# NEW CONCEPT OF CONNECTION IN BIDIRECTED GRAPHS 

Ouahiba Bessouf ${ }^{1, *}$ and Abdelkader Khelladi ${ }^{1}$


#### Abstract

In bidirected graph an edge has a direction at each end. We introduce a new definition of connection in a bidirected graph. We prove some properties of this definition and we establish a relationship to connection and imbalance in the corresponding signed graph. The main result gives a sufficient condition for a signed graph to have a Biconnected biorientation.


Mathematics Subject Classification. 05C22, 05C38.
Received February 3, 2016. Accepted June 10, 2017.

## 1. Introduction

In bidirected graph an edge has a direction at each end, so bidirected graphs generalize undirected and directed graphs. Harary [3] defined in 1954 the notion of the signed graphs. For any bidirected graph, we can associate a signed graph and conversely, any signed graph can be associated to a bidirected graph. The aim of this paper, is to introduce a new concept of connection to bidirected graphs, which is called Biconnectivity. Some properties will be established for this concept in bidirected graphs and, a relationship to sign-connectivity in signed graphs. Before that we give a notion of a bidirected path and a bidirected circuit in bidirected graphs. We consider finite undirected graphs $G$ with the vertex set $V(G)$ and the edge set $E(G)$. The elementary chains and cycles which are used in this paper are the usual elementary chains and cycles as defined in undirected graphs. We allow graphs to have loops and multiple edges.

## 2. Bidirected graphs

Let $G$ be an undirected graph. The set of the incidences of $G$ is a set $\Phi(G)$ defined as follows:

$$
\boldsymbol{\Phi}(\boldsymbol{G})=\{(\boldsymbol{e}, \boldsymbol{x}) \in \boldsymbol{E} \times \boldsymbol{V} / \boldsymbol{e} \text { is incident to } \boldsymbol{x}\}
$$

Definition 2.1 ([3]). A biorientation of $G$ is a signature of its incidences

$$
\tau: \Phi(G) \rightarrow\{-1,+1\}
$$

By convention $\tau(e, x)=0$ if $(e, x)$ is not an incidence of $G$, (what makes it possible to extend $\tau$ with any $(E \times V)$, which we will do henceforth).

A bidirected graph is a graph provided with a biorientation, it is denoted $G_{\tau}$.

[^0]

Figure 1. The four possible biorientations of an edge $\{x, y\}$ of $G_{\tau}$.
Definition 2.2 ([2]).
A signed graph is a triple $(V, E ; \sigma)$ where $V(G)$ and $E(G)$ are the vertex set and the edge set of the undirected graph $G$ respectively and $\sigma$ is a signature of the edges set $E$.

$$
\begin{aligned}
\sigma: E & \rightarrow\{-1,+1\} \\
e & \mapsto \sigma(e)
\end{aligned}
$$

A signed graph is denoted $G_{\sigma}$.
Definition 2.3. For any biorientation $\tau$ of a graph $G_{\tau}$, we define a signature $\sigma$ of $E$, for any edge $e$ of $E$ of ends $x$ and $y$, by:

$$
\sigma(e)=-\tau(e, x) \cdot \tau(e, y)
$$

A bidirected graph determines a unique signed graph, but a signed graph does not determines a unique bidirected graph.

Definition 2.4. An elementary cycle of a signed graph is balanced, if the product of signs of its edges is positive, or the number of its negative edges is even. In the opposite case, it is unbalanced.

Definition 2.5. A signed graph is balanced if it is cycle free, or all its elementary cycles are balanced.
Definition 2.6. [7]
Given a signed graph $G_{\sigma}$, we define $M\left(G_{\sigma}\right)$ to be the matroid associated to $G_{\sigma}$. A subset $F$ of the edge set $E$ is a circuit of $M\left(G_{\sigma}\right)$ if, and only if, either
(i) $F$ is a balanced cycle (Type (i)), or
(ii) $F$ is the union of two unbalanced elementary cycles, having exactly one common vertex (Type (ii)), or
(iii) $F$ is the union of two vertex-disjoint unbalanced elementary cycles and an elementary chain which is internally disjoint from both elementary cycles (Type (iii)).
(we represent in Fig. 2, a balanced (resp. unbalanced) elementary cycle by a quadrilateral (resp. triangle)).


