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NEW CONCEPT OF CONNECTION IN BIDIRECTED GRAPHS

Ouahiba Bessouf1,∗ and Abdelkader Khelladi1

Abstract. In bidirected graph an edge has a direction at each end. We introduce a new definition
of connection in a bidirected graph. We prove some properties of this definition and we establish a
relationship to connection and imbalance in the corresponding signed graph. The main result gives a
sufficient condition for a signed graph to have a Biconnected biorientation.
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1. Introduction

In bidirected graph an edge has a direction at each end, so bidirected graphs generalize undirected and
directed graphs. Harary [3] defined in 1954 the notion of the signed graphs. For any bidirected graph, we can
associate a signed graph and conversely, any signed graph can be associated to a bidirected graph. The aim
of this paper, is to introduce a new concept of connection to bidirected graphs, which is called Biconnectivity.
Some properties will be established for this concept in bidirected graphs and, a relationship to sign-connectivity
in signed graphs. Before that we give a notion of a bidirected path and a bidirected circuit in bidirected graphs.
We consider finite undirected graphs G with the vertex set V (G) and the edge set E(G). The elementary chains
and cycles which are used in this paper are the usual elementary chains and cycles as defined in undirected
graphs. We allow graphs to have loops and multiple edges.

2. Bidirected graphs

Let G be an undirected graph. The set of the incidences of G is a set Φ(G) defined as follows:

Φ(G) ={(e, x)∈ E × V / e is incident to x }
Definition 2.1 ([3]). A biorientation of G is a signature of its incidences

τ : Φ(G)→ {−1,+1}

By convention τ(e, x) = 0 if (e, x) is not an incidence of G, (what makes it possible to extend τ with any
(E × V ), which we will do henceforth).

A bidirected graph is a graph provided with a biorientation, it is denoted Gτ .
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Figure 1. The four possible biorientations of an edge {x, y} of Gτ .

Definition 2.2 ([2]).

A signed graph is a triple (V,E;σ) where V (G) and E(G) are the vertex set and the edge set of the undirected
graph G respectively and σ is a signature of the edges set E.

σ : E → {−1,+1}
e 7→ σ(e)

A signed graph is denoted Gσ.

Definition 2.3. For any biorientation τ of a graph Gτ , we define a signature σ of E, for any edge e of E of
ends x and y, by:

σ(e) = −τ(e, x).τ(e, y)

A bidirected graph determines a unique signed graph, but a signed graph does not determines a unique bidirected
graph.

Definition 2.4. An elementary cycle of a signed graph is balanced, if the product of signs of its edges is
positive, or the number of its negative edges is even. In the opposite case, it is unbalanced.

Definition 2.5. A signed graph is balanced if it is cycle free, or all its elementary cycles are balanced.

Definition 2.6. [7]

Given a signed graph Gσ, we define M(Gσ) to be the matroid associated to Gσ. A subset F of the edge set
E is a circuit of M(Gσ) if, and only if, either

(i) F is a balanced cycle (Type (i)), or
(ii) F is the union of two unbalanced elementary cycles, having exactly one common vertex (Type (ii)), or
(iii) F is the union of two vertex-disjoint unbalanced elementary cycles and an elementary chain which is

internally disjoint from both elementary cycles (Type (iii)).

(we represent in Fig. 2, a balanced (resp. unbalanced) elementary cycle by a quadrilateral (resp. triangle)).
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Figure 2.

The matroid associated to a bidirected graph, is the matroid associated to its signed graph, this latest is
given by Definition 2.3.
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Definition 2.7 ([2]).
Let Gσ = (V,E;σ) be a signed graph and let P be a walk connecting x and y in Gσ:

P : x, e1, x1, e2, x2, . . . , y.

where x, xi, y ∈ V and ej ∈ E.

We put σ(P ) =
∏
ei∈P

σ(ei). We denote P ε instead of P , if ε = σ(P ).

P ε(x, y) is called an ε-walk of sign ε (ε = +1,−1), connecting x and y.
An ε-walk P ε is elementary if it is minimal for this property.
An ε-walk P ε is a positive (resp. negative) walk P+ (resp P−) if, the product of the signs of the edges of P ε

is positive (resp. negative).

Example 2.8. P+(x, y) : x, x1, x2, x3, x2, x4, y is a positive walk.
P−(x, y) : x, x1, x2, x4, y is a negative walk.
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Fig. 4.

Figure 3.

We have : P+ contains P− (as sub walk), P+ and P− are elementary ε-walks because both are minimal
ε-walks and their signs differ.

Definition 2.9. Let Gσ be a signed graph and let C be a closed walk defined as follows: C :
xe1x1 . . . eixi+1ei+1 . . . xk−1ekx.

where x, y, xi are vertices of Gσ and ej ∈ Gσ.
We say that C is an elementary ε-closed walk of Gσ, if the sequence:
xe1x1 . . . eixi+1ei+1 . . . xk−1 is an elementary ε-walk and C is one of the three circuits characterized in Defi-

nition 2.6. We have three types of ε-closed walk, type (i), (ii) and (iii) in signed graphs.

Definition 2.10. A connected signed graph Gσ is called sign-connected if, for every pair of vertices x and y,
there exists both a positive walk and a negative walk, connecting them.

Example 2.11. The graph which is given in Figure 3 is sign-connected.

Proposition 2.12. Let Gσ be a signed graph. If Gσ is an unbalanced elementary cycle, then Gσ is sign-
connected.

Proof. The proof is deduced from Definition 2.10. �

Definition 2.13 ([2]). Let Gτ be a bidirected graph and W (resp. W ) be a function defined on V (Gτ ) (resp.
E(Gτ )) as follows:

W : V → Z x 7→W (x) =
∑
e∈E τ(e, x)

W : E → {−2, 0, 2} e 7→W (e) =
∑
x∈V τ(e, x)
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Definition 2.14 ([2]).
Let Gτ = (V,E) be a bidirected graph, and let P be a walk connecting x and y in Gτ :

P : xe1x1 . . . eixi+1ei+1 . . . xk−1eky.

where x, xi, y ∈ V and ej ∈ E.
Assume that: τ(e1, x) = α and τ(ek, y) = β such that α, β ∈ {−1,+1}.
For every vertex xi ∈ V (P ) we put WP (xi) = τ(ei, xi) + τ(ei+1, xi), and we use the notation:

P(α,β)(x, y) : xαe1x1 . . . eixi+1ei+1 . . . xk−1eky
β .

The walk P(α,β)(x, y) is called a bidirected path from xα to yβ if:

(i) k ≥ 1.
(ii) τ(e1, x) = α, and τ(ek, y) = β.
(iii) WP (xi) = 0,∀i = 1, . . . , k − 1 if k > 1.
(iv) P(α,β)(x, y) is minimal for the properties (i)−(iii).
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Figure 4. Examples of bidirected paths where C is a negative elementary cycle.
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Remark 2.15. If P(α,β)(x, y) is a bidirected path from xα to yβ , then P(β,α)(y, x) is also a bidirected path
from yβ to xα, where P(β,α)(y, x) : yβekxk−1 . . . ei+1xi+1ei . . . x1e1x

α.

Definition 2.16 ([2]). Let Gτ be a bidirected graph and let C be a closed bidirected path defined as follows:

C : xα e1 x1 . . . ei xi+1 ei+1 . . . xk−1 ek x
β .

The closed bidirected path C is called a bidirected circuit of Gτ if: α = −β; ∀α, β ∈ {−1,+1}.
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Figure 5. Examples of bidirected circuits.

Proposition 2.17. The sign σ(P(α,β)(x, y)) of the bidirected path P(α,β)(x, y) is given by the following formula:
σ(P(α,β)(x, y)) = −αβ.

Proof. Let P(α,β)(x, y) be a bidirected path from xα to yβ , which is represented by the following sequence:

P(α,β)(x, y) : xαe1x1 . . . eixi+1ei+1 . . . xk−1eky
β . We have: σ(P(α,β)(x, y)) =

∏
e∈P(α,β)(x,y)

σ(e)

= [−τ(e1, x)τ(e1, x1)] . . . [−τ(ek−2, xk−2)τ(ek−1, xk−1)][−τ(ek, xk−1)τ(ek, y)]
= −τ(e1, x)[−τ(e1, x1)τ(e2, x1)]. . . [−τ(ek−1, xk−1)τ(ek, xk−1)]τ(ek, y).
According to the definition of the bidirected path we have WP (xi) = τ(ei, xi) + τ(ei+1, xi) = 0. This implies

that, τ(ei, xi)τ(ei+1, xi) = −1 ∀ i = 1, . . . , k − 1 if k > 1. Thus σ(P(α,β)) = −τ(e1, x)τ(ek, y) = −αβ. �

Proposition 2.18. The weight W (P(α,β)(x, y)) of the bidirected path P(α,β)(x, y) is given by the following

formula: W (P(α,β)(x, y)) = α+ β.

Proof. Let P(α,β)(x, y) be a bidirected path from xα to yβ , which is represented by the following sequence :
P(α,β)(x, y) : xαe1x1 . . . eixi+1ei+1 . . . xk−1eky

β .

We have: W (P(α,β)(x, y)) =
∑

e∈P(α,β)(x,y)

W (e)

= τ(e1, x) +WP (x1)) +WP (x2) + . . . . . .+WP (xk−1) + τ(ek, y).
According to the definition of the bidirected path we have WP (xi) = 0

∀ i = 1, . . . , k − 1 if k > 1. Thus W (P(α,β((x, y)) = τ(e1, x) + τ(ek, y) = α+ β. �

3. Biconnectivity in bidirected graphs

Let Gτ be a bidirected graph. Let us consider the relation R in V (Gτ ) defined by:

xRy ⇔

x = y
or

There exists a bidirected path P(α,β)(x, y) from xα to yβ ; ∀α, β ∈ {−1,+1}.
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Proposition 3.1. R is an equivalence relation.

Proof.

(1) R is reflexive. ∀x ∈ V , we have x = x. So that xRx.
(2) R is symmetric. xRy ⇔ there exists a bidirected path P(α,β)(x, y) from xα to yβ ; ∀α, β ∈ {−1,+1}. Then

it follows from the remark given in Definition 2.14 that there exists a bidirected path P(β,α)(y, x) from yβ

to xα for all α, β ∈ {−1,+1}. So that yRx.
(3) R is transitive. ∀x, y and z ∈ V , there exists a bidirected path P(α,β)(x, y) from xα to yβ for all α, β ∈
{−1,+1} and there exists also a bidirected path P(ά,β́)(y, z) from yά to zβ́ for all ά, β́ ∈ {−1,+1}. Choose

ά ∈ {−1,+1} so that ά + β = 0. Then there exists a bidirected path P(α,β́)(x, z) from xα to zβ́ for all

α, β́ ∈ {−1,+1}. So that xRz. �

Definition 3.2. A bidirected graph Gτ is called Biconnected, if for every pair of vertices x and y, there exists
a bidirected path P(α,β)(x, y) from xα to yβ ; for all α, β ∈ {−1,+1}.

The classes of equivalence of the equivalence relation R form a partition (V1, . . . , Vq) of V (Gτ ). The subgraphs
of Gτ generated by the subsets
Vi (i = 1, . . . , q) are called the Biconnected components of Gτ .

Proposition 3.3. Let Gτ be a bidirected graph such that |V (Gτ )| ≥ 2. If Gτ is biconnected, then it is unbal-
anced.

Proof. Since Gτ is a biconnected graph, then there exists two vertices, and they are connected by a positive
bidirected path and a negative bidirected path. If one of the bidirected paths contains a cycle, it contains a
negative cycle and Gτ is unbalanced. If both bidirected paths do not contain cycles, they are elementary chains
and, by Harary’s signed paths Theorem [3], Gτ is unbalanced. �

Proposition 3.4. Let Gτ be a bidirected graph. If Gτ is biconnected, then it is pendant-vertex-free.

Proof. If Gτ admits a pendant vertex, then this vertex is an extremity of at most one bidirected path. This
contradicts the definition of the biconnectivity of bidirected graphs. �

Proposition 3.5. Let Gτ be a bidirected graph. The matroid circuits of the type (ii) are biconnected.

Proof. Let C = C1 ∪ C2 be a bidirected circuit of type (ii) and let x, y and v be a vertices of C such that
C1 ∩ C2 = {v}.

Figure 6.

