫ t

0
1{X(n)

i (s)<0} dX
(n)
k (s) +

∫ t

0
1{X(n)

i (s)>0} dB0
s

when I+ �= ∅ and where k ∈ I+ (one can choose for example k such that xk = max{xj ; j ∈ I+}). Define also for
t ≤ τ1

B+
t =

∫ t

0
1{X(n)

i (s)<0} dBs +
∫ t

0
1{X(n)

i (s)>0} dBi
s .

Note that for t ≤ τ1, 〈B,Bj 〉t = 0 for all j and that

X
(n)
j (t) = xj + B

j
t for j ∈ I− ∪ {i},

X
(n)
j (t) = xj + B+

t for j ∈ I+ \ {i}.

Assume now that (τk)k≤� and (Bt ,B
+
t )t≤τ�

have been defined such that a.s.

• (τk)1≤k≤� is an increasing sequence of stopping times with respect to the filtration associated to X(n);
• X

(n)
τk

/∈ �n for 1 ≤ k ≤ �;

• for all 1 ≤ k ≤ �, there exists an integer ik such that X
(n)
ik

(τk) = 0.

We then define (Bt ,B
+
t )t∈]τ�,τ�+1] as is defined (Bt ,B

+
t )0<t≤τ1 by replacing i by i�, x by X(n)

τ�
. Note that T (n) =

lim�→∞ τ�. Define for t ≥ T (n), Bt = BT (n) +B0
t −B0

T (n) . Then (B1, . . . ,Bn,B) are n independent Brownian motions.

We finally remark that (X
(n)
t )t≤T (n) is defined P

(n),0
x . This proves the lemma. �

5.3. Proof of Theorem 2.11

Denote by P(n) the family of consistent Feller semigroups associated to K+. To this family of semigroups, we associate
a unique consistent family of coalescing n-point motions, P(n),c (see Theorem 4.1 in [12]), with the property that the
law of this n-point motion before hitting �n is described by Lemma 5.1. These semigroups are Fellerian and since
the two-point motion hits �2 = {x = y}, the family of semigroups are associated to a coalescing SFM ϕ+.

Proof of (i): follow the proof of Proposition 4.8.
Proof of (ii): It is a consequence of Theorem 4.2 in [12].

5.4. Proof of Theorem 2.10

The existence (and uniqueness) of a Wiener solution K+ was proved in Section 5.1. By construction, (iii) holds. The
SFK K+ is diffusive since the two-point motion clearly leaves �2 (it behaves as a Brownian motion in D = {x < 0
or y < 0}). So (ii) is proved. To finish the proof of (i), it remains to show that K+ is the unique solution. Let K be
another solution. The flow obtained by filtering K with respect to W+ is a Wiener solution. Since there exists at most
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one Wiener solution, this flow is distributed like K+. For simplicity we also denote this flow K+. Denote by P(2)

(resp. P(2,+)) the semigroup of the two-point of K (resp. of K+). Note that if P(2) = P(2,+), then K = K+. Indeed,

E
[(

Ks,tf (x) − K+
s,t f (x)

)2] = P(2)
t−s(f ⊗ f )(x, x) − 2E

[
Ks,tf (x)K+

s,t f (x)
]

+ P(2,+)
t−s (f ⊗ f )(x, x)

= P(2)
t−s(f ⊗ f )(x, x) − 2E

[
K+

s,t f (x)K+
s,t f (x)

]
+ P(2,+)

t−s (f ⊗ f )(x, x)

= P(2)
t−s(f ⊗ f )(x, x) − P(2,+)

t−s (f ⊗ f )(x, x)

= 0.

Denote

Dr = {
(x, y) ∈ R2;x ≤ 0 or y ≤ 0

}
,

D+ = {
(x, y) ∈ R2;x ≥ 0 and y ≥ 0

}
,

B = {
(x, y) ∈R2;x = 0 and y ≥ 0

}
∪ {

(x, y) ∈ R2;y = 0 and x ≥ 0
}

so that B is the boundary of Dr and D+, and R2 = Dr ∪ B ∪ D+.
Let Z = (X,Y ) be a solution to the martingale problem:

f (Zt ) −
∫ t

0

1

2
�f (Zs)ds −

∫ t

0
1{Zs∈D+}

∂2

∂x ∂y

f (Zs)ds (24)

is a martingale for all f ∈ C2
0(R2). For ε > 0, let

Bε = {
z ∈ D+;d(z,B) = ε

}
with d the Euclidean distance on R2 (note that when z = (x, y) ∈ D+, d(z,B) = x ∧ y).