Figure 2.
The matroid associated to a bidirected graph, is the matroid associated to its signed graph, this latest is given by Definition 2.3.

Definition 2.7 ([2]).
Let $G_{\sigma}=(V, E ; \sigma)$ be a signed graph and let $P$ be a walk connecting $x$ and $y$ in $G_{\sigma}$ :

$$
P: x, e_{1}, x_{1}, e_{2}, x_{2}, \ldots, y
$$

where $x, x_{i}, y \in V$ and $e_{j} \in E$.
We put $\sigma(P)=\prod_{e_{i} \in P} \sigma\left(e_{i}\right)$. We denote $P^{\varepsilon}$ instead of $P$, if $\varepsilon=\sigma(P)$.
$P^{\varepsilon}(x, y)$ is called an $\varepsilon$-walk of $\operatorname{sign} \varepsilon(\varepsilon=+1,-1)$, connecting $x$ and $y$.
An $\varepsilon$-walk $P^{\varepsilon}$ is elementary if it is minimal for this property.
An $\varepsilon$-walk $P^{\varepsilon}$ is a positive (resp. negative) walk $P^{+}\left(\operatorname{resp} P^{-}\right)$if, the product of the signs of the edges of $P^{\varepsilon}$ is positive (resp. negative).

Example 2.8. $P^{+}(x, y): x, x_{1}, x_{2}, x_{3}, x_{2}, x_{4}, y$ is a positive walk. $P^{-}(x, y): x, x_{1}, x_{2}, x_{4}, y$ is a negative walk.


Figure 3.
We have : $P^{+}$contains $P^{-}$(as sub walk), $P^{+}$and $P^{-}$are elementary $\varepsilon$-walks because both are minimal $\varepsilon$-walks and their signs differ.

Definition 2.9. Let $G_{\sigma}$ be a signed graph and let $C$ be a closed walk defined as follows: $C$ : $x e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} x$.
where $x, y, x_{i}$ are vertices of $G_{\sigma}$ and $e_{j} \in G_{\sigma}$.
We say that $C$ is an elementary $\varepsilon$-closed walk of $G_{\sigma}$, if the sequence:
$x e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1}$ is an elementary $\varepsilon$-walk and $C$ is one of the three circuits characterized in Definition 2.6. We have three types of $\varepsilon$-closed walk, type (i), (ii) and (iii) in signed graphs.

Definition 2.10. A connected signed graph $G_{\sigma}$ is called sign-connected if, for every pair of vertices $x$ and $y$, there exists both a positive walk and a negative walk, connecting them.

Example 2.11. The graph which is given in Figure 3 is sign-connected.
Proposition 2.12. Let $G_{\sigma}$ be a signed graph. If $G_{\sigma}$ is an unbalanced elementary cycle, then $G_{\sigma}$ is signconnected.

Proof. The proof is deduced from Definition 2.10.
Definition $2.13([2])$. Let $G_{\tau}$ be a bidirected graph and $W$ (resp. $\bar{W}$ ) be a function defined on $V\left(G_{\tau}\right)$ (resp. $E\left(G_{\tau}\right)$ ) as follows:

$$
\begin{array}{cr}
W: V \rightarrow \mathbb{Z} & x \mapsto W(x)=\sum_{e \in E} \tau(e, x) \\
\bar{W}: E \rightarrow\{-2,0,2\} & e \mapsto \bar{W}(e)=\sum_{x \in V} \tau(e, x)
\end{array}
$$

Definition 2.14 ([2]).
Let $G_{\tau}=(V, E)$ be a bidirected graph, and let $P$ be a walk connecting $x$ and $y$ in $G_{\tau}$ :

$$
P: x e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} y .
$$

where $x, x_{i}, y \in V$ and $e_{j} \in E$.
Assume that: $\tau\left(e_{1}, x\right)=\alpha$ and $\tau\left(e_{k}, y\right)=\beta$ such that $\alpha, \beta \in\{-1,+1\}$.
For every vertex $x_{i} \in V(P)$ we put $W_{P}\left(x_{i}\right)=\tau\left(e_{i}, x_{i}\right)+\tau\left(e_{i+1}, x_{i}\right)$, and we use the notation:

$$
P_{(\alpha, \beta)}(x, y): x^{\alpha} e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} y^{\beta} .
$$

The walk $P_{(\alpha, \beta)}(x, y)$ is called a bidirected path from $x^{\alpha}$ to $y^{\beta}$ if:
(i) $k \geq 1$.
(ii) $\tau\left(e_{1}, x\right)=\alpha$, and $\tau\left(e_{k}, y\right)=\beta$.
(iii) $W_{P}\left(x_{i}\right)=0, \forall i=1, \ldots, k-1$ if $k>1$.
(iv) $P_{(\alpha, \beta)}(x, y)$ is minimal for the properties (i)-(iii).


$$
x^{\alpha}, x_{1}, \ldots, x_{2}, x^{\alpha}, x^{-\alpha}, \ldots, y^{\beta} \quad x^{\alpha}, \ldots, v, \ldots, v, \ldots, y^{\beta}
$$


(c)

$$
x^{\alpha}, \ldots, w, \ldots, v, \ldots, v, \ldots, w, \ldots, y^{\beta}
$$

Figure 4. Examples of bidirected paths where $C$ is a negative elementary cycle.

Remark 2.15. If $P_{(\alpha, \beta)}(x, y)$ is a bidirected path from $x^{\alpha}$ to $y^{\beta}$, then $P_{(\beta, \alpha)}(y, x)$ is also a bidirected path from $y^{\beta}$ to $x^{\alpha}$, where $P_{(\beta, \alpha)}(y, x): y^{\beta} e_{k} x_{k-1} \ldots e_{i+1} x_{i+1} e_{i} \ldots x_{1} e_{1} x^{\alpha}$.
Definition 2.16 ([2]). Let $G_{\tau}$ be a bidirected graph and let $C$ be a closed bidirected path defined as follows:

$$
C: x^{\alpha} e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} x^{\beta} .
$$

The closed bidirected path $C$ is called a bidirected circuit of $G_{\tau}$ if: $\alpha=-\beta ; \forall \alpha, \beta \in\{-1,+1\}$.

$C: x, x_{1}, x_{2}, x_{3}, x_{1}, x_{4}, x$

$$
C: x_{1}, x_{2}, x_{3}, x_{4}, x_{1}
$$

Figure 5. Examples of bidirected circuits.

Proposition 2.17. The sign $\sigma\left(P_{(\alpha, \beta)}(x, y)\right)$ of the bidirected path $P_{(\alpha, \beta)}(x, y)$ is given by the following formula: $\sigma\left(P_{(\alpha, \beta)}(x, y)\right)=-\alpha \beta$.
Proof. Let $P_{(\alpha, \beta)}(x, y)$ be a bidirected path from $x^{\alpha}$ to $y^{\beta}$, which is represented by the following sequence: $P_{(\alpha, \beta)}(x, y): x^{\alpha} e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} y^{\beta}$. We have: $\sigma\left(P_{(\alpha, \beta)}(x, y)\right)=\prod_{e \in P_{(\alpha, \beta)}(x, y)} \sigma(e)$

$$
=\left[-\tau\left(e_{1}, x\right) \tau\left(e_{1}, x_{1}\right)\right] \ldots\left[-\tau\left(e_{k-2}, x_{k-2}\right) \tau\left(e_{k-1}, x_{k-1}\right)\right]\left[-\tau\left(e_{k}, x_{k-1}\right) \tau\left(e_{k}, y\right)\right]
$$

$$
=-\tau\left(e_{1}, x\right)\left[-\tau\left(e_{1}, x_{1}\right) \tau\left(e_{2}, x_{1}\right)\right] \ldots\left[-\tau\left(e_{k-1}, x_{k-1}\right) \tau\left(e_{k}, x_{k-1}\right)\right] \tau\left(e_{k}, y\right) .
$$

