In bidirected graph an edge has a direction at each end. We introduce a new definition of connection in a bidirected graph. We prove some properties of this definition and we establish a relationship to connection and imbalance in the corresponding signed graph. The main result gives a sufficient condition for a signed graph to have a Biconnected biorientation.
Accepté le :
DOI : 10.1051/ro/2017053
Mots-clés : Matroid, signed graphs, bidirected graphs
@article{RO_2018__52_2_351_0, author = {Bessouf, Ouahiba and Khelladi, Abdelkader}, title = {New concept of connection in bidirected graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {351--357}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/ro/2017053}, zbl = {1398.05119}, mrnumber = {3817469}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro/2017053/} }
TY - JOUR AU - Bessouf, Ouahiba AU - Khelladi, Abdelkader TI - New concept of connection in bidirected graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 351 EP - 357 VL - 52 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro/2017053/ DO - 10.1051/ro/2017053 LA - en ID - RO_2018__52_2_351_0 ER -
%0 Journal Article %A Bessouf, Ouahiba %A Khelladi, Abdelkader %T New concept of connection in bidirected graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 351-357 %V 52 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro/2017053/ %R 10.1051/ro/2017053 %G en %F RO_2018__52_2_351_0
Bessouf, Ouahiba; Khelladi, Abdelkader. New concept of connection in bidirected graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 2, pp. 351-357. doi : 10.1051/ro/2017053. http://www.numdam.org/articles/10.1051/ro/2017053/
[1] Théorème de Menger dans les graphes biorientés. Thèse de magister. U S. T H. B Faculté de Mathematiques (U.S.T.H.B) Alger, Mars (1999)
,[2] On the notion of balance of a signed graph. Michigan Math. J. 2 (1953) 143–146 | DOI | MR | Zbl
,[3] Propriétés algebriques de structures combinatoires. Thèse de doctorat d’état Institut de Mathématiques (U.S.T.H.B) Alger (1985)
,[4] Signed graphs. Disc. Appl. Math. 4 (1982) 47–74 | DOI | MR | Zbl
,Cité par Sources :