Given a set of items, each with a profit and a weight and a conflict graph describing incompatibilities between items, the Disjunctively Constrained Knapsack Problem is to select the maximum profit set of compatible items while satisfying the knapsack capacity constraint. We develop a probabilistic tabu search heuristic with multiple neighborhood structures. The proposed algorithm is evaluated on a total of
Accepté le :
DOI : 10.1051/ro/2016049
Mots-clés : Probabilistic Tabu Search, knapsack problem, weighted independent set, conflict graph
@article{RO_2017__51_3_627_0, author = {Ben Salem, Mariem and Hanafi, Sa{\"\i}d and Taktak, Raouia and Ben Abdallah, Han\^ene}, title = {Probabilistic {Tabu} search with multiple neighborhoods for the {Disjunctively} {Constrained} {Knapsack} {Problem}}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {627--637}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/ro/2016049}, mrnumber = {3880516}, zbl = {1387.90227}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ro/2016049/} }
TY - JOUR AU - Ben Salem, Mariem AU - Hanafi, Saïd AU - Taktak, Raouia AU - Ben Abdallah, Hanêne TI - Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 627 EP - 637 VL - 51 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2016049/ DO - 10.1051/ro/2016049 LA - en ID - RO_2017__51_3_627_0 ER -
%0 Journal Article %A Ben Salem, Mariem %A Hanafi, Saïd %A Taktak, Raouia %A Ben Abdallah, Hanêne %T Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 627-637 %V 51 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2016049/ %R 10.1051/ro/2016049 %G en %F RO_2017__51_3_627_0
Ben Salem, Mariem; Hanafi, Saïd; Taktak, Raouia; Ben Abdallah, Hanêne. Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 627-637. doi : 10.1051/ro/2016049. https://www.numdam.org/articles/10.1051/ro/2016049/
Local branching-based algorithms for the disjunctively constrained knapsack problem. Comput. Industrial Eng. 60 (2011) 811–820. | DOI
, and ,Th. Alves de Queiroz and F.K. Miyazawa, Approaches for the 2d 0-1 knapsack problem with conflict graphs. In Computing Conference (CLEI), 2013 XXXIX Latin American. IEEE (2013) 1–8.
A. Bettinelli, V. Cacchiani and E. Malaguti, Bounds and algorithms for the knapsack problem with conflict graph. Technical Report OR-14-16, DEIS–University of Bologna, Bologna, Italy (2014).
A multi-level search strategy for the 0–1 multidimensional knapsack problem. Discrete Appl. Math. 158 (2010) 97–109. | DOI | MR | Zbl
, , , and ,A tabu search procedure for multicommodity location/allocation with balancing requirements. Ann. Oper. Res. 41 (1993) 359–383. | DOI | Zbl
, , and ,Discrete-variable extremum problems. Oper. Res. 5 (1957) 266–288. | DOI | MR | Zbl
,Th. Alves de Queiroz and F. Keidi Miyazawa, Problema da mochila 0-1 bidimensional com restriçoes de disjunçao (2012).
On bin packing with conflicts. SIAM J. Optim. 19 (2008) 1270–1298. | DOI | MR | Zbl
and ,Two-dimensional packing with conflicts. Acta Inf. 45 (2008) 155–175. | DOI | MR | Zbl
, and ,The multidimensional 0–1 knapsack problem: An overview. Europ. J. Oper. Res. 155 (2004) 1–21. | DOI | MR | Zbl
,The multidimensional 0-1 knapsack problembounds and computational aspects. Ann. Oper. Res. 139 (2005) 195–227. | DOI | MR | Zbl
and ,M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of np-completeness. San Francisco, LA: Freeman (1979). | MR | Zbl
Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res. 31 (2004) 347–358. | DOI | MR | Zbl
, and ,Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13 (1986) 533–549. | DOI | MR | Zbl
,Tabu search-part i. ORSA J. Comput. 1 (1989) 190–206. | DOI | Zbl
,Tabu thresholding: Improved search by nonmonotonic trajectories. ORSA J. Comput. 7 (1995) 426–442. | DOI | Zbl
,F. Glover and M. Laguna, Tabu search. Springer (1997). | MR | Zbl
F. Glover and A. Lokketangen, Probabilistic tabu search for zero-one mixed integer programming problems. University of Colorado, Boulder, USA (1994).
On the convergence of tabu search. J. Heuristics 7 (2001) 47–58. | DOI | Zbl
,An efficient tabu search approach for the 0–1 multidimensional knapsack problem. Europ. J. Oper. Res. 106 (1998) 659–675. | DOI | Zbl
and ,An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem. Engrg. Optim. 46 (2014) 1109–1122. | DOI | MR
,A reactive local search-based algorithm for the disjunctively constrained knapsack problem. J. Oper. Res. Soc. 57 (2006) 718–726. | DOI | Zbl
and ,Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem. Comput. Oper. Res. 34 (2007) 2657–2673. | DOI | Zbl
and ,M. Hifi, S. Negre and M.Q.A. Mounir, Local branching-based algorithm for the disjunctively constrained knapsack problem. In CIE 2009 – International Conference on Computers & Industrial Engineering. IEEE (2009) 279–284.
M. Hifi, S. Negre, T. Saadi, S. Saleh and L. Wu, A parallel large neighborhood search-based heuristic for the disjunctively constrained knapsack problem. In IPDPSW 2014: International Parallel & Distributed Processing Symposium Workshops. IEEE (2014) 1547–1551.
M. Hifi and N. Otmani, A first level scatter search for disjunctively constrained knapsack problems. In International Conference on Communications, Computing and Control Applications (CCCA). IEEE (2011) 1–6.
A hybrid guided neighborhood search for the disjunctively constrained knapsack problem. Cogent Engrg. 2 (2015) 1068969. | DOI
, , and ,An approximation scheme for bin packing with conflicts. J. Combin. Optim. 3 (1999) 363–377. | DOI | MR | Zbl
,The min-conflict packing problem. Comput. Oper. Res. 39 (2012) 2122–2132. | DOI | MR | Zbl
, , and ,New lower bounds for bin packing problems with conflicts. Europ. J. Oper. Res. 206 (2010) 281–288. | DOI | MR | Zbl
, and ,Heuristics for solving the bin-packing problem with conflicts. Appl. Math. Sci. 5 (2011) 1739–1752. | MR | Zbl
and ,S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc. (1990). | MR | Zbl
The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 13 (2009) 233–249. | DOI | MR | Zbl
and ,Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 19 (2007) 36–51. | DOI | MR | Zbl
and ,Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. Comput. 25 (2013) 244–255. | DOI | MR
and ,A. Senisuka, B. You and T. Yamada, Reduction and exact algorithms for the disjunctively constrained knapsack problem. In: International symposium on operations research and its applications; ISORA’05. Lecture Notes in Operations Research (2005) 241–254.
Diversification strategies in tabu search algorithms for the maximum clique problem. Ann. Oper. Res. 63 (1996) 189–207. | DOI | Zbl
and ,Probabilistic tabu search for telecommunications network design. Comb. Optim. Theory Practice 1 (1996) 69–94.
, and ,Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inform. Process. Soc. Jpn. J. 43 (2002). | MR
, and ,- Adaptive feasible and infeasible evolutionary search for the knapsack problem with forfeits, International Transactions in Operational Research, Volume 32 (2025) no. 3, p. 1442 | DOI:10.1111/itor.13512
- The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions, Algorithms, Volume 17 (2024) no. 5, p. 219 | DOI:10.3390/a17050219
- Extended formulation and Branch-and-Cut-and-Price algorithm for the two connected subgraph problem with disjunctive constraints, Annals of Operations Research (2024) | DOI:10.1007/s10479-024-06123-0
- An effective hybrid search method for the quadratic knapsack problem with conflict graphs, Journal of the Operational Research Society, Volume 75 (2024) no. 5, p. 1000 | DOI:10.1080/01605682.2023.2228339
- Two-edge connectivity with disjunctive constraints: Polyhedral analysis and Branch-and-Cut, Computers Industrial Engineering, Volume 184 (2023), p. 109585 | DOI:10.1016/j.cie.2023.109585
- Pseudo-polynomial algorithms for solving the Knapsack Problem with dependencies between items, Computers Operations Research, Volume 158 (2023), p. 106281 | DOI:10.1016/j.cor.2023.106281
- Responsive strategic oscillation for solving the disjunctively constrained knapsack problem, European Journal of Operational Research, Volume 309 (2023) no. 3, p. 993 | DOI:10.1016/j.ejor.2023.02.009
- Knapsack problems — An overview of recent advances. Part I: Single knapsack problems, Computers Operations Research, Volume 143 (2022), p. 105692 | DOI:10.1016/j.cor.2021.105692
- The Knapsack Problem and Its Variants: Formulations and Solution Methods, The Palgrave Handbook of Operations Research (2022), p. 105 | DOI:10.1007/978-3-030-96935-6_4
- A threshold search based memetic algorithm for the disjunctively constrained knapsack problem, Computers Operations Research, Volume 136 (2021), p. 105447 | DOI:10.1016/j.cor.2021.105447
- Tabu and Scatter Search: Principles and Practice, Recent Advances in Optimization and Modeling of Contemporary Problems (2018), p. 130 | DOI:10.1287/educ.2018.0181
- Two-dimensional Disjunctively Constrained Knapsack Problem: Heuristic and exact approaches, Computers Industrial Engineering, Volume 105 (2017), p. 313 | DOI:10.1016/j.cie.2017.01.015
Cité par 12 documents. Sources : Crossref