According to the definition of the bidirected path we have $W_{P}\left(x_{i}\right)=\tau\left(e_{i}, x_{i}\right)+\tau\left(e_{i+1}, x_{i}\right)=0$. This implies that, $\tau\left(e_{i}, x_{i}\right) \tau\left(e_{i+1}, x_{i}\right)=-1 \forall i=1, \ldots, k-1$ if $k>1$. Thus $\sigma\left(P_{(\alpha, \beta)}\right)=-\tau\left(e_{1}, x\right) \tau\left(e_{k}, y\right)=-\alpha \beta$.
Proposition 2.18. The weight $\bar{W}\left(P_{(\alpha, \beta)}(x, y)\right)$ of the bidirected path $P_{(\alpha, \beta)}(x, y)$ is given by the following formula: $\bar{W}\left(P_{(\alpha, \beta)}(x, y)\right)=\alpha+\beta$.
Proof. Let $P_{(\alpha, \beta)}(x, y)$ be a bidirected path from $x^{\alpha}$ to $y^{\beta}$, which is represented by the following sequence : $P_{(\alpha, \beta)}(x, y): x^{\alpha} e_{1} x_{1} \ldots e_{i} x_{i+1} e_{i+1} \ldots x_{k-1} e_{k} y^{\beta}$.

We have: $\bar{W}\left(P_{(\alpha, \beta)}(x, y)\right)=\sum_{e \in P_{(\alpha, \beta)}(x, y)} \bar{W}(e)$

$$
=\tau\left(e_{1}, x\right)+W_{P}\left(x_{1}\right)+W_{P}\left(x_{2}\right)+\ldots \ldots+W_{P}\left(x_{k-1}\right)+\tau\left(e_{k}, y\right) .
$$

According to the definition of the bidirected path we have $W_{P}\left(x_{i}\right)=0$
$\forall i=1, \ldots, k-1$ if $k>1$. Thus $\bar{W}\left(P_{(\alpha, \beta( }(x, y)\right)=\tau\left(e_{1}, x\right)+\tau\left(e_{k}, y\right)=\alpha+\beta$.

## 3. Biconnectivity in bidirected graphs

Let $G_{\tau}$ be a bidirected graph. Let us consider the relation $R$ in $V\left(G_{\tau}\right)$ defined by:

$$
x R y \Leftrightarrow\left\{\begin{array}{l}
x=y \\
\text { or } \\
\text { There exists a bidirected path } P_{(\alpha, \beta)}(x, y) \text { from } x^{\alpha} \text { to } y^{\beta} ; \forall \alpha, \beta \in\{-1,+1\} .
\end{array}\right.
$$

Proposition 3.1. $R$ is an equivalence relation.

## Proof.

(1) $R$ is reflexive. $\forall x \in V$, we have $x=x$. So that $x R x$.
(2) $R$ is symmetric. $x R y \Leftrightarrow$ there exists a bidirected path $P_{(\alpha, \beta)}(x, y)$ from $x^{\alpha}$ to $y^{\beta} ; \forall \alpha, \beta \in\{-1,+1\}$. Then it follows from the remark given in Definition 2.14 that there exists a bidirected path $P_{(\beta, \alpha)}(y, x)$ from $y^{\beta}$ to $x^{\alpha}$ for all $\alpha, \beta \in\{-1,+1\}$. So that $y R x$.
(3) $R$ is transitive. $\forall x, y$ and $z \in V$, there exists a bidirected path $P_{(\alpha, \beta)}(x, y)$ from $x^{\alpha}$ to $y^{\beta}$ for all $\alpha, \beta \in$ $\{-1,+1\}$ and there exists also a bidirected path $P_{(\dot{\alpha}, \dot{\beta})}(y, z)$ from $y^{\dot{\alpha}}$ to $z^{\dot{\beta}}$ for all $\dot{\alpha}, \dot{\beta} \in\{-1,+1\}$. Choose $\alpha \in\{-1,+1\}$ so that $\dot{\alpha}+\beta=0$. Then there exists a bidirected path $P_{(\alpha, \dot{\beta})}(x, z)$ from $x^{\alpha}$ to $z^{\beta}$ for all $\alpha, \dot{\beta} \in\{-1,+1\}$. So that $x R z$.

