@article{AFST_2003_6_12_4_433_0, author = {Bauer, Robert O.}, title = {Discrete {L\"owner} evolution}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {433--451}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 12}, number = {4}, year = {2003}, zbl = {1054.60102}, language = {en}, url = {http://www.numdam.org/item/AFST_2003_6_12_4_433_0/} }
TY - JOUR AU - Bauer, Robert O. TI - Discrete Löwner evolution JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2003 SP - 433 EP - 451 VL - 12 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/item/AFST_2003_6_12_4_433_0/ LA - en ID - AFST_2003_6_12_4_433_0 ER -
%0 Journal Article %A Bauer, Robert O. %T Discrete Löwner evolution %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2003 %P 433-451 %V 12 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/item/AFST_2003_6_12_4_433_0/ %G en %F AFST_2003_6_12_4_433_0
Bauer, Robert O. Discrete Löwner evolution. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 12 (2003) no. 4, pp. 433-451. http://www.numdam.org/item/AFST_2003_6_12_4_433_0/
[1] Löwner's equation from a noncommutative probability perspective, math.PR/0208212
,[2] Mouvement Brownien plan, SLE, invariance conforme et dimensions fractales , Ph. D. thesis, Université Paris XI, UFR Scientifique d'Orsay, 2003.
,[3] Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , AMS and CIMS, Providence, Rhode Island ( 2000). | MR | Zbl
,[4] Grundzüge der modernen Analysis, Vieweg, Braunschweig (1985 ).
,[5] Univalent Functions, Springer, New York, Berlin (1983). | MR | Zbl
,[6] Criteria for the recurrence or transience of stochastic process. I, J. Math. Anal. Appl. 1, p. 314-330 (1960). | MR | Zbl
,[7] An introduction to the stochastic Loewner evolution, preprint, ( 2001) . | MR
,[8] Universality for conformally invariant intersection exponents, J. Eur. Math. Soc. 2, p. 291-328 (2000). | MR | Zbl
,[9] Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187, p. 237-273 (2001). | MR | Zbl
, , ,[10] Values of Brownian intersection exponents II: Plane exponents, Acta Math. 187, p. 275-308 (2001). | MR | Zbl
, , ,[11] Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist. 38, no. 1, p. 109-123 (2002). | Numdam | MR | Zbl
, , ,[12] Analyticity of intersection exponents for planar Brownian motion , arXiv:math.PR/0005295 v1 31 May 2000 .
, , ,[13] Theory of Functions of a Complex Variable , Vol. 3, Chelsea , New York (1977). | Zbl
,[14] Addition of freely independent random variables , J. Funct. Anal. 106, p. 409-438 (1992). | MR | Zbl
,[15] Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, no. 1, p. 39-58 (2001). | MR | Zbl
,[16] Monotonic convolution and monotonic Lévy- Hinčin formula, preprint (2000).
,[17] Basic properties of SLE, arXiv:math.PR/0106036.
, ,[18] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118, p. 221-288 (2000). | MR | Zbl
,[19] Probability Theory, an Analytic View , Cambridge University Press, Cambridge (1993). | MR | Zbl
,[20] on random planar curves and Schramm-Löwner evolutions, draft of lecture notes of the St. Flour summer school, 2002.
,