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PROBABILISTIC TABU SEARCH WITH MULTIPLE NEIGHBORHOODS
FOR THE DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM

MARIEM BEN SALEM!, SATD HANAFI?, RAOUIA TAKTAK?
AND HANENE BEN ABDALLAH?

Abstract. Given a set of items, each with a profit and a weight and a conflict graph describing
incompatibilities between items, the Disjunctively Constrained Knapsack Problem is to select the max-
imum profit set of compatible items while satisfying the knapsack capacity constraint. We develop a
probabilistic tabu search heuristic with multiple neighborhood structures. The proposed algorithm is
evaluated on a total of 50 benchmark instances from the literature up to 1000 items. Computational
results disclose that the proposed tabu search method outperforms recent state-of-the-art approaches.
In particular, our approach is able to reach 46 best known solutions and discover 8 new best known
solutions out of 50 benchmark instances.
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1. INTRODUCTION

This paper deals with the Knapsack Problem with conflicts, also known as the Disjunctively Constrained
Knapsack Problem introduced by Yamada et al. [39]. This is a variant of the classical 0 — 1 Knapsack Problem
(KP), where some items are in conflict with others. We are given a knapsack of capacity ¢, aset N = {1,2,...,n}
of items, and a set E of pairs of items in conflict, i.e., E C {(i,j) € N x N :4i < j}. Each pair (i,7) € E means
that items 7 and j are incompatible. Moreover, with each item i € N is associated a profit p; and a weight w;.
The Disjunctively Constrained Knapsack Problem (DCKP) consists in determining a maximum-profit set of
compatible items to be packed in the knapsack. A natural and compact Integer Linear Programming formulation
for the DCKP makes use of a set of binary variables z; associated with item i € N, taking value 1 if ¢ is packed
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in the knapsack, and 0 otherwise. The standard formulation of DCKP can be stated as follows:

max Zpixi (1.1)

iEN

subject to Z w;x; < ¢, (1.2)
iEN
zi+z; <1 V(i,j) €E, (1.3)

z;€{0,1} VieN,

where (1.1) denotes the objective, (1.2) represents the knapsack capacity constraint, (1.3) are the disjunctive
constraints, and (1.4) the integrality constraints of the variables. Note that other formulations are proposed for
DCKP. Hifi and Michrafy [23], propose an aggregated formulation and Bettinelli et al. [3] propose an equivalent
MIP based on the determination of a family of cliques in the conflict graph G = (N, E).

Without loss of generality, we can assume that all input data ¢, p; and w;, for all ¢ € N are non-negative
integers; and max{w; : i € N} <c <} .y w; (otherwise, the variables can be fixed trivially).

The DCKP is an NP-hard combinatorial optimization problem. In fact, when no conflicts are considered,
i.e., E = (), the problem reduces to a 0 — 1 Knapsack Problem which is proved to be NP-hard [32]. When
the knapsack constraint is omitted, i.e., ¢ > ),y w;, the problem becomes the maximum weight Independent
Set Problem known to be NP-hard as well [12]. It is well-known that there is no algorithm with a polynomial
number of steps in the size of the instances known for solving any NP-Hard problem and that if one is found
it would be a polynomial algorithm for all. Therefore, there is a need for heuristics able to quickly produce an
approximate solution of high quality, or sometimes an optimal solution but without proof of its optimality. Note
that there could be a very large number of local optima for some optimization problems. Usually, it is not hard
to get a local optimum but it is not easy to find a global one. Indeed, such search methods may get trapped
in a local optimum and miss the global one. Resolving local optima trap problems is one important issue and
consists in finding a way to escape from a local optimum within some method.

In order to solve the DCKP, we propose to use a heuristic-based algorithm. We devise a probabilistic tabu
search heuristic that makes use of multiple neighborhood structures. The proposed method is evaluated on
a total of 50 benchmark instances from the literature. We show that our probabilistic tabu search method
outperforms recent state-of-the-art methods. In particular, we have been able to reach 46 best known solutions
and discover 8 new best known solutions out of the 50 benchmark instances.