Definition 3.2. A bidirected graph $G_{\tau}$ is called Biconnected, if for every pair of vertices $x$ and $y$, there exists a bidirected path $P_{(\alpha, \beta)}(x, y)$ from $x^{\alpha}$ to $y^{\beta}$; for all $\alpha, \beta \in\{-1,+1\}$.

The classes of equivalence of the equivalence relation $R$ form a partition $\left(V_{1}, \ldots, V_{q}\right)$ of $V\left(G_{\tau}\right)$. The subgraphs of $G_{\tau}$ generated by the subsets
$V_{i}(i=1, \ldots, q)$ are called the Biconnected components of $G_{\tau}$.
Proposition 3.3. Let $G_{\tau}$ be a bidirected graph such that $\left|V\left(G_{\tau}\right)\right| \geq 2$. If $G_{\tau}$ is biconnected, then it is unbalanced.

Proof. Since $G_{\tau}$ is a biconnected graph, then there exists two vertices, and they are connected by a positive bidirected path and a negative bidirected path. If one of the bidirected paths contains a cycle, it contains a negative cycle and $G_{\tau}$ is unbalanced. If both bidirected paths do not contain cycles, they are elementary chains and, by Harary's signed paths Theorem [3], $G_{\tau}$ is unbalanced.

Proposition 3.4. Let $G_{\tau}$ be a bidirected graph. If $G_{\tau}$ is biconnected, then it is pendant-vertex-free.
Proof. If $G_{\tau}$ admits a pendant vertex, then this vertex is an extremity of at most one bidirected path. This contradicts the definition of the biconnectivity of bidirected graphs.

Proposition 3.5. Let $G_{\tau}$ be a bidirected graph. The matroid circuits of the type (ii) are biconnected.
Proof. Let $C=C_{1} \cup C_{2}$ be a bidirected circuit of type (ii) and let $x, y$ and $v$ be a vertices of $C$ such that $C_{1} \cap C_{2}=\{v\}$.


Figure 6.

We distinguish the following cases:
Case 1. Let $x$ be on $C_{1} \backslash v$ and let $y$ on $C_{2} \backslash v$ (see Fig. 6). Since for every vertex in $C$ we have $W(x)=W(v)=W(y)=0$, then $x$ is in an edge $e_{1} \in C_{1}$ such that $\tau\left(x, e_{1}\right)=+1$ and also in an edge $e_{2} \in C_{1}$ such that $\tau\left(x, e_{2}\right)=-1$. Let $P_{i}$ be the bidirected path from $x$ to $v$ in $C_{1}$ that contains $e_{i}, i=1,2$. Similarly, $y$ is in an edge $f_{1} \in C_{2}$ such that $\tau\left(y, f_{1}\right)=+1$ and also in an edge $f_{2} \in C_{2}$ such that $\tau\left(y, f_{2}\right)=-1$.

Let $Q_{j}$ be the bidirected path from $y$ to $v$ in $C_{2}$ that contains $f_{j}, j=1,2$. Now the concatenations $P_{i} Q_{j}$, $i, j=1,2$ are four bidirected paths $P_{(\alpha, \beta)}(x, y)$ that prove $x$ and $y$ are biconnected.

Case 2. Let $x, y$ be on $C_{1} \backslash v$. Then $C_{1} \backslash v$ contains an $(\alpha, \beta)$ bidirected path from $x$ to $y$, for some $\alpha, \beta$ $\in\{+1,-1\}$. Deleting the edges of $P$, the remainder of $C$ is a $(-\alpha,-\beta)$ bidirected path $Q$ from $x$ to $y$ that contains $C_{2}$. Now you need an $(\alpha,-\beta)$ bidirected. The former is obtained by taking $P$ followed by the bidirected path $P_{y}$ in $C_{1}$ from $y$ to $v$, then $C_{2}$, then $P_{y}$ in the opposite direction, ending at $y$. The latter is obtained by taking the path $P_{x}$ from $x$ to $v$ in $C_{1}$, then $C_{2}$ then retracting $P_{x}$ from $v$ to $x$ and continuing along $P$ to $y$.

Case 3. Let $y=v$ and let $x$ be on $C_{1} \backslash v$, as in Case 1. The bidirected paths $P_{1}$ and $P_{2}$ are respectively, a $(+1, \beta)$ bidirected path and a $(-1, \beta)$ bidirected path from $x$ to $y$ for some $\beta \in\{+1,-1\}$. The bidirecred paths $P_{1} C_{2}$ and $P_{2} C_{2}$ are, respectively, a $(+1,-\beta)$ bidirected path and a $(-1,-\beta)$ bidirected path from $x$ to $y$. Therefore, $x$ and $y$ are biconnected.

Proposition 3.6. Let $G_{\tau}$ be a bidirected graph. The matroid circuits of the type (iii) are biconnected.
Proof. The proof is similar to that given in Proposition 3.5.
Theorem 3.7. Let $G_{\tau}$ be a bidirected graph, such that $\left|E\left(G_{\tau}\right)\right| \geq 1$. If $G_{\tau}$ is biconnected, then every edge of $E$ belongs to a bidirected circuit.

Proof. Let $\left\{x^{\alpha}, y^{\beta}\right\}$ be an edge of $G_{\tau}$ such that $\alpha, \beta \in\{-1,+1\}$, since $G_{\tau}$ is biconnected then there exists a bidirected path from $x^{-\alpha}$ to $y^{-\beta}$ connecting the two vertices x and y . Thus this bidirected path together with the edge $\left\{x^{\alpha}, y^{\beta}\right\}$ makes a bidirected circuit.

Theorem 3.8. Let $G_{\sigma}$ be a connected signed graph. It is possible to give a biorientation to $G_{\sigma}$ in order to obtain a biconnected bidirected graph $G_{\tau}$, if every pair of vertices belongs to matroid circuit of type (ii) or (iii).

Proof. Suppose that $G_{\sigma}$ admits an $\varepsilon$-closed walk of the type (ii) or (iii), it is sign-connected. Then for the proof proceed as follows:

Let $W$ be an $\varepsilon$-closed walk of $G_{\sigma}$. Let $V_{1}$ be the set of the vertices of $W$. We give a biorientation compatible with the edge signs as in Definition 2.3 to the edges of this $\varepsilon$-closed walk such that a bidirected circuit is obtained, and for each other edge having its two ends on $V_{1}$ we give an unspecified biorientation. The subgraph generated by $V_{1}$ is biconnected according to Propositions 3.5 and 3.6.

If $V_{1}=V$ the result is obtained. If not $\left(V-V_{1} \neq \varnothing\right)$, then there exists a vertex $x \notin V_{1}$ which is adjacent to a vertex $y \in V_{1}$ (since $G_{\sigma}$ is connected). It follows from the hypothesis that this edge is on an $\varepsilon$-closed walk $W^{\prime}$ of $G_{\sigma}$, which contains an $\varepsilon^{\prime}$-walk from $y$ to an other vertex of $V_{1}$, then we give a biorientation compatible with the edge signs as in Definition 2.3 to this $\varepsilon$-closed walk $W^{\prime}$ in order to obtain a bidirected circuit.

Let $V_{2}$ be the union of $V_{1}$ and all vertices of $W^{\prime}$. We give an arbitrary biorientation of the edges which have the two ends on $V_{2}$ and have not been bioriented. The subgraph generated by $V_{2}$ is biconnected according to Propositions 3.5 and 3.6. If $V_{2}=V$ the result is obtained. Otherwise we repeat the same operation.

## References

[1] O. Bessouf, Théorème de Menger dans les graphes biorientés. Thèse de magister. U S. T H. B Faculté de Mathematiques (U.S.T.H.B) Alger, Mars (1999).
[2] F. Harary, On the notion of balance of a signed graph. Michigan Math. J. 2 (1953) 143-146.
[3] A. Khelladi, Propriétés algebriques de structures combinatoires. Thèse de doctorat d'état Institut de Mathématiques (U.S.T.H.B) Alger (1985).
[4] Thomas Zaslavsky, Signed graphs. Disc. Appl. Math. 4 (1982) 47-74.


[^0]:    Keywords. Matroid, signed graphs, bidirected graphs.
    1 Faculté de Mathématiques, USTHB BP 32 El Alia, Bab-Ezzouar 16111, Alger, Algérie.

    * Corresponding author: obessouf@yahoo.fr