We distinguish the following cases:

Case 1. Let x be on C1\v and let y on C2\v (see Fig. 6). Since for every vertex in C we have
W (x) = W (v) = W (y) = 0, then x is in an edge e1 ∈ C1 such that τ(x, e1) = +1 and also in an edge
e2 ∈ C1 such that τ(x, e2) = −1. Let Pi be the bidirected path from x to v in C1 that contains ei, i = 1, 2.
Similarly, y is in an edge f1 ∈ C2 such that τ(y, f1) = +1 and also in an edge f2 ∈ C2 such that τ(y, f2) = −1.



O. BESSOUF AND A. KHELLADI 357

Let Qj be the bidirected path from y to v in C2 that contains fj , j = 1, 2. Now the concatenations PiQj ,
i, j = 1, 2 are four bidirected paths P(α,β)(x, y) that prove x and y are biconnected.

Case 2. Let x, y be on C1\v. Then C1\v contains an (α, β) bidirected path from x to y, for some α, β
∈ {+1,−1}. Deleting the edges of P , the remainder of C is a (−α,−β) bidirected path Q from x to y that
contains C2. Now you need an (α,−β) bidirected. The former is obtained by taking P followed by the bidirected
path Py in C1 from y to v, then C2, then Py in the opposite direction, ending at y. The latter is obtained by
taking the path Px from x to v in C1, then C2 then retracting Px from v to x and continuing along P to y.

Case 3. Let y = v and let x be on C1\v, as in Case 1.The bidirected paths P1 and P2 are respectively, a (+1, β)
bidirected path and a (−1, β) bidirected path from x to y for some β ∈ {+1,−1}. The bidirecred paths P1C2

and P2C2 are, respectively, a (+1,−β) bidirected path and a (−1,−β) bidirected path from x to y. Therefore,
x and y are biconnected. �

Proposition 3.6. Let Gτ be a bidirected graph. The matroid circuits of the type (iii) are biconnected.

Proof. The proof is similar to that given in Proposition 3.5. �

Theorem 3.7. Let Gτ be a bidirected graph, such that |E(Gτ )| ≥ 1. If Gτ is biconnected, then every edge of E
belongs to a bidirected circuit.

Proof. Let {xα, yβ} be an edge of Gτ such that α, β ∈ {−1,+1}, since Gτ is biconnected then there exists a
bidirected path from x−α to y−β connecting the two vertices x and y. Thus this bidirected path together with
the edge {xα, yβ} makes a bidirected circuit. �

Theorem 3.8. Let Gσ be a connected signed graph. It is possible to give a biorientation to Gσ in order to
obtain a biconnected bidirected graph Gτ , if every pair of vertices belongs to matroid circuit of type (ii) or (iii).

Proof. Suppose that Gσ admits an ε-closed walk of the type (ii) or (iii), it is sign-connected. Then for the proof
proceed as follows:

Let W be an ε-closed walk of Gσ. Let V1 be the set of the vertices of W . We give a biorientation compatible
with the edge signs as in Definition 2.3 to the edges of this ε-closed walk such that a bidirected circuit is
obtained, and for each other edge having its two ends on V1 we give an unspecified biorientation. The subgraph
generated by V1 is biconnected according to Propositions 3.5 and 3.6.

If V1 = V the result is obtained. If not (V − V1 6= ∅), then there exists a vertex x/∈V1 which is adjacent to a
vertex y ∈ V1 (since Gσ is connected). It follows from the hypothesis that this edge is on an ε-closed walk W ′

of Gσ, which contains an ε′-walk from y to an other vertex of V1, then we give a biorientation compatible with
the edge signs as in Definition 2.3 to this ε-closed walk W ′ in order to obtain a bidirected circuit.

Let V2 be the union of V1 and all vertices of W ′. We give an arbitrary biorientation of the edges which have
the two ends on V2 and have not been bioriented. The subgraph generated by V2 is biconnected according to
Propositions 3.5 and 3.6. If V2 = V the result is obtained. Otherwise we repeat the same operation. �
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(U.S.T.H.B) Alger, Mars (1999).

[2] F. Harary, On the notion of balance of a signed graph. Michigan Math. J. 2 (1953) 143–146.

[3] A. Khelladi, Propriétés algebriques de structures combinatoires. Thèse de doctorat d’état Institut de Mathématiques
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