Dans cet article, on presente une étude d'une version du modèle de Hastings-Levitov HL (0) où la croissance est anisotrope. Deux limites d'échelle naturelles sont établies, et nous décrivons précisément les effets de l'anisotropie. Nous montrons que les formes limites du modèle peuvent être réalisées comme remplissages associés à l'équation de Loewner et que l'évolution de la mesure harmonique sur la frontière des agrégats tend vers un certain flot deterministe. Nous caractérisons enfin les fluctuations stochastiques autour de ce flot.
We consider a variation of the standard Hastings-Levitov model HL(0), in which growth is anisotropic. Two natural scaling limits are established and we give precise descriptions of the effects of the anisotropy. We show that the limit shapes can be realised as Loewner hulls and that the evolution of harmonic measure on the cluster boundary can be described by the solution to a deterministic ordinary differential equation related to the Loewner equation. We also characterise the stochastic fluctuations around the deterministic limit flow.
Mots clés : anisotropic growth models, scaling limits, Loewner differential equation, boundary flow
@article{AIHPB_2012__48_1_235_0, author = {Johansson Viklund, Fredrik and Sola, Alan and Turner, Amanda}, title = {Scaling limits of anisotropic {Hastings-Levitov} clusters}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {235--257}, publisher = {Gauthier-Villars}, volume = {48}, number = {1}, year = {2012}, doi = {10.1214/10-AIHP395}, mrnumber = {2919205}, zbl = {1251.82025}, language = {en}, url = {http://www.numdam.org/articles/10.1214/10-AIHP395/} }
TY - JOUR AU - Johansson Viklund, Fredrik AU - Sola, Alan AU - Turner, Amanda TI - Scaling limits of anisotropic Hastings-Levitov clusters JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 235 EP - 257 VL - 48 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/10-AIHP395/ DO - 10.1214/10-AIHP395 LA - en ID - AIHPB_2012__48_1_235_0 ER -
%0 Journal Article %A Johansson Viklund, Fredrik %A Sola, Alan %A Turner, Amanda %T Scaling limits of anisotropic Hastings-Levitov clusters %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 235-257 %V 48 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/10-AIHP395/ %R 10.1214/10-AIHP395 %G en %F AIHPB_2012__48_1_235_0
Johansson Viklund, Fredrik; Sola, Alan; Turner, Amanda. Scaling limits of anisotropic Hastings-Levitov clusters. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 1, pp. 235-257. doi : 10.1214/10-AIHP395. http://www.numdam.org/articles/10.1214/10-AIHP395/
[1] Coalescing Brownian motions on the line. Ph.D. thesis, Univ. Wisconsin, 1979. | MR
.[2] Discrete Löwner evolution. Ann. Fac. Sci. Toulouse Math. (6) 12 (2003) 433-451. | Numdam | MR | Zbl
.[3] Convergence of Probability Measures. Wiley, New York, 1999. | MR | Zbl
.[4] Ergodic theorems for random clusters. Stochastic Process. Appl. 120 (2010) 296-305. | MR | Zbl
.[5] Aggregation in the plane and Loewner's equation. Comm. Math. Phys. 216 (2001) 583-607. | MR | Zbl
and .[6] Laplacian path models. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002) 103-150. | MR | Zbl
and .[7] Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E 87 (1999) 1366-1378. | MR
, , , , and .[8] A two-dimensional growth process. In Proc. 4th Berkeley Sympos. Math. Statist. and Probab., Vol. IV 223-239. Univ. California Press, Berkeley, CA, 1961. | MR | Zbl
.[9] The Brownian web: Characterization and convergence. Ann. Probab. 32 (2004) 2857-2883. | MR | Zbl
, , and .[10] Bounded Analytic Functions, reviewed 1st edition. Graduate Texts in Mathematics 236. Springer, New York, 2007. | MR | Zbl
.[11] Table of Integrals, Series, and Products, 6th edition. Academic Press, San Diego, 2000. | MR | Zbl
and .[12] Laplacian growth as one-dimensional turbulence. Phys. D 116 (1998) 244-252. | Zbl
and .[13] Rescaled Lévy-Loewner hulls and random growth. Bull. Sci. Math. 133 (2009) 238-256. | MR | Zbl
and .[14] Diffusion limited aggregation with directed and anisotropic diffusion. J. Physique 45 (1984) 395-399.
, and .[15] Random Measures, 3rd edition. Akademie-Verlag, Berlin, 1983. | MR | Zbl
.[16] Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. | MR | Zbl
.[17] Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI, 2005. | MR | Zbl
.[18] Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004) 939-995. | MR | Zbl
, and .[19] On Laplacian growth. To appear.
, , and .[20] Planar aggregation and the coalescing Brownian flow. Available at http://arxiv.org/abs/0810.0211.
and .[21] Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299. Springer, Berlin-Heidelberg, 1992. | MR | Zbl
.[22] Anisotropic diffusion-limited aggregation. Phys. Rev. E 69 (2004) 061403.
, and .[23] Personal communication, 2008.
.[24] Some remarks on Laplacian growth. Topology Appl. 152 (2005) 26-43. | MR | Zbl
and .[25] Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. | Zbl
.[26] The true self-repelling motion. Probab. Theory Related Fields 111 (1998) 375-452. | MR | Zbl
and .[27] Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (1981) 1400-1403. | MR
and .Cité par Sources :