Some definitions and notations will be presented in the following. Remark first that the DCKP can be
presented by an undirected graph G = (N, E), where N is the set of items, and F are edges representing
conflicts between items. Let n and m be the cardinalities of N and F, respectively. A clique of a graph G is
a complete subgraph of G. A subset of N is called an independent set if no two adjacent vertices belong to it.
The density n of a graph G = (N, F) is defined as the ratio between |E| and the cardinality of the edge set
of the complete graph having the same number of vertices. Let X and f respectively denote the set of feasible
solutions and a real-valued objective function. Each solution z has an associated neighborhood N (z) C {0,1}".
Generally, a neighborhood N (z) is defined with respect to a given metric (or quasi-metric) function. Then,
on one hand, a solution z* € N (z) is, with respect to neighborhood A (z*), a local minimum for DCKP if
f(x*) > f(z), Yo € N(2*). On the other hand, a solution z* € X is an optimal solution (global optimum) for
DCKP if f(z*) > f(z), for all z € X.

This paper is organized as follows. In the next section, we review some related work from the literature
that deal with the DCKP or with some close variants of the problem. In the third section, we describe the
heuristic used to solve the problem. The last section will be devoted to the computational experimentations and
discussion of the obtained results.
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2. LITERATURE REVIEW

In this section, we give an overview on previous works that have dealt with DCKP, and related problems.
As previously mentioned, the DCKP is an NP-hard optimization problem. In [33], Pferschy and Schauer show
that the DCKP is even strongly NP-hard for general conflict graphs. The authors present pseudo-polynomial
algorithms to solve the DCKP for two special classes of conflict graphs, namely graphs of bounded treewidth
(including trees and series-parallel graphs) and chordal graphs (including interval graphs). Based on these
algorithms, the authors derived Fully Polynomial Time Approximation Schemes (FPTAS) for the DCKP for
these classes of graphs. The authors show, however, that the DCKP is strongly NP-hard for perfect conflict
graphs and hence does not permit an FPTAS.

Yamada et al. [39] present a heuristic method as well as an implicit enumeration algorithm and an interval
reduction method in order to solve to optimality the DCKP. A combination of all these methods allows the
authors to solve instances with up to 1000 items with a density of incompatible items taking one of the following
values {0.001,0.002,0.005,0.01,0.02}. In a further work, Senisuka et al. [36] propose a method that solves the
DCKP using the Lagrangian relaxation combined with the pegging test for ordinary KP. An upper bound is
derived using the Lagrangian relaxation, and then a lower bound is obtained by applying a 2-opt neighborhood
search method. A pegging approach is then used in order to reduce significantly the size of the problem.
Experiments are held on uncorrelated and weakly-correlated instances having items between 1000 and 16 000
and a density ranging in {0.1,0.2,0.4}. In [22], Hifi and Michrafi propose a reactive local search based algorithm
in order to solve the DCKP. An initial solution is computed using two complementary greedy procedures. A
degrading procedure is then applied in order to escape to local optima and to introduce a diversification in the
search space. The authors also opt for a memory list used in order to forbid the repetition of configurations.
Computational results prove the performance of the two versions of the algorithm compared to the results
obtained by Cplex for instances of 500 items (densities 0.1 and 0.3), and 1000 items (densities 0.05, 0.07
and 0.09). Later, Hifi and Michrafy [23] propose several versions of an exact algorithm for the DCKP. In the
first version, the authors apply a three-phase approach starting with a lower bound, then use a reduction
procedure combined with an exact Branch-and-Bound algorithm. The second version is based on a combination
of the reduction procedure and a dichotomous search in order to speed up the search process. And finally, in
the third one, the authors enhance the previous algorithm using an equivalent ILP model for the problem, and
dominating constraints as well as cover cuts. These algorithms have been tested on instances with n = 1000, a
capacity ¢ varying in [2000, 4000], and a conflict density varying in [0.007,0.016].

In further works, Hifi et al. [1,24-27] devise heuristic methods for the DCKP.