Define Ar
t = ∫ t

0 1{Zs∈Dr } ds and A+
t = ∫ t

0 1{Zs∈D+} ds, the amount of time Z spends in Dr and D+ up to time t .
Denote by κr

t and by κ+
t the inverses of Ar

t and of A+
t :

κr
t = inf

{
s ≥ 0;Ar

s > t
}
,

κ+
t = inf

{
s ≥ 0;A+

s > t
}
.

Denote by Zr and by Z+ the processes in Dr and D+ defined by

Zr
t = Zκr

t
and Z+

t = Zκ+
t
.

Define the sequences of stopping times σε
k and τ ε

k by σε
0 = 0 and for k ≥ 0

τ ε
k = inf

{
t ≥ σε

k ;Zt ∈ B
}
,

σ ε
k+1 = inf

{
t ≥ τ ε

k ;Zt ∈ Bε
}
.

It is easy to see that for k ≥ 1, in the time interval [σε
k , τ ε

k ], Zt ∈ D+, Yt − Xt remains constant and that d(Z,B) is
a Brownian motion stopped when it hits 0 (note that d(Z,B) = X ∧ Y ). Thus, if Rt = d(Z+

t ,B), then (Rt )t≤A+∞ is a
Brownian motion instantaneously reflected at 0 (since Rt − R0 = limε→0

∑
k≥0(d(Zσε

k ∧κ+
t
,B) − d(Zτε

k ∧κ+
t
,B))).
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Denote now by L+
t the local time at 0 of Rt . Then, for any random times T , L+

A+
T

is the limit in probability as

ε → 0 of ε × Nε
T where

Nε
T = max

{
k;σε

k < T
}
.

Denote also Lr
t = L+

A+
κr
t

.

Lemma 5.2. For all f ∈ C2
0(R2) (resp. f ∈ C2(R2)), we have

f
(
Zr

t

) − 1

2

∫ t

0
�f

(
Zr

s

)
ds −

∫ t

0
(∂x + ∂y)f

(
Zr

s

)
dLr

s (25)

is a martingale (resp. a local martingale).

Proof. Take f ∈ C2
0(R2) and assume Z0 ∈ D+ (we leave to the reader the case Z0 /∈ D+). Then

f
(
Zr

t

) − f
(
Zr

0

) =
∑
k≥1

(
f (Zτε

k ∧κr
t
) − f (Zσε

k ∧κr
t
)
)

(26)

+
∑
k≥0

(
f (Zσε

k+1∧κr
t
) − f (Zτε

k ∧κr
t
)
)
. (27)

Note that for k ≥ 1 and κr
t > σε

k (which implies κr
t > τε

k ), Zτε
k ∧κr

t
− Zσε

k ∧κr
t

= −εv, with v = (1,1). Using Taylor
expansion, we have that the first term (26) is equal to

−ε

Nε
κr
t∑

k=1

(∂x + ∂y)f (Zσε
k
) + O

(
ε2 × Nε

κr
t

)
.

More precisely, O(ε2 × Nε
κr
t
) ≤ ε2Nε

κr
t

2 ‖f ‖2,∞. This implies that O(ε2 × Nε
κr
t
) converges in probability towards 0 as

ε → 0 (recall ε × Nε
κr
t

converges towards Lr
t = L+

A+
κr
t

). Thus the first term converges towards

−
∫ t

0
(∂x + ∂y)f

(
Zr

s

)
dLr

s

(it is obvious if (∂x + ∂y)f (z) = 1 when z ∈ B). Indeed: we claim that for H a bounded continuous process,

ε
∑Nε

t

k=1 Hσε
k

converges in probability towards
∫ A+

t

0 Hs dLs . This holds for H = ∑
i Hti 1]ti−1,ti ]. Every bounded contin-

uous process can be approached by a sequence of processes Hn = ∑
i Hi2−n1](i−1)2−n,i2−n]. Thus we prove the claim

by density. Then we apply this result by taking Hs = (∂x + ∂y)f (Zs) to prove the convergence of the first term (26).
Denote by Mf the martingale (24). Then the second term (27) is equal to∑

k≥1

(
M

f

σε
k ∧κr

t
− M

f

τε
k−1∧κr

t

)
(28)

+ 1

2

∑
k≥1

∫ σε
k ∧κr

t

τ ε
k−1∧κr

t

�f (Zs)1{Zs∈D} ds (29)

+
∑
k≥1

∫ σε
k ∧κr

t

τ ε
k−1∧κr

t

∂2

∂x ∂y

f (Zs)1{Zs∈D+} ds. (30)
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Note that

(29) = 1

2

∫ t

0
�f

(
Zr

s

)
ds.

Note that for a constant C depending only on f , and denoting D+
ε = {z ∈ D+;d(z,B) ≤ ε},

∣∣(30)
∣∣ ≤ C

∫ κr
t

0
1{Zs∈D+

ε } ds

which converges a.s. towards 0 as ε → 0.
Denote by Mε

t the term (28). It is a martingale for all ε > 0 and one can check that there exists a constant C < ∞
depending only on f such that

d

dt

〈
Mf

〉
t
= 1{Zt∈Dr }

∣∣∇f (Zt )
∣∣2 + 1{Zt∈D+}

∣∣(∂x + ∂y)f (Zt )
∣∣2

≤ C.

Moreover, for ε′ < ε,〈
Mε − Mε′ 〉

t
= 〈

Mε
〉
t
− 〈

Mε′ 〉
t

=
∑
k≥0

∫ σε
k+1∧κr

t

τ ε
k ∧κr

t

d

dt

〈
Mf

〉
t
−

∑
k′≥0

∫ σε′
k′+1

∧κr
t

τ ε′
k′ ∧κr

t

d

dt

〈
Mf

〉
t
.

Since {s ≥ 0;Zs ∈ Dr ∪ D+
ε } ⊃ ⋃

k≥0[τ ε
k , σ ε

k+1] ⊃ ⋃
k′≥0[τ ε′

k′ , σ ε′
k′+1] ⊃ {s ≥ 0;Zs ∈ Dr}, we get that

〈
Mε − Mε′ 〉

t
≤ C

∫ κr
t

0
1{Zs∈D+

ε } ds.

Since this converges a.s. towards 0 as ε → 0, uniformly in ε′ < ε, we have that Mε is a Cauchy sequence in the space
of square integrable martingales. Thus Mε converges towards a martingale M . This proves the lemma. �

This lemma implies that Zr is a Brownian motion with oblique reflection in the wedge Dr (see [21], it corresponds
to the case ξ = 3π/2, θ1 = θ2 = π/4 and α = 1/3):

∫ t

0 1{Zr
s =0} ds = 0 and Zr is a solution to the sub-martingale

problem:

f
(
Zr

t

) − 1

2

∫ t

0
�f

(
Zr

s

)
ds (31)

is a sub-martingale for all f constant in the neighborhood of 0 and f ∈ C2
0(D) such that (∂x + ∂y)f (z) ≥ 0 for z ∈ D.

In [21], it is proved that for all initial value Zr
0, there is a unique solution to this sub-martingale problem. Thus the

law of Zr is uniquely determined by Zr
0.

Applying also the lemma to the function f (x, y) = x, we see that Xr
t + Lr

t is a local martingale (it is actually a
true martingale). This implies that Xr is a semimartingale and that in the Doob–Meyer decomposition of Xr , −Lr is
its compensator. Thus Lr can be recovered from Xr . Note that this gives a proof that Zr is a semimartingale (see also
[22]).

Note that Lr
Ar

t
= L+

A+
t

. Thus, if A+∞ = ∞ then L+
A+∞

= ∞ (since {0} is recurrent for R) and Lr
Ar∞ = ∞. Therefore

A+∞ = ∞ implies that Ar∞. On the converse, if Ar∞ = ∞, then Lr∞ = ∞ (since B is recurrent for Zr ) and L+
A+∞

= ∞.

Therefore Ar∞ = ∞ implies that A+∞ = ∞. Since Ar∞ + A+∞ = ∞, we must have Ar∞ = A+∞ = ∞. It is easy to see
that the processes Zr and R are independent. We have that

Zt = Zr
Ar

t
+ RA+

t
v
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with v = (1,1).
Set Lt = Lr

Ar
t
(= L+

A+
t

). Define T�, T r
� and T +

� by

T� = inf{t ≥ 0;Lt > �},
T r

� = inf
{
t ≥ 0;Lr

t > �
}
,

T +
� = inf

{
t ≥ 0;L+

t > �
}
.

Then T� = Ar
T�

+A+
T�

= T r
� +T +

� . Thus the process Lt is σ(Zr,R)-measurable since Lt = inf{�;T� > t} = inf{�;T r
� +

T +
� > t}. Now, Ar

t = T r
Lt

and A+
t = T +

Lt
. Since

Zt = Zr
Ar

t
+ RA+

t
v,

we see that Z is σ(Zr,R)-measurable. Thus, the law of Z is uniquely determined. This proves that P(2) = P(2,+).
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