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Abstract. Let {Xij }, i, j = · · · , be a double array of independent and identically distributed (i.i.d.) real random variables with

EX11 = μ,E|X11 − μ|2 = 1 and E|X11|4 < ∞. Consider sample covariance matrices (with/without empirical centering) S =
1
n

∑n
j=1(sj − s̄)(sj − s̄)T and S = 1

n

∑n
j=1 sj sT

j
, where s̄ = 1

n

∑n
j=1 sj and sj = T1/2

n (X1j , . . . ,Xpj )T with (T1/2
n )2 = Tn,

non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of S and S
are different as n → ∞ with p/n approaching a positive constant. Moreover, it is also proved that such a different behavior is not
observed in the average behavior of eigenvectors.

Résumé. Soit {Xij }, i, j = 1,2, . . . , un tableau à double entrées, les Xij étant des variables aléatoires réelles indépendantes et

identiquement distribuées (i.i.d.) et où EX11 = μ, E|X11 − μ|2 = 1 et E|X11|4 < ∞. Considérons les matrices de covariances
empiriques suivantes (avec/sans centrage empirique): S = 1

n

∑n
j=1(sj − s̄)(sj − s̄)T et S = 1

n

∑n
j=1 sj sT

j
, avec s̄ = 1

n

∑n
j=1 sj et

sj = T1/2
n (X1j , . . . ,Xpj )T , où (T1/2

n )2 = Tn est une matrice déterministe définie positive. Nous démontrons que, sous le régime
asymptotique n → ∞ et p/n converge vers une constante positive, le théorème central limite pour la statistique S est différent
de celui concernant la statistique S. En outre, nous montrons que cette différence de comportement n’est pas observée pour le
comportement moyen des vecteurs propres.
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1. Introduction

Let {Xij }, i, j = · · · , be a double array of independent and identically distributed (i.i.d.) real random variables with

EX11 = μ,E|X11 − μ|2 = 1 and E|X11|4 < ∞. Write xj = (X1j , . . . ,Xpj )
T , sj = T1/2

n xj and Xn = (s1, . . . , sn)

where (T1/2
n )2 = Tn, non-random symmetric non-negative definite matrix. It is well known that the sample covariance

matrix is defined by

S = 1

n

n∑
j=1

(sj − s̄)(sj − s̄)T ,
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where s̄ = 1
n

∑n
j=1 sj = T1/2

n x̄ with x̄ = 1
n

∑n
j=1 xj . It lies at the roots of many methods in multivariate analysis

(see [1]). However, the commonly used sample covariance matrix in random matrix theory is

S = 1

n

n∑
j=1

sj sT
j .

Since the matrix S has been well studied in the literature (see [5]), a natural question is that whether the asymptotic
results for eigenvalues and (or) eigenvectors of S apply for the matrix S as well. This paper attempts to address it.

First, observe that

S = S − s̄s̄T (1.1)

and thus by the rank inequality (see Theorem A.44 in [5]) there is no difference when the limiting empirical spectral
distribution (ESD) of eigenvalues is our concern only. Here the ESD of a matrix B is defined by

F B(x) = 1

p

p∑
i=1

I (μi ≤ x), (1.2)

where μ1, . . . ,μp are the eigenvalues of B. When F Tn converges weakly to a non-random distribution H and p/n →
c > 0, Marcenko and Pastur [14], Yin [23] and Silverstein [19] proved that, with probability one, F (1/n)XT

n Xn(x)

converges in distribution to a nonrandom distribution function Fc,H (x) whose Stieltjes transform m(z) = mFc,H
(z)

is, for each z ∈ C+ = {z ∈ C: �z > 0}, the unique solution to the equation

m = −
(

z − c

∫
t dH(t)

1 + tm

)−1

. (1.3)

Here the Stieltjes transform mF (z) for any probability distribution function F(x) is defined by

mF (z) =
∫

1

x − z
dF(x), z ∈ C+. (1.4)

Noting the relationship between the spectra of S and n−1XT
n Xn, we have

m(z) = −1 − c

z
+ cm(z), (1.5)

where m(z) is the Stieltjes transform of Fc,H (x), the limit of F S.
Particularly, when the population matrix Tn is the identity matrix the limiting ESD of S is Marcenko and Pastur’s

law Fc(x) (see [14] and [12]), which has a density function

pc(x) =
{

(2πcx)−1√(b − x)(x − a), a ≤ x ≤ b,
0, otherwise

and has point mass 1 − c−1 at the origin if c > 1, where a = (1 − √
c)2 and b = (1 + √

c)2.
Secondly, when Tn = I, it was reported in [11] that the maximum eigenvalues of S and S have the same limit,

while, [22] announced that the minimum eigenvalues of S and S also share the identical limit. That is,

λmax(S)
a.s.−→ (1 + √

c)2 (1.6)

and when c < 1

λmin(S)
a.s.−→ (1 − √

c)2, (1.7)
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where λmax(S) and λmin(S) denote, respectively, the maximum and minimum eigenvalues of S . Moreover, it was
proved in [10] that asymptotic distribution of the maximum eigenvalues of S after centering and scaling is the Tracy–
Widom law of order 1 when S has a Wishart distribution Wp(n, I). In this case, note that nS has the same distribution
as

∑n−1
j=1 xj xT

j and hence it is not difficult to prove that the maximum eigenvalues of S and S share the same central
limit theorem.

Thirdly, remarkable central limit theorems for the eigevalues of S were established in [3]. Moreover, the constraint
that EX4

11 = 3, imposed in [3], was removed in [16]. Since the ESDs of S and S have the same limit it seems that
they might have the same central limit theorem for eigenvalues. Surprisingly, a detailed investigation shows they have
different central limit theorems. The main reason is that s̄ involved in S contributes to the central limit theorem as
well. Formally, let

Gn(x) = p
(
F S (x) − Fcn,Hn(x)

)
,

where cn = p
n

and Fcn,Hn(x) denotes the function by substituting cn for c and Hn for H in Fc,H (x).

Theorem 1. Suppose that

(1) For each n Xij = Xn
ij , i, j = 1,2, . . . , are i.i.d. real random variables with EX11 = μ,E|X11 − μ|2 = 1 and

E|X11|4 < ∞.
(2) limn→∞ p

n
= c ∈ (0,∞).

(3) g1, . . . , gk are functions on R analytic on an open region D of the complex plane, which contains the real interval[
lim inf

n
λmin(Tn)I(0,1)(c)(1 − √

c)2, lim sup
n

λmax(Tn)(1 + √
c)2

]
.

(4) Let Tn be a p × p non-random symmetric non-negative definite matrix with spectral norm bounded above by a
positive constant such that Hn = F Tn converges weakly to a non-random distribution H .

(5) Let ei be the vector of size p × 1 with the ith element 1 and others 0. The matrix Tn also satisfies

1

n

n∑
i=1

eT
i T1/2

n

(
m(z1)Tn + I

)−1T1/2
n eieT

i T1/2
n

(
m(z2)Tn + I

)−1T1/2
n ei → h1(z1, z2)

and

1

n

n∑
i=1

eT
i T1/2

n

(
m(z)Tn + I

)−1T1/2
n eieT

i T1/2
n

(
m(z)Tn + I

)−2T1/2
n ei → h2(z).

Then (
∫

g1(x)dGn(x), . . . ,
∫

gk(x)dGn(x)) converges weakly to a Gaussian vector (Xg1, . . . ,Xgk
), with mean

EXg = − c

2πi

∫
g(z)

∫ m3(z)t2 dH(t)

(1+tm(z))3

(1 − c
∫ m2(z)t2 dH(t)

(1+tm(z))2 )2
dz − c(E(X11 − μ)4 − 3)

2πi

∫
g(z)

m3(z)h2(z)

1 − c
∫ m2(z)t2 dH(t)

(1+tm(z))2

dz

+ c

2πi

∫
g(z)

m(z)
∫

t dH(t)

(1+tm(z))2

z(1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2 )
dz (1.8)

and covariance function

Cov(Xg1,Xg2) = − 1

2π2

∫ ∫
g1(z1)g2(z2)

(m(z1) − m(z2))2

d

dz1
m(z1)

d

dz2
m(z2)dz1 dz2

− c(E(X11 − μ)4 − 3)

4π2

∫ ∫
g1(z1)g2(z2)

d2

dz1 dz2

[
m(z1)m(z2)h1(z1, z2)

]
dz1 dz2. (1.9)
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The contours in (1.8) and (1.9) are both contained in the analytic region for the functions g1, . . . , gk and both enclose
the support of Fcn,Hn(x) for large n. Moreover, the contours in (1.9) are disjoint.