In [1,24], the DCKP is solved using local branching based algorithm. In [24], a two-phase-based algorithm
combining a rounding solution stage with a restricted exact solution procedure is proposed. In the first phase,
the rounding procedure is used to fix a subset of the items of the LP. In the second phase, a local-branching
restricted exact method is used to solve the reduced problem. In [1], three versions of local branching based
algorithms are proposed. The first is a direct adaptation of the local branching method. The second combines
local branching with a rounding solution procedure. And finally, the combined second algorithm is improved by
the use of a diversification strategy. The three algorithms are proved to be efficient to solve a set of problem
instances of the literature. In [26], the authors propose a version of the Scatter Search (SS) in order to solve
the DCKP. The approach is based on the first level of SS using both starting phase and evolutionary phase.
The heuristic is applied on an equivalent DCKP model enhanced with two families of valid inequalities. Other
heuristic procedures have been later developed. In [25], Hifi et al. propose a parallel large neighborhood search-
based heuristic to solve the DCKP. The approach introduces a large neighborhood search heuristic in a parallel
model. This parallel programming aspect is designed using MPI (Message Passing Interface). The authors prove
that their approach provides high quality solutions compared with the ones given by Cplex, and the ones
previously obtained in the literature. Recently, Hifi et al. [27] propose a guided neighborhood search to solve
the DCKP. The authors investigate the structure of the problem which is a combination of two combinatorial
optimization problems, namely the maximum independent set and the classical 0—1 KP. The proposed approach
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is a hybrid method that combines two local search procedures, a deterministic and a random one. The random
local search is based on a modified ant colony optimization system. An exhaustive experimental study shows
the efficiency of the used method on a benchmark of instances from the literature.

Along with heuristic based approaches, exact methods have been also used to solve the DCKP. In [3], Bettinelli
et al. devise efficient Branch-and-Bound approaches to solve the DCKP. The authors develops a clique-based
formulation for the problem with a tight relaxation used during the branching and bounding phases. They
discuss several upper bounding procedures as well as efficient branching strategies. Both are combined in four
Branch-and-Bound algorithms tested on instances inspired from instances of the Bin Packing Problem with
conflicts.

Further works study close variants to the DCKP. In [2,7], the authors consider the two-dimensional DCKP.
They propose a GRASP based heuristic. An initial solution is computed using a greedy randomized procedure.
This solution is then improved using perturbation and diversification in order to best explore the research space.

The DCKP can also be seen as a subproblem of a more general problem, which is the Disjunctively Constrained
Bin Packing Problem (DCBPP). In [35] Sadykov and Vanderbeck propose a Branch-and-Price algorithm to solve
the bin packing problem with conflicts, and prove that the associated pricing subproblem is nothing but a DCKP.
The authors solve efficiently the DCKP in special cases. They propose a dynamic programming algorithm to
solve the DCKP when the conflict graph is an interval graph. Also, they develop a depth-first-search branch-
and-bound approach when the conflict graph has no special structure. A similar approach has been previously
proposed by Pisinger and Sigurd [34] who use a Dantzig—Wolfe decomposition for the two-dimensional bin
packing problem, and prove that the pricing reduces to a two-dimensional knapsack problem.

The DCBPP, also known as the bin packing problem with conflicts, has also been studied in [8,9,13,28-31].

Among other interesting related problems, we can cite the multidimensional 0-1 Knapsack Problem. Several
methods of resolution have been developed to solve the MKP. In particular, in [20] Hanafi and Fréville propose
an efficient Tabu Search (TS) for the MKP. This TS is based on strategic oscillation and surrogate constraint
information providing a balance between the intensification and diversification phases. More details about the
TS approach are given in the next section. For a deeper idea about the MKP, the reader is referred to the
following papers [4,10,11].

3. PROBABILISTIC TABU SEARCH

In this section, we propose a Probabilistic Tabu Search for DCKP. The Tabu Search (TS) metaheuristic
was proposed by Fred Glover (1986) [14], its principle is based on procedures designed to cross boundaries of
feasibility or local optimality. TS guides a local search procedure to explore the solution space beyond local
optimality by using adaptive memory to create a flexible search. TS starts from an initial solution, feasible
or infeasible, and moves iteratively from one solution to its neighbor until a chosen termination criterion is
satisfied. Tabu search allows moves that deteriorate the objective function value of the current solution x to be
chosen. TS may be viewed as a dynamