Soit , , un tableau à double entrées, les étant des variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) et où , et . Considérons les matrices de covariances empiriques suivantes (avec/sans centrage empirique): et , avec et , où est une matrice déterministe définie positive. Nous démontrons que, sous le régime asymptotique et converge vers une constante positive, le théorème central limite pour la statistique est différent de celui concernant la statistique . En outre, nous montrons que cette différence de comportement n’est pas observée pour le comportement moyen des vecteurs propres.
Let , , be a double array of independent and identically distributed (i.i.d.) real random variables with , and . Consider sample covariance matrices (with/without empirical centering) and , where and with , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of and are different as with approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.
Mots-clés : central limit theorems, eigenvectors and eigenvalues, sample covariance matrix, Stieltjes transform, strong convergence
@article{AIHPB_2014__50_2_655_0, author = {Pan, Guangming}, title = {Comparison between two types of large sample covariance matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {655--677}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP506}, mrnumber = {3189088}, zbl = {1295.15023}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP506/} }
TY - JOUR AU - Pan, Guangming TI - Comparison between two types of large sample covariance matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 655 EP - 677 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP506/ DO - 10.1214/12-AIHP506 LA - en ID - AIHPB_2014__50_2_655_0 ER -
%0 Journal Article %A Pan, Guangming %T Comparison between two types of large sample covariance matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 655-677 %V 50 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP506/ %R 10.1214/12-AIHP506 %G en %F AIHPB_2014__50_2_655_0
Pan, Guangming. Comparison between two types of large sample covariance matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 655-677. doi : 10.1214/12-AIHP506. http://www.numdam.org/articles/10.1214/12-AIHP506/
[1] An Introduction to Multivariate Statistical Analysis, 2nd edition. Wiley, New York, 1984. | MR | Zbl
.[2] No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab. 26 (1998) 316-345. | MR | Zbl
and .[3] CLT for linear spectral statistics of large dimensional sample covariance matrices. Ann. Probab. 32 (2004) 553-605. | MR | Zbl
and .[4] On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 (2007) 1532-1572. | MR | Zbl
, and .[5] Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. | MR | Zbl
and .[6] Limiting behavior of eigenvectors of large Wigner matrices. J. Stat. Phys. 146 (2012) 519-549. | MR | Zbl
and .[7] Eigenvectors of Wigner matrices: Universality of global fluctuations. Available at http://arxiv.org/abs/1104.1219.
.[8] Convergence of Probability Measures. Wiley, New York, 1968. | MR | Zbl
.[9] Truncations of Haar unitary matrices, traces and bivariate Brownian bridge. RMTA 1(1) (2012) 1150007. | MR | Zbl
and .[10] On the distribution of the largest eigenvalue in principal component analysis. Ann. Statist. 29 (2001) 295-327. | MR | Zbl
.[11] The limiting distriubtions of eigenvalues of sample correlation matrices. Sankhya 66 (2004) 35-48. | MR | Zbl
.[12] Some limit theorems of the eigenvalues of sample convariance matrix. J. Multivariate Anal. 12 (1982) 1-38. | MR | Zbl
.[13] Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields 151 (2011) 233-264. | MR | Zbl
and .[14] Distribution for some sets of random matrices. Math. USSR-Sb. 1 (1967) 457-483. | Zbl
and .[15] Central limit theorem for Hotelling’s statistic under large dimension. Ann. Appl. Probab. 21 (2011) 1860-1910. | MR | Zbl
and .[16] Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 (2008) 1232-1270. | MR | Zbl
and .[17] Universality of sample covariance matrices: CLT of the smoothed empirical spectral distribution. Preprint.
, and .[18] On the eigenvectors of large dimensional sample covariance matrices. J. Multivariate Anal. 30 (1989) 1-16. | MR | Zbl
.[19] Strong convergence of the limiting distribution of the eigenvalues of large dimensional random matrices. J. Multivariate Anal. 55 (1995) 331-339. | MR | Zbl
.[20] Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. Ann. Probab. 18 (1990) 1174-1194. | MR | Zbl
.[21] Random matrices: Universal properties of eigenvectors. Available at arXiv:1103.2801v2. | MR | Zbl
and .[22] On the limit of the smallest eigenvalue of some sample covariance matrix. J. Theoret. Probab. 23 (2010) 1-20. | MR | Zbl
and .[23] On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields 78 (1988) 509-521. | MR | Zbl
, and .Cité par Sources :