Cavity method in the spherical SK model
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1020-1047.

Nous développons la méthode de la cavité pour le modèle sphérique de Sherrington-Kirkpatrick à haute température et champs externe faible. Nous illustrons la méthode par le calcul de la matrice de covariance des fluctuations des recouvrements et de la magnétisation.

We develop a cavity method for the spherical Sherrington-Kirkpatrick model at high temperature and small external field. As one application we compute the limit of the covariance matrix for fluctuations of the overlap and magnetization.

DOI : 10.1214/08-AIHP193
Classification : 60K35, 82B44
Mots-clés : Sherrington-Kirkpatrick model, cavity method
@article{AIHPB_2009__45_4_1020_0,
     author = {Panchenko, Dmitry},
     title = {Cavity method in the spherical {SK} model},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1020--1047},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {4},
     year = {2009},
     doi = {10.1214/08-AIHP193},
     mrnumber = {2572162},
     zbl = {1193.82021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/08-AIHP193/}
}
TY  - JOUR
AU  - Panchenko, Dmitry
TI  - Cavity method in the spherical SK model
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2009
SP  - 1020
EP  - 1047
VL  - 45
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/08-AIHP193/
DO  - 10.1214/08-AIHP193
LA  - en
ID  - AIHPB_2009__45_4_1020_0
ER  - 
%0 Journal Article
%A Panchenko, Dmitry
%T Cavity method in the spherical SK model
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2009
%P 1020-1047
%V 45
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/08-AIHP193/
%R 10.1214/08-AIHP193
%G en
%F AIHPB_2009__45_4_1020_0
Panchenko, Dmitry. Cavity method in the spherical SK model. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1020-1047. doi : 10.1214/08-AIHP193. http://www.numdam.org/articles/10.1214/08-AIHP193/

[1] Crisanti, A. and Sommers, H. J. The spherical p-spin interaction spin glass model: The statics. Z. Phys. B. Condensed Matter 83 (1992) 341-354.

[2] Guerra, F. and Toninelli, F. L. Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model. J. Math. Phys. 43 (2002) 6224-6237. | MR | Zbl

[3] Sherrington, D. and Kirkpatrick, S. Solvable model of a spin glass. Phys. Rev. Lett. 35 (1975) 1792-1796.

[4] Talagrand, M. Replica symmetry breaking and exponential inequalities for the Sherrington-Kirkpatrick model. Ann. Probab. 28 (2000) 1018-1062. | MR | Zbl

[5] Talagrand, M. Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Springer, Berlin, 2003. | MR | Zbl

[6] Talagrand, M. Free energy of the spherical mean field model. Probab. Theory Related Fields 134 (2006) 339-382. | MR | Zbl

[7] Talagrand, M. Large deviations, Guerra's and A.S.S. schemes, and the Parisi hypothesis. J. Stat. Phys. 126 (2007) 837-894. | MR | Zbl

Cité par Sources :