Remark 1. From Theorem 1.1 of [3], Theorem 1.4 of [16] and Theorem 1 we see that functionals of eigenvalues of S
and S have the same asymptotic variances but they have different asymptotic means. Indeed, the additional term in
the asymptotic mean is the last term of (1.8), which can be further written as

c

2πi

∫
g(z)

m(z)
∫

t dH(t)

(1+tm(z))2

z(1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2 )
dz = − 1

π

∫ b

a

g′(x) arg
[
xm(x)

]
dx, (1.10)

where m(x) = limz→x m(z) for 0 	= x ∈ R. Here one should note that that Theorem 1.1 of [3] did not handle the case
when the common mean of the underlying random variables is not equal to zero.

Remark 2. When developing central limit theorems, it is necessary to study the limits of the products of (E(X11 −
μ)4 − 3) and the diagonal elements of (S − zI)−1. For general Tn, the limits of such diagonal elements are not
necessary the same. That is why Assumption 5 has to be imposed. Roughly speaking, Assumption 5 is some kind of
rotation invariance. For example, it is satisfied if Tn is the inverse of another sample covariance matrix with the
population matrix being the identity. However, when E(X11 −μ)4 = 3, Assumption 5 can be removed as well because
such diagonal elements disappear in this case thanks to the special fourth moment and one may see [3]. Also, when
Tn is a diagonal matrix Assumption 5 in Theorem 1 is automatically satisfied, as pointed out in [16], and in this case

h1(z1, z2) =
∫

t2 dH(t)

((m(z1)t + 1))((m(z2)t + 1))
, h2(z) =

∫
t2 dH(t)

(m(z)t + 1)3
.

Particulary, when Tn = I we have

EXg = 1

2π

∫ b

a

g′(x) arg

[
1 − cm2(x)

(1 + m(x))2

]
dx − 1

π

∫ b

a

g′(x) arg
[
xm(x)

]
dx

− c(E(X11 − μ)4 − 3)

π

∫ b

a

g(x)�
[

m3(x)

(m(x) + 1)[(m(x) + 1)2 − cm2(x)]
]

dx, (1.11)

where

m(x) = −(x + 1 − c) + √
(x − a)(b − x)i

2x
,

(see [3]). For some simplified formulas for covariance function, refer to (1.24) in [3] and (1.24) in [16].

Finally, let us take a look at the eigenvectors of S and S . The matrix of orthonormal eigenvectors of S has a Haar
measure on the orthogonal matrices when X11 is normally distributed and Tn = I. It is conjectured that for large
n and for general X11 the matrix of orthonormal eigenvectors of S is close to being Haar distributed. Silverstein
(1981) created an approach to address it. Further work along this direction can be found in Silverstein [18], [20], Bai,
Miao and Pan [4] and Ledoit and Peche [13]. Here we would also like to point out that there are similar interests
in eigenvectors of large Wigner matrix and one may see [6,7,9] and [21]. To consider the matrix S , let UnΛnU

T
n

denote the spectral decomposition of S , where Λn = diag(λ1, λ2, . . . , λp), Un = (uij ) is an orthogonal matrix con-
sisting of the orthonormal eigenvectors of S . Assume that xn ∈ Rp,‖xn‖ = 1, is an arbitrary non-random unit vector
and y = (y1, y2, . . . , yp)T = UT

n xn. Following their approach, we define an empirical distribution function based on
eigenvectors and eigenvalues as

F S
1 (x) =

p∑
i=1

|yi |2I (λi ≤ x), (1.12)
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where λ′
i s are eigenvalues of S . Based on the above empirical spectral distribution function, we may further investigate

central limit theorems of functions of eigenvalues and eigenvectors.
As will be seen below, the asymptotic properties of the eigenvectors matrix of S are the same as those of S in terms

of this property (note: EX11 = 0 required for S). However, the advantage of S over S is that the common mean of
underlying random variables is not necessarily zero to keep these types of properties. Unfortunately, this is not the
case for S. For example, consider eT

1 Se1 when Xij are i.i.d. with EX11 = μ and Var(X11) = 1, and Tn = I. Then it is
a simple matter to show that

eT
1 Se1

a.s.−→ 1 + μ2

which is dependent on μ, different from Corollary 1 in Bai, Miao and Pan [4] when μ 	= 0. Indeed, when dealing with
central limit theorems of functions of eigenvalues and eigenvectors, [18] also proved that EX11 = 0 is a necessary
condition to keep this type of property for the matrix S with Tn = I.

Formally, let

Gn1(x) = √
n
(
F S

1 (x) − Fcn,Hn(x)
)
.

Theorem 2. In addition to Conditions (1), (2) and (4) in Theorem 1 suppose that xn ∈ R
p

1 = {x ∈ Rp,‖x‖ = 1} and
xT
n (Tn − zI)−1xn → mH (z) where mH (z) denotes the Stieltjes transform of H(x). Then, it holds that

F S
1 (x) → Fc,H (x) a.s.

By Theorem 2, we obtain

Corollary 1. Let (S m)ii ,m = 1,2, . . . , denote the ith diagonal elements of matrices S m. Under the conditions of
Theorem 2 for xn = ei , then for any fixed m,

lim
n→∞

∣∣∣∣(S m
)
ii

−
∫

xm dFc,H (x)

∣∣∣∣ → 0, a.s.

Theorem 3. In addition to the assumptions in Theorem 1 and Theorem 2 suppose that as n → ∞

sup
z

√
n

∣∣∣∣xT
n

(
mFc,H

(z)Tn + I
)−1xn −

∫
dHn(t)

mFc,H
(z)t + 1

∣∣∣∣ → 0. (1.13)

Then the following conclusions hold.

(a) The random vector(∫
g1(x)dGn1(x), . . . ,

∫
gk(x)dGn1(x)

)

forms a tight sequence.
(b) If E(X11 − μ)4 = 3, the above random vector converges weakly to a Gaussian vector Xg1, . . . ,Xgk

, with zero
means and covariance function

Cov(Xg1,Xg2) = − 1

2π2

∫ ∫
g1(z1)g2(z2)

(z2m(z2) − z1m(z1))
2

c2z1z2(z2 − z1)(m(z2) − m(z1))
dz1 dz2, (1.14)

where the contours in (1.14) are the same as in those in (1.9).
(c) Instead of E(X11 − μ)4 = 3, assuming that

max
i

∣∣e∗
i T1/2

n

(
zm(z)Tn + zI

)−1xn

∣∣ → 0, (1.15)

the assertions in (b) still holds.
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Remark 3. Assumptions (1.13) and (1.15) are imposed for the same reason as given in Remark 2. Besides, when Tn

reduces to the identity matrix, (1.15) becomes

max
i

|xni | → 0. (1.16)

As can be seen from (1.14) the asymptotic covariance does not depend on the fourth moment of X11 and hence we
have to impose the condition like (1.16) to ensure that the term involving the product of the fourth moment of X11 and
the diagonal elements of (S − zI)−1 converges to zero in probability. One may see [16] for more details.

Remark 4. As pointed out in [4], when Tn = I condition (1.13) holds and formula (1.14) becomes

Cov(Xg1,Xg2) = 2

c

(∫
g1(x)g2(x)dFc(x) −

∫
g1(x1)dFc(x1)

∫
g2(x2)dFc(x2)

)
. (1.17)

Theorem 1 essentially boils down to the study of the Stieltjes transform of F S (x) while Theorems 2 and 3 boils
down to the study of the Stieltjes transform of F S

1 (x). In view of this we conjecture the same phenomenon holds for
other objects involving F S (x) or F S

1 (x). For example we believe central limit theorems of the normalized empirical
spectral distribution functions of S and S are different ([17] considers central limit theorems of the smoothed empirical
spectral distribution functions).

We conclude this section by stating the structure of this work. Section 2 gives the proof of Theorem 1. Sections 3
and 4 pick up the proofs of Theorems 2 and 3, respectively. Throughout the paper M and C denote constants which
may change from line to line, and all matrices and vectors are denoted by boldface letters.

2. Proof of Theorem 1 and (1.11)

The proof of Theorem 1 is essentially based on the Stieltjes transform following [3]. First, by analyticity of functions it
is enough to consider the Stieltjes transforms of the empirical functions of sample covariance matrices. Moreover, note
that the Stieltjes transform of the empirical function of S can be decomposed as the sum of the Stieltjes transform
of the empirical function of S and some random variable involving sample mean and S. Thus, our main aim is to
prove that the extra random variable converges in probability in the C space to some nonrandom variable. Once this is
finished, Theorem 1 follows from Slutsky’s theorem, the continuous mapping theorem and the results in [3] and [16].

Before proceeding we observe the following useful fact. By the structure of S , without loss of generality, we can
assume EX11 = 0,EX2

11 = 1 in the course of establishing Theorems 1–3 (but the fourth moment will be E(X11 −
μ)4).

2.1. Truncation of underlying random variables and random processes

We begin the proof with the replacement of the underlying random variables Xij with truncated and centralized
variables. To this end, write

S = 1

n
(Xn − B)

(
XT

n − BT
)
,

where B = (s̄, s̄, . . . , s̄)p×n. Since the argument for (1.8) (and two lines below (1.8)) in [3] can be carried over directly
to the present case we can choose a positive sequence εn such that

εn → 0, ε−4
n E|X11|4I

(|X11| ≥ εn

√
n
) → 0, εnn

1/4 → ∞. (2.18)

Let Ŝ = (1/n)(X̂n − B̂)(X̂T
n − B̂T ) where X̂n and B̂ are respectively obtained from Xn and B with the entries Xij

replaced by Xij I (|Xij | < εn

√
n). We then obtain

P(Ŝ 	= S) ≤ P

( ⋃
i≤p,j≤n

(|Xij | ≥ εn

√
n
)) ≤ pnP

(|X11| ≥ εn

√
n
)

≤ Mε−4
n E|X11|4I

(|X11| ≥ εn

√
n
) → 0, (2.19)
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where and in what follows M denotes a constant which may change from line to line.
Define S̃ = (1/n)(X̃n − B̃)(X̃T

n − B̃T ) where X̃n and B̃ are respectively obtained from Xn and B with the entries
Xij replaced by (X̂ij − EX̂ij )/σn with X̂ij = Xij I (|Xij | < εn

√
n) and σ 2

n = E|X̂ij − EX̂ij |2. Denote by G̃n(x) and
Ĝn(x) the analogues of Gn(x) with the matrix S replaced by Ŝ and S̃ respectively. As in [3] (one may also refer to
the proof of Corollary A.42 of [5]) we have for any g(x) ∈ {g1(x), . . . , gk(x)},(∫

gj (x)dG̃n(x) −
∫

gj (x)dĜn(x)

)

≤ M

n∑
k=1

∣∣λS̃
k − λŜ

k

∣∣
≤ M√

n

[
tr
(
(X̂n − B̂) − (X̃n − B̃)

)(
(X̂n − X̃n) − (B̂ − B̃)

)T ]1/2[tr(S̃ + Ŝ)
]1/2

= Mσn

(
1 − 1

σn

)
[tr S̃]1/2[tr(S̃ + Ŝ)

]1/2

≤ M
(
σ 2

n − 1
)[

nλmax(S̃)
]1/2[

nλmax(S̃) + nλmax(Ŝ)
]1/2

,

where the third step uses the fact that by the structure of (X̂n − B̂),

1

n

(
(X̂n − B̂) − (X̃n − B̃)

)(
(X̂n − X̃n) − (B̂ − B̃)

)T = σ 2
n

(
1 − 1

σn

)2

S̃.

From [23] and ‖Tn‖ ≤ M we obtain lim supn λmax(S̃) is bounded by M(1 + √
c)2 with probability one. Similarly,

lim supn λmax(Ŝ) is bounded by M(1 + √
c)2 with probability one by the structure of Ŝ and estimate (2.20) below.

Moreover it is not difficult to prove that

σ 2
n − 1 = o

(
ε2
nn

−1). (2.20)

Summarizing the above we obtain∫
g(x)dĜn(x) −

∫
g(x)dG̃n(x)

i.p.−→ 0.

This, together with (2.19), implies that∫
g(x)dGn(x) −

∫
g(x)dG̃n(x)

i.p.−→ 0.

Therefore, in what follows, we may assume that

|Xij | ≤ √
nεn, EXij = 0, E|Xij |2 = 1 (2.21)

and for simplicity we shall suppress all subscripts or superscripts on the variables.
As in [3], by Cauchy’s formula, (1.6) and (1.7), with probability one for all n large,∫

g(x)dGn(x) = − 1

2πi

∫
g(z)

(
tr(S − zI)−1 − nmcn(z)

)
dz, (2.22)

where mcn(z) is obtained from m(z) with c replaced by cn and the complex integral is over C . The contour C is speci-
fied below. Let v0 > 0 be arbitrary and set Cu = {u + iv0, u ∈ [ul, ur ]}, where ur > lim supn λmax(Tn)(1 + √

c)2 and
0 < ul < lim infn λmin(Tn)I(0,1)(c)(1 −√

c)2 or ul is any negative number if lim infn λmin(Tn)I(0,1)(c)(1 − √
c)2 = 0.

Then define

C+ = {
ul + iv: v ∈ [0, v0]

} ∪ Cu ∪ {
ur + iv: v ∈ [0, v0]

}
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and let C− be the symmetric part of C+ about the real axis. Then set C = C+ ∪ C−. Moreover, since

tr(S − zI)−1 = tr A−1(z) + s̄T A−2(z)s̄
1 − s̄T A−1(z)s̄

,

we have

(
tr(S − zI)−1 − nmcn(z)

) = [
tr A−1(z) − nmcn(z)

] + s̄T A−2(z)s̄
1 − s̄T A−1(z)s̄

, (2.23)

where A−1(z) = (S − zI)−1. The first term on the right-hand side above was investigated in [3].
We next consider the second term on the right-hand side in (2.23). To this end, introduce a truncation version of

s̄T A−2(z)s̄. Define Cr = {ur + iv: v ∈ [n−1ρn, v0]},

Cl =
{{

ul + iv: v ∈ [n−1ρn, v0
}

if ul > 0,{
ul + iv: v ∈ [0, v0]

}
if ul < 0,

where

ρn ↓ 0, ρn ≥ n−α, for some α ∈ (0,1). (2.24)

Let C+
n = Cl ∪ Cu ∪ Cr and C−

n denote the symmetric part of C+
n with respect to the real axis. We then define the

truncated process ̂s̄T A−2(z)s̄ of the process s̄T A−2(z)s̄ for z = u + iv by

̂s̄T A−2(z)s̄ =

⎧⎪⎨
⎪⎩

s̄T A−2(z)s̄ for z ∈ Cn = C+
n ∪ C−

n ,
nv+ρn

2ρn
s̄T A−2(zr1)s̄ + ρn−nv

2ρn
s̄T A−2(zr2)s̄ for u = ur, v ∈ [−n−1ρn,n

−1ρn

]
,

nv+ρn

2ρn
s̄T A−2(zl1)s̄ + ρn−nv

2ρn
s̄T A−2(zl2)s̄ for u = ul > 0, v ∈ [−n−1ρn,n

−1ρn

]
,

where zr1 = ur − in−1ρn, zr2 = ur + in−1ρn, zl1 = ul − in−1ρn and zl2 = ul + in−1ρn. Similarly one may define the

truncation version ̂s̄T A−1(z)s̄ of s̄T A−1(z)s̄.
From Theorem 2 in [15] we have

∥∥s̄T s̄
∥∥ ≤ ‖Tn‖

∥∥x̄T x̄
∥∥ ≤ M

∥∥x̄T x̄
∥∥ i.p.−→ Mc. (2.25)

Note that

s̄T (S − zI)−1s̄ = s̄T A−1(z)s̄ + (s̄T A−1(z)s̄)2

1 − s̄T A−1(z)s̄
,

where we use the identity

rT
(
D + arrT

)−1 = rT D−1

1 + arT D−1r
, (2.26)

where D and D + arrT are both invertible, r ∈ Rp and a ∈ R. This implies that

1

1 − s̄T A−1(z)s̄
= 1 + s̄T (S − zI)−1s̄. (2.27)

We then conclude that∣∣∣∣ 1

1 − s̄T A−1(z)s̄

∣∣∣∣ ≤ 1 +
(

M

v0
+ M

|λmax(S) − ur | + M

|λmin(S) − ul |
)

s̄T s̄. (2.28)
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This, together with (2.25), (1.6) and (1.7), ensures that

∣∣∣∣
∫

g(z)

(
s̄T Â−2(z)s̄

1 − s̄T Â−1(z)s̄
− s̄T A−2(z)s̄

1 − s̄T A−1(z)s̄

)
dz

∣∣∣∣
≤

∣∣∣∣
∫

g(z)

(
(s̄T Â−2(z)s̄ − s̄T A−2(z)s̄)

1 − s̄T Â−1(z)s̄

)
dz

∣∣∣∣
+

∣∣∣∣
∫

g(z)

(
s̄T A−2(z)s̄(s̄T Â−1(z)s̄ − s̄T A−1(z)s̄)

(1 − s̄T A−1(z)s̄)(1 − s̄T Â−1(z)s̄)

)
dz

∣∣∣∣
≤ [(s̄T s̄)2 + (s̄T s̄)4]Mρn

n

(
1

|λmax(S) − ur | + 1

|λmin(S) − ul |
)(

1

|λmax(S) − ur | + 1

|λmin(S) − ul |
)

, (2.29)

converging to zero in probability.

The aim of subsequent Sections 2.2–2.4 is to prove convergence of s̄T Â−j (z)s̄, j = 1,2, in probability to non-
random variables in the space of continuous functions for z ∈ C . It is well known that convergence in probability is
equivalent to convergence in distribution when the limiting variable is nonrandom (for example see page 25 of [8]).

Thus, instead, we shall prove convergence of s̄T Â−j (z)s̄, j = 1,2, in distribution to nonrandom variables in the space
of continuous functions for z ∈ C .

2.2. Convergence of finite-dimensional distributions of s̄T A−j (z)s̄ − E(s̄T A−j (z)s̄), j = 1,2

Consider z ∈ Cu and s̄T A−2(z)s̄ −E(s̄T A−2(z)s̄) first. Define the σ -field Fj = σ(s1, . . . , sj ), and let Ej(·) = E(·|Fj )

and E0(·) be the unconditional expectation. Introduce s̄j = s̄ − n−1sj ,

A−1
j (z) = (

S − n−1sj sT
j − zI

)−1
, γj (z) = 1

n
sT
j A−1

j (z)sj − E
1

n
tr A−1

j (z)Tn,

βj (z) = 1

1 + (1/n)sT
j A−1

j (z)sj

, b1(z) = 1

1 + (1/n)EtrA−1
1 (z)Tn

.

Write

s̄T A−2(z)s̄ − E
(
s̄T A−2(z)s̄

) =
n∑

j=1

Ej

(
s̄T A−2(z)s̄

) − Ej−1
(
s̄T A−2(z)s̄

)

=
n∑

j=1

(Ej − Ej−1)
[
s̄T A−2(z)s̄ − s̄T

j A−2
j (z)s̄j

]

=
n∑

j=1

(Ej − Ej−1)[dn1 + dn2 + dn3],

where

dn1 = (s̄ − s̄j )
T A−2(z)s̄, dn2 = s̄T

j

(
A−2(z) − A−2

j (z)
)
s̄,

and

dn3 = s̄T
j A−2

j (z)(s̄ − s̄j ).



664 G. Pan

Consider dn3 first. It is proved in (3.12) of [15] that

E
∣∣xT

1 Bx̄1
∣∣k = O

(
n(k/2)−2εk−4

n

)
for k ≥ 4, (2.30)

where x1 and x̄j = x̄ − n−1xj are independent of B with a bounded spectral norm. This implies that

E
∣∣sT

1 A−2
j (z)s̄1

∣∣k = E
∣∣xT

1 T1/2
n A−2

j (z)T1/2
n x̄1

∣∣k = O
(
n(k/2)−2εk−4

n

)
for k ≥ 4, (2.31)

where yields

n∑
j=1

(Ej − Ej−1)dn3
i.p.−→ 0.

Furthermore, write

dn1 = d
(1)
n1 + d

(2)
n1 + d

(3)
n1 + d

(4)
n1 ,

where

d
(1)
n1 = 1

n
sT
j A−2

j (z)s̄j , d
(2)
n1 = 1

n2
sT
j A−2

j (z)sj

and

d
(3)
n1 = 1

n
sT
j

(
A−2(z) − A−2

j (z)
)
s̄j , d

(4)
n1 = 1

n2
sT
j

(
A−2(z) − A−2

j (z)
)
sj .

From (2.31) we have

n∑
j=1

(Ej − Ej−1)d
(1)
n1

i.p.−→ 0.

By Lemma 2.7 in [3] and (2.21)

n−kE
∣∣sT

1 B(z)s1 − tr BT
∣∣k = O

(
ε2k−4
n n−1), k ≥ 2. (2.32)

This gives

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)d
(2)
n1

∣∣∣∣∣
2

= 1

n4

n∑
j=1

E
∣∣(Ej − Ej−1)

(
sT
j A−2

j (z)sj − tr TnA−2
j (z)

)∣∣2 = O
(
n−2).

Since ‖A−2(z)‖ ≤ 1/v2 we obtain

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)d
(4)
n1

∣∣∣∣∣
2

≤ M

n4v4

n∑
j=1

E‖sj‖4 ≤ M

n
.

Note that

A−1(z) − A−1
j (z) = −1

n
A−1

j (z)sj sT
j A−1

j (z)βj (z). (2.33)

Applying it we may write

d
(3)
n1 = − 1

n2
sT
j A−1

j (z)sj sT
j A−2

j (z)s̄j βj (z) + 1

n3
sT
j A−1

j (z)sj sT
j A−2

j (z)sj sT
j A−1

j (z)s̄j β
2
j (z)

− 1

n2
sT
j A−2

j (z)sj sT
j A−1

j (z)s̄j βj (z).
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It follows from (2.31), (2.32) and the fact that |βj (z)| ≤ 1/v that

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)d
(3)
n1

∣∣∣∣∣
2

≤ M

n
.

So far we have proved that

n∑
j=1

(Ej − Ej−1)dn1
i.p.−→ 0.

As in dealing with dn1, one may verify that

n∑
j=1

(Ej − Ej−1)dn2
i.p.−→ 0.

Summarizing the above we have obtained

s̄T A−2(z)s̄ − E
(
s̄T A−2(z)s̄

) i.p.−→ 0.

Applying the argument for s̄T A−2(z)s̄ to s̄T A−1(z)s̄ yields

s̄T A−1(z)s̄ − E
(
s̄T A−1(z)s̄

) i.p.−→ 0.

2.3. Tightness of (s̄T A−j (z)s̄ − E(s̄T A−j (z)s̄)), j = 1,2

This section is to prove tightness of K
(j)
n (z), j = 1,2 where K

(j)
n (z) = s̄T A−j (z)s̄ − E(s̄T A−j (z)s̄). We shall use

Theorem 12.3 of [8]. In what follows, we consider the case j = 2 only and the case j = 1 can be handled similarly,
even simpler. As pointed out in [3], condition (i) of Theorem 12.3 of [8] can be replaced with the assumption of
tightness at any point in the interval. From (3.18) of [15] we see that

E
∣∣s̄T A−2(z)s̄

∣∣2 ≤ M, (2.34)

which ensures condition (i) of Theorem 12.3 of [8]. We next verify condition (ii) of Theorem 12.3 of [8] by proving

sup
n,z1,z2∈∈Cn

E|K(2)
n (z1) − K

(2)
n (z2)|2

|z1 − z2|2 < ∞. (2.35)

Below we only prove the above inequality on C+
n and the remaining cases can be verified similarly.

Since the truncation steps are the same as those in [23] we have

P
(∥∥λmax(S)

∥∥ ≥ ζr

) = o
(
n−l

)
, P

(
λmin(S) ≤ ζl

) = o
(
n−l

)
(2.36)

for any l (see (1.9a) and (1.9b) in [3]), where lim supn λmax(Tn)(1 + √
c)2 < ζr and 0 < ζl < lim infn λmin(Tn)(1 −√

c)2. It is also proved in section 3 of [3] that for any positive k on C+
n

max
(
E

∥∥A−1(z)
∥∥k

,E
∥∥A−1

j (z)
∥∥k) ≤ M. (2.37)

As in the last section we write

K
(2)
n (z1) − K

(2)
n (z2)

z1 − z2
= [

s̄T A−2(z1)A−1(z2)s̄ − E
(
s̄T A−2(z1)A−1(z2)s̄

)]
+ [

s̄T A−1(z1)A−2(z2)s̄ − E
(
s̄T A−1(z1)A−2(z2)s̄

)]
.



666 G. Pan

Since the above two terms on the right-hand side are similar we only prove the tightness of the first term. To this end,
write

s̄T A−2(z1)A−1(z2)s̄ − E
(
s̄T A−2(z1)A−1(z2)s̄

)
=

n∑
j=1

(Ej − Ej−1)
[
s̄T A−2(z1)A−1(z2)s̄ − s̄T

j A−2
j (z1)A

−1
j (z2)s̄j

]

=
n∑

j=1

(Ej − Ej−1)[an1 + an2 + an3],

where

an1 = (s̄ − s̄j )
T A−2(z1)A−1(z2)s̄, an2 = s̄T

j

(
A−2(z1)A−1(z2) − A−2

j (z1)A
−1
j (z2)

)
s̄

and

an3 = s̄T
j A−2

j (z1)A
−1
j (z2)(s̄ − s̄j ).

It is straightforward to check that E‖sT
j ‖4 = E(sT

j sj )
2 = O(n2). As in (3.17) of [15] one can prove that

E
∣∣s̄T s̄

∣∣k = E
∣∣x̄T Tnx̄

∣∣k ≤ ME
∣∣x̄T x̄

∣∣k = O(1) for k ≥ 4. (2.38)

This, together with (2.37), implies that

E
∣∣ n∑
j=1

(Ej − Ej−1)(an1)
∣∣2 ≤ M

n2

n∑
j=1

E
∥∥sT

j A−2(z1)A−1(z2)s̄
∥∥2

≤ M

n2

n∑
j=1

(
E

∥∥sT
j

∥∥4)1/2(
E

∥∥A−2(z1)
∥∥12

E
∥∥A−1(z2)

∥∥12
E‖s̄‖12)1/6 ≤ M.

This argument also works for an3.
We further write

an2 = a
(1)
n2 + a

(2)
n2 + a

(3)
n2 ,

where

a
(1)
n2 = s̄T

j

(
A−1(z1) − A−1

j (z1)
)
A−1(z1)A−1(z2)s̄

= −1

n
s̄T
j A−1

j (z1)sj sT
j A−1

j (z1)A−1(z1)A−1(z2)s̄βj (z),

a
(2)
n2 = s̄T

j A−1
j (z1)

(
A−1(z1) − A−1

j (z1)
)
A−1(z2)s̄

= −1

n
s̄T
j A−2

j (z1)sj sT
j A−1

j (z1)A−1(z2)s̄βj (z)

and

a
(3)
n2 = s̄T

j A−2
j (z1)

(
A−1(z2) − A−1

j (z2)
)
s̄

= −1

n
s̄T
j A−2

j (z1)A
−1
j (z2)sj sT

j A−1
j (z2)s̄βj (z).
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In the second equality of each a
(j)

n2 , j = 1,2,3 above we also use (2.33). Note that (one may see the remark to (3.2)
in [3])∣∣βj (z)

∣∣ = ∣∣1 − n−1sT
j A−1(z)sj

∣∣ ≤ 1 + Mηr + Mn2+αI
(‖S‖ ≥ ηr or λmin(S) ≤ ηl

)
, (2.39)

where lim supn λmax(Tn)(1 + √
c)2 < ηr < ur and ul < ηl < lim supn λmin(Tn)I(0,1)(c)(1 − √

c)2. Also we have

n−1/2
∣∣sT

1 A−1
1 (z1)A−1(z1)A−1(z2)s̄

∣∣ ≤ n−1/2
∥∥sT

1

∥∥‖s̄‖∥∥A−1
1 (z1)A−1(z1)A−1(z2)

∥∥
≤ Mηr‖s̄‖ + Mn6+4αI

(‖S‖ ≥ ηr or λmin(S1) ≤ ηl

)
, (2.40)

where we use (2.24) and the fact that n−1/2‖s1‖2 is smaller than ηr if ‖S‖ < ηr , and n−1/2‖s1‖2 ≤ n otherwise. Here
S1 = S − n−1s1sT

1 . One should note that (2.31) still holds when B is replaced by A−1
j (z) or A−2

j (z) due to (2.37). We
then conclude from (2.36), (2.39), (2.31), (2.38) and (2.40) that

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)
(
a

(1)
n2

)∣∣∣∣∣
2

≤ M

n∑
j=1

E
∣∣a(1)

n2

∣∣2

≤ M
(
E

∣∣s̄T
j A−1

j (z1)sj

∣∣4
E‖s̄‖4)1/2

+ Mn20+12αP
(‖S‖ ≥ ηr or λmin(S1) ≤ ηl

) ≤ M.

This argument apparently applies to the terms a
(j)

n2 , j = 2,3. Therefore (2.35) is satisfied and K
(2)
n (z) is tight.

2.4. Convergence of E(s̄T A−2(z)s̄) and E(s̄T A−1(z)s̄)

The aim in this section is to find the limits of E(s̄T A−2(z)s̄) and E(s̄T A−1(z)s̄). In what follows, all bounds including
O(·) and o(·) expressions hold uniformly on Cn.

Consider E(s̄T A−2(z)s̄) first. Applying s̄ = 1
n

∑n
j=1 sj , (2.26) and (2.33) we obtain

E
[
s̄T A−2(z)s̄

] = 1

n

n∑
j=1

E
[
sT
j A−1

j (z)A−1(z)s̄βj (z)
]

= 1

n

n∑
j=1

E
[
sT
j A−2

j (z)s̄βj (z)
] − 1

n2

n∑
j=1

E
[
sT
j A−2

j (z)sj sT
j A−1

j (z)s̄β2
j (z)

]
= qn1 + qn2 + qn3 + qn4,

where

qn1 = 1

n

n∑
j=1

E
[
sT
j A−2

j (z)s̄j βj (z)
]
, qn3 = − 1

n2

n∑
j=1

E
[
sT
j A−2

j (z)sj sT
j A−1

j (z)s̄j β
2
j (z)

]

and

qn2 = 1

n2

n∑
j=1

E
[
sT
j A−2

j (z)sj βj (z)
]
, qn4 = − 1

n3

n∑
j=1

E
[
sT
j A−2

j (z)sj sT
j A−1

j (z)sj β
2
j (z)

]
.

Using

βj (z) = b1(z) − βj (z)b1(z)γj (z) (2.41)
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we further obtain

qn1 = −1

n

n∑
j=1

E
[
sT
j A−2

j (z)s̄j βj (z)b1(z)γj (z)
]
.

Moreover, it is proved in [3] (see (3.5) and three lines below it in [3]) that

E
∣∣γ1(z)

∣∣k ≤ Mn−1ε2k−4
n , E

∣∣β1(z)
∣∣k ≤ M, k ≥ 2,

∣∣b1(z)
∣∣ ≤ M. (2.42)

We then conclude from (2.39), (2.31), (2.40) and (2.42) that

|qn1| ≤ M
(
E

∣∣sT
1 A−2

1 (z)s̄1
∣∣2

E
∣∣γ1(z)

∣∣2)1/2 + Mn7+4αP
(‖S‖ ≥ ηr or λmin(S1) ≤ ηl

) ≤ M√
n
. (2.43)

Applying a similar approach one can prove that

|qn3| ≤ M√
n
.

By (2.41) we have

qn2 = b1(z)E

[
1

n
tr A−2

1 (z)Tn

]
+ b1(z)

n2

n∑
j=1

E
[
sT
j A−2

j (z)sj βj (z)γj (z)
]

= b1(z)E

[
1

n
tr A−2

1 (z)Tn

]
+ O

(
1√
n

)
, (2.44)

where the last step uses the fact that the absolute value of the second term of qn2 is bounded by M/
√

n by the same
approach as that used in (2.43).

From (2.41) we may write

qn4 = −b2
1(z)E

[
1

n
tr A−1

1 (z)Tn

]
E

[
1

n
tr A−2

1 (z)Tn

]
+ q

(1)
n4 + q

(2)
n4 + q

(3)
n4 ,

where

q
(1)
n4 = − 1

n3

n∑
j=1

E
[
sT
j A−2

j (z)sj sT
j A−1

j (z)sj β
2
j (z)b2

1(z)γ
2
j (z)

]
,

q
(2)
n4 = 2

n3

n∑
j=1

E
[
sT
j A−2

j (z)sj sT
j A−1

j (z)sj βj (z)b
2
1(z)γj (z)

]

and

q
(3)
n4 = − 1

n2

n∑
j=1

E
[(

n−1sT
j A−2

j (z)sj − n−1EtrA−2
j (z)

)
γj (z)b

2
1(z)

]
.

By (3.2) in [3], as in (2.43), we may prove that |q(k)
n4 | ≤ M/

√
n, k = 1,2,3. It follows from that

qn4 = −b2
1(z)E

[
1

n
tr A−1

1 (z)Tn

]
E

[
1

n
tr A−2

1 (z)Tn

]
+ O

(
1√
n

)
. (2.45)
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This, together with (2.44), (2.43), (2.33) and (2.42), yields

E
[
s̄T A−2(z)s̄

] = qn1 + qn2 + qn2 + qn4 = b2
1(z)E

[
1

n
tr A−2(z)Tn

]
+ O

(
1√
n

)
. (2.46)

It was proved in Section 4 of [3] (see three lines above (4.14) there) that

b1(z) + zm(z) −→ 0. (2.47)

Consider E[ 1
n

tr A−2(z)Tn] now. To this end we need formula (4.13) in [3], which states

A−1(z) = −H−1(z) + b1(z)A(z) + B(z) + C(z), (2.48)

where

H−1(z) = (
zI − b1(z)Tn

)−1
, A(z) =

n∑
j=1

H−1(z)
(
sj s∗

j − n−1Tn

)
A−1

j (z),

B(z) =
n∑

j=1

(
βj (z) − b1(z)

)
H−1(z)sj s∗

j A−1
j (z)

and

C(z) = n−1b1(z)H−1(z)Tn

n∑
j=1

βj (z)A
−1
j (z)sj s∗

j A−1
j (z).

It was proved in (4.15) and (4.16) of [3] that

1

n
trB(z)M ≤ Cn−1/2(E‖M‖4)1/4

,
1

n
trC(z)M ≤ Cn−1(E‖M‖4)1/4

. (2.49)

Taking the matrix M = I in (4.17) and (4.19) of [3] yields

En−1A1(z) = −b1(z)
(
En−1 tr A−1(z)TnA−1(z)Tn

)(
En−1 tr A−1(z)H−1(z)Tn

) + o(1). (2.50)

From (2.48) and (2.49) we have

En−1 tr A−1(z)H−1(z)Tn = n−1 tr
[(−H−1(z) + EB(z) + EC(z)

)
H−1(z)Tn

]
= −cn

z2

∫
t dHn(t)

(1 + tEmn)
2

+ o(1). (2.51)

It follows from (2.48) and (2.50) that

E

[
1

n
tr A−2(z)Tn

]
= −E

[
1

n
tr A−1(z)H−1(z)Tn

]

− b2
1(z)E

[
n−1 tr A−1(z)TnA−1(z)Tn

]
E

[
n−1 tr A−1(z)H−1(z)Tn

] + o(1).

By (4.22) of [3] we obtain

E
[
n−1 tr A−1(z)TnA−1(z)Tn

] =
cn

z2

∫
t2 dHn(t)

(1+tEmn)2

1 − cn

∫ (Emn)2t2 dHn(t)

(1+tEmn)2

+ o(1).
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This, together with (2.51), yields

E

[
1

n
tr A−2(z)Tn

]
=

cn

z2

∫
t dHn(t)

(1+tEmn)2

1 − cn

∫ (Emn)2t2 dHn(t)

(1+tEmn)2

+ o(1).

It was proved in (4.1) of [3] that

sup
z∈Cn

∣∣Emn(z) − m(z)
∣∣ → 0.

This, (2.46) and (2.47) ensure that

E
[
s̄T A−2(z)s̄

] =
cm2(z)

∫
t dH(t)

(1+tm)2

1 − c
∫ (m)2t2 dH(t)

(1+tm)2

+ o(1).

Consider E(s̄T A−1(z)s̄) next. As in dealing with the term E(s̄T A−2(z)s̄), write

E
(
s̄T A−1(z)s̄

) = 1

n

n∑
j=1

E
[
sT
j A−1

j (z)s̄j βj (z)
] + 1

n2

n∑
j=1

E
[
sT
j A−1

j (z)sj βj (z)
]
.

By (2.41) and (2.42) the absolute value of the fist term on the right-hand side of the above equality converges to zero
as n → ∞. From (2.41), (2.42) and (2.47) the above second term becomes

b1(z)E
1

n
tr A−1

1 (z)Tn = 1 − b1(z) → 1 + zm(z).

Therefore

E
(
s̄T A−1(z)s̄

) = 1 − b1(z) → 1 + zm(z). (2.52)

2.5. Convergence of s̄T A−2(z)s̄/(1 − s̄T A−1(z)s̄)

From sections 2.2 to 2.4 we see that after centering the stochastic processes ̂s̄T A−2(z)s̄ and ̂s̄T A−1(z)s̄ converge in
distribution in the C space, the space of continuous functions, to zero for z ∈ C . This implies that

sup
z∈C

∣∣∣∣ ̂s̄T A−2(z)s̄ −
cm2(z)

∫
t dH(t)

(1+tm(z))2

1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2

∣∣∣∣ i.p.−→ 0

and that

sup
z∈C

∣∣ ̂s̄T A−1(z)s̄ − 1 − zm(z)
∣∣ i.p.−→ 0. (2.53)

Thus we conclude from (2.25), (2.28) and (2.59) below that

sup
z∈C

∣∣∣∣ ̂s̄T A−2(z)s̄

1 − ̂s̄T A−1(z)s̄
+

cm(z)
∫

t dH(t)

(1+tm(z))2

z(1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2 )

∣∣∣∣ i.p.−→ 0. (2.54)

Theorem 1 follows from Lemma 1.1 of [3], the argument of Theorem 1.4 of [16], Theorems 4.4 and 5.1 of [8], (2.22),
(2.23), (2.29) and (2.54). Formulaes (1.8) and (1.9) follow from (1.18) and (1.19) of [16].
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2.6. Derivations of (1.10) and (1.11)

We now verify (1.10) and (1.11). Consider (1.10) first. As in [3], we select the contour to be the rectangle with sides
parallel to the axes. It intersects the real axis at a1 	= 0 and b1 (the support of Fc,H is a subset of (a1, b1)), and the
horizontal sides are a distance v away from the real axis. We let v → 0. By (1.3) we obtain

dm(z)

dz
= m2(z)

1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2

.

This, together with (1.3) and integration by parts, ensures that

1

2πi

∫
g(z)

cm(z)
∫

t dH(t)

(1+tm(z))2

z(1 − c
∫ (m(z))2t2 dH(t)

(1+tm(z))2 )
dz

= 1

2πi

∫
g(z)

d

dz

(
Log

(
zm(z)

))
dz = − 1

2πi

∫
g′(z)Log

(
zm(z)

)
dz, (2.55)

where Log denotes any branch of the logarithm. By the fact that |m(z)| ≤ 1/v and (5.1) in [3] the integrals on the two
vertical sides in (2.55) are bounded in absolute value by Mv logv−1, which converges to zero. Therefore the integral
in (2.55) equals

− 1

π

∫ b1

a1

g′
i (x + iv) log

∣∣(x + iv)m(x + iv)
∣∣dx − 1

π

∫ b1

a1

g′
r (x + iv) arg

[−(x + iv)m(x + iv)
]

dx. (2.56)

By the fact that |m(z)| ≤ 1/v, (5.6) and (5.1) in [3] the first term in (2.56) is bounded in absolute value by Mv logv−1,
converging to zero. Therefore we conclude from the dominated convergence theorem that

− 1

2πi

∫
g′(z)Log

(
zm(z)

)
dz → − 1

π

∫
g′(x) arg

[
xm(x)

]
dx. (2.57)

Consider (1.11) now. Keep in mind that Tn = I in this case. We select the same contour for evaluating (1.11) as
that for (1.10) but with a1 and b1 replaced by a and b (a and b are defined in the Introduction). The simplified formula
for the first term on the right-hand of (1.8) is given in [3]. By remark 2 the second term on the right-hand of (1.8) then
becomes

−c(EX4
11 − 3)

2πi

∫
g(z)m3(z)/(1 + m(z))3

1 − cm2(z)/(1 + m(z))2
dz. (2.58)

To calculate (2.58), solving (1.3) gives

m(z) = −(z + 1 − c) + √
(z − 1 − c)2 − 4c

2z
.

It follows that |m(z)| and |m(z)| are bounded on the contour C . Hence by (1.3) and (1.5)∣∣∣∣ 1

1 + cm(z)

∣∣∣∣ = ∣∣1 − c − czm(z)
∣∣ ≤ M (2.59)

and by (1.3)∣∣∣∣ cm(z)

1 + m(z)

∣∣∣∣ = ∣∣1 + zm(z)
∣∣ ≤ M.
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One can verify that

1 − c
m2(z)

(1 + m(z))2
=

√
(z − 1 − c)2 − 4c

2c

(1 + cm(z))

cm(z)
,

where we use (1.5) and (1.3). Note that

∣∣√(z − 1 − c)2 − 4c
∣∣ = ∣∣√(z − a)(z − b)

∣∣
and that∫ b

a

1√
(x − a)(b − x)

dx < ∞. (2.60)

We then conclude from (2.59) and (2.60) that the integrals on the vertical lines in (2.58) are bounded in absolute value
by

Mv

∫ b

a

1√
(x − a)(b − x)

dx,

converging to zero. The integral on the two horizontal lines equals

−c(EX4
11 − 3)

π

∫
gi(z)Re

[
m3(z)/(1 + m(z))3

1 − cm2(z)/(1 + m(z))2

]
dz

− c(EX4
11 − 3)

π

∫
gr(z)�

[
m3(z)/(1 + m(z))3

1 − cm2(z)/(1 + m(z))2

]
dz, (2.61)

where g′
i (x + iv) and g′

r (x + iv) denote, respectively, the imaginary part and real part of g′(x + iv) and Re(·) and �(·)
also denote, respectively, the imaginary part and real part of the corresponding function. It follows from (5.6) in [3]
and (2.59) and (2.60) that the first term in (2.61) is bounded in absolute value by

Mv

∫ b

a

1√
(x − a)(b − x)

dx,

converging to zero. Applying the generalized dominated convergence theorem and (2.59) and (2.60) to the second
term in (2.61) yields the third term in (1.11).

3. Proof of Theorem 2

Let ‖ · ‖ denote the spectral norm of matrices or the Euclidean norm of vectors. Let z = u + iv, v > 0. For K > 0,

let X̃n = (X̃ij ), ¯̃s = 1
n

∑n
j=1 s̃j and S̃ = 1

n
X̃nX̃T

n − ¯̃s¯̃sT
, where X̃ij = Xij I (|Xij | ≤ K) − EXij I (|Xij | ≤ K) and

s̃j = (X̃1j , . . . , X̃pj )
T . Note that

∣∣xT
n (S − zI)−1xn − xT

n (S̃ − zI)−1xn

∣∣ ≤ ‖xn‖2
∥∥(S − zI)−1 − (S̃ − zI)−1

∥∥
≤ 1

v2

∥∥∥∥1

n
XnXT

n − 1

n
X̃nX̃T

n

∥∥∥∥ + 1

v2

∥∥s̄s̄T − ¯̃s¯̃sT ∥∥.

Moreover, it is proven in [4] that ‖ 1
n

XnXT
n − 1

n
X̃nX̃T

n ‖ can be arbitrary small if K is sufficiently large. Thus, it suffices

to investigate ‖(s̄ − ¯̃s)(s̄ − ¯̃sT
)‖ and‖(s̄ − ¯̃s)¯̃sT ‖.
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Define ŝj = T1/2
n (X1j − X̃1j , . . . ,Xpj − X̃pj )

T and then obtain

∥∥(s̄ − ¯̃s)(s̄ − ¯̃s)T ∥∥ = 1

n2

n∑
j=1

(
ŝT
j ŝj − E

(
ŝT
j ŝj

)) + 1

n2

n∑
j1 	=j2

ŝT
j1

ŝj2 + 1

n2

n∑
j=1

E
(
ŝT
j ŝj

)
. (3.1)

Since

E

∣∣∣∣∣ 1

n2

n∑
j=1

(
ŝT
j ŝj − E

(
ŝT
j ŝj

))∣∣∣∣∣
2

= 1

n4

n∑
j=1

E
∣∣(ŝT

j ŝj − E
(
ŝT
j ŝj

))∣∣2 ≤ M

n2
(3.2)

we have 1
n2

∑n
j=1(ŝ

T
j ŝj −EŝT

j ŝj )
a.s.−→ 0 by the Borel–Cantelli lemma. Obviously 1

n2

∑n
j=1 E(ŝT

j ŝj ) can be arbitrarily
small by choosing K large sufficiently. A direct calculation indicates that

E

∣∣∣∣∣ 1

n2

n∑
j1 	=j2

ŝT
j1

ŝj2

∣∣∣∣∣
4

= 1

n8

∑
j1 	=j2,j3 	=j4,

j5 	=j6,j7 	=j8

E
[
ŝT
j1

ŝj2 ŝT
j3

ŝj4 ŝT
j5

ŝj6 ŝT
j7

ŝj8

]

≤ M

n8

∑
j1 	=j2

E
∣∣ŝT

j1
ŝj2

∣∣4 + M

n8

∑
j1 	=j2,j2 	=j3,j3 	=j4,j4 	=j1

E
∣∣ŝT

j1
ŝj2 ŝT

j2
ŝj3 ŝT

j3
ŝj4 ŝT

j4
ŝj1

∣∣

+ M

n8

∑
j1 	=j2,j2 	=j3,j3 	=j1

E
∣∣(ŝT

j1
ŝj2

)2ŝT
j2

ŝj3 ŝT
j3

ŝj1

∣∣ + M

n8

∑
j1 	=j2,j3 	=j2

E
∣∣(ŝT

j1
ŝj2

)2(ŝT
j2

ŝj3

)2∣∣

+ M

n8

∑
j1 	=j2,j3 	=j4

E
∣∣ŝT

j1
ŝj2

∣∣2
E

∣∣ŝT
j3

ŝj4

∣∣2 = O

(
1

n2

)
. (3.3)

Therefore ‖(s̄ − ¯̃s)(s̄ − ¯̃sT
)‖ can be arbitrary small with probability one by choosing K large sufficiently. Likewise,

one can also verify that ‖(s̄ − ¯̃s)¯̃sT ‖ can be arbitrary small by choosing K large sufficiently. The re-scaling of X̃ij can
be treated similarly, because limn→∞ E|X̄11|2 = 1. Hence, in what follows, we may assume |Xij | ≤ K,EX11 = 0 and
E|X11|2 = 1 (for simplicity, suppressing all super- or sub-scripts on the variables Xij ).

Recalling A−1(z) = (S − zI)−1, it is observed that

xT
n (S − zI)−1xn = xT

n A−1(z)xn + xT
n A−1(z)s̄s̄T A−1(z)xn

1 − s̄T A−1(z)s̄
. (3.4)

To prove Theorem 2, according to the argument of Theorem 1 in [4] it is sufficient to show that

xT
n A−1(z)s̄s̄T A−1(z)xn

1 − s̄T A−1(z)s̄
a.s.−→ 0. (3.5)

To this end, we first show that

xT
n A−1(z)s̄ − E

(
xT
n A−1(z)s̄

) a.s.−→ 0. (3.6)

We use the same notation as in the proof of Theorem 1. Write

xT
n A−1(z)s̄ − E

(
xT
n A−1(z)s̄

) =
n∑

j=1

Ej

(
xT
n A−1(z)s̄

) − Ej−1
(
xT
n A−1(z)s̄

)

=
n∑

j=1

(Ej − Ej−1)
(
xT
n A−1(z)s̄ − xT

n A−1
j (z)s̄j

)
. (3.7)
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Furthermore, we have

xT
n A−1(z)s̄ − xT

n A−1
j (z)s̄j = cn1 + cn2 + cn3, (3.8)

where, via (2.33),

cn1 = xT
n

(
A−1(z) − A−1

j (z)
)
(s̄ − s̄j ) = − 1

n2
xT
n A−1

j (z)sj sT
j A−1

j (z)sj βj (z),

cn2 = xT
n

(
A−1(z) − A−1

j (z)
)
s̄j = −1

n
xT
n A−1

j (z)sj sT
j A−1

j (z)s̄j βj (z)

and

cn3 = xT
n A−1

j (z)(s̄ − s̄j ) = 1

n
xT
n A−1

j (z)sj .

Observe that |βj (z)| ≤ |z|/v and |bj (z)| ≤ |z|/v (see (3.4) in [2]). Using an argument similar to (3.19) of [15] one
can prove that

E
∣∣xT

n A−1
j (z)sj

∣∣4 = O(1). (3.9)

By the Burkholder inequality and the fact that |sT
j A−1

j (z)sj /n| ≤ M/v we have

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)cn1

∣∣∣∣∣
4

≤ M

n4
E

[
n∑

j=1

∣∣∣∣1

n
xT
n A−1

j (z)sj sT
j A−1

j (z)sj

∣∣∣∣
2
]2

≤ M

n3

n∑
j=1

E
∣∣xT

n A−1
j (z)sj

∣∣4 = O

(
1

n2

)
, (3.10)

which implies that
∑n

j=1(Ej − Ej−1)cn1
a.s.−→ 0. The above argument also ensures that

∑n
j=1(Ej − Ej−1)cn3

a.s.−→ 0.
Similarly, by the Burkholder inequality, Lemma 2.7 in [2] and (2.38) we have

E

∣∣∣∣∣
n∑

j=1

(Ej − Ej−1)cn2

∣∣∣∣∣
4

≤ M

n3

n∑
j=1

E
∣∣sT

j A−1
j (z)s̄j xT

n A−1
j (z)sj

∣∣4

≤ M

n3

n∑
j=1

[
E

∣∣sT
j A−1

j (z)s̄j xT
n A−1

j (z)sj − xT
n A−2

j (z)s̄j

∣∣4 + E
∣∣xT

n A−2
j (z)s̄j

∣∣4]

≤ M

n3

n∑
j=1

E
∥∥s̄T

j s̄j

∥∥2 = O

(
1

n2

)
. (3.11)

Thus we prove (3.6), as expected.
Finally applying s̄ = ∑

j sj /n gives

E
(
xT
n A−1(z)s̄

) = 1

n

∑
j=1

E
(
xT
n A−1(z)sj

) = 1

n

∑
j=1

E
(
xT
n A−1

j (z)sj βj (z)
)

= −1

n

∑
j=1

E
(
xT
n A−1

j (z)sj b1(z)βj (z)γj (z)
) = O

(
1√
n

)
, (3.12)

where the step before to the last one uses (2.41) and the last step uses Holder’s inequality, (2.42) and (3.9). Therefore
(3.5) follows from (3.6), (3.12), (2.28), and the fact that s̄T s̄ ≤ M x̄T x̄

a.s.→ Mc, which can be verified by an argument
similar to (3.1)–(3.3).
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4. Proof of Theorem 3

The proof of Theorem 3 is similar to that of Theorem 1. The only difference is that the extra random variable here
converges in probability in the C space to zero.

Similar to (2.19) we can also truncate the underlying random variables at εn

√
n with εn defined as before. Thus, in

view of the structure of S we may assume that the following additional conditions hold:

|Xij | ≤ √
nεn, EXij = 0, EX2

11 = 1 + o
(
p−1) (4.1)

and under assumption (b) of Theorem 3

E(X11 − μ)4 = 3 + o(1). (4.2)

It is proved in section 10.7 of [5] that Lemma 2 in [4] holds under conditions (4.1) and (4.2). Also, we see that
Theorem 1.3 of [16] is true under conditions (4.1) and (4.2) by carefully checking on the argument of Theorem 1.3 of
[16]. Thus, to prove Theorem 3, by Theorems 4.4 and 5.1 of [8], (2.53) and (3.4) it is sufficient to prove that on the
contour C (C is defined in Theorem 1)

n1/4xT
n Â−1(z)s̄

i.p.−→ 0, (4.3)

where the truncated process xT
n Â−1(z)s̄ is obtained from xT

n A−1(z)s̄ like the truncated process s̄T Â−2(z)s̄ is obtained
from s̄T A−2(z)s̄ in Theorem 1.

To prove (4.3), as in Theorem 1, it is sufficient to prove that

n1/4xT
n Â−1(z)s̄

d−→ 0. (4.4)

For each z ∈ Cu from the definition of cn1 in (3.8) we have

E

∣∣∣∣∣n1/4
n∑

j=1

(Ej − Ej−1)cn1

∣∣∣∣∣
2

≤ M
√

n

n∑
j=1

E|cn1|2 ≤ Mn−1/2,

because by Holder’s inequality, (2.42), (2.20) and (3.9)

E|cn1|2 ≤ M

(
E

∣∣∣∣1

n
xT
n A−1

j (z)sj

∣∣∣∣
4

E

∣∣∣∣1

n
sT
j A−1

j (z)sj

∣∣∣∣
4)1/2

= O
(
n−2).

Appealing to (3.9) yields

E

∣∣∣∣∣n1/4
n∑

j=1

(Ej − Ej−1)cn3

∣∣∣∣∣
2

≤ Mn−1/2.

By (2.31), (2.20) and (3.9) we obtain

E

∣∣∣∣∣n1/4
n∑

j=1

(Ej − Ej−1)cn2

∣∣∣∣∣
2

≤ Mn−1/2.

With Mn(z) = n1/4(xT
n A−1(z)s̄ − ExT

n A−1(z)s̄) we thus have

E
∣∣Mn(z)

∣∣2 = O
(
n−1/2). (4.5)
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By (2.37) and (2.40), (3.9) holds for z ∈ C+
n . For z ∈ C+

n , it follows from (3.12), (3.9), (2.20), (2.36), (2.39) and
(2.42) that

∣∣E(
n1/4xT

n A−1(z)s̄
)∣∣ =

∣∣∣∣ 1

n3/4

∑
j=1

E
(
xT
n A−1

j (z)sj b1(z)βj (z)γj (z)
)∣∣∣∣

≤ Mn1/4(E∣∣xT
n A−1

1 (z)s1
∣∣2

E
∣∣γ1(z)

∣∣2)1/2 + Mv−4n3P
(
λmax(S) > ηr or λmin(S1) ≤ ηl

)
≤ M/n1/4. (4.6)

From (3.12) one can verify that for �(z) = v0 (v0 is defined in the proof of Theorem 1)

E
∣∣n1/4xT

n A−1(z)s̄
∣∣2 ≤ M,

which implies condition (i) of Theorem 12.3 of [8]. Thus, in view of (4.5) and (4.6), to ensure that convergence in
(4.4) is true on the contour C , it suffices to show that

E
|Mn(z1) − Mn(z2)|2

|z1 − z2|2 ≤ M, if z1, z2 ∈ C+
n ∪ C−

n , (4.7)

where C+
n and C−

n are defined in Theorem 1. Write

Mn(z1) − Mn(z2)

z1 − z2

= n1/4(xT
n A−1(z1)A−1(z2)s̄ − E

(
xT
n A−1(z1)A−1(z2)s̄

))
= n1/4

n∑
j=1

(Ej − Ej−1)
(
xT
n A−1(z1)A−1(z2)s̄ − xT

n A−1
j (z1)A

−1
j (z2)s̄j

)
= dn1 + dn2 + dn3 + dn4 + dn5 + dn6,

where

dn1 = n1/4

n3

n∑
j=1

(Ej − Ej−1)βj (z1)βj (z2)sT
j A−1

j (z1)A
−1
j (z2)sj sT

j A−1
j (z2)sj xT

n A−1
j (z1)sj ,

dn2 = −n1/4

n2

n∑
j=1

(Ej − Ej−1)βj (z1)sT
j A−1

j (z1)A
−1
j (z2)sj xT

n A−1
j (z1)sj ,

dn3 = −n1/4

n2

n∑
j=1

(Ej − Ej−1)βj (z2)xT
n A−1

j (z1)A
−1
j (z2)sj sT

j A−1
j (z2)sj ,

dn4 = n1/4

n2

n∑
j=1

(Ej − Ej−1)βj (z1)βj (z2)sT
j A−1

j (z1)A
−1
j (z2)sj sT

j A−1
j (z2)s̄j xT

n A−1
j (z1)sj ,

dn5 = −n1/4

n

n∑
j=1

(Ej − Ej−1)βj (z1)sT
j A−1

j (z1)A
−1
j (z2)s̄j xT

n A−1
j (z1)sj

and

dn6 = −n1/4

n

n∑
j=1

(Ej − Ej−1)βj (z2)xT
n A−1

j (z1)A
−1
j (z2)sj sT

j A−1
j (z2)s̄j .
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Here we also use the fact that s̄ = s̄j + sj /n and the identity above (3.7) in [3]. By (2.36), (2.40), (2.39), (3.9) and
(2.39) we obtain

E|dn1|2 ≤ M√
n
E

∣∣xT
n A−1

1 (z1)s1
∣∣2 + Mv−12n11/2P

(
λmax(S) > ηr or λmin(S1) ≤ ηl

) ≤ M√
n
.

This argument of course handles the terms dn2 and dn3. Furthermore, we conclude from (2.36), (2.40), (2.39), (3.9),
(2.39), (2.31) and Holder’s inequality that

E|dn4|2 ≤ M√
n

(
E

∣∣sT
1 A−1

1 (z2)s̄1
∣∣2

E
∣∣xT

n A−1
1 (z1)s1

∣∣2)1/2

+ Mv−12n11/2P
(
λmax(S) > ηr or λmin(S1) ≤ ηl

) ≤ M√
n
.

Obviously, the argument for dn4 also applies to dn5 and dn6. Thus, the proof of (4.3) is complete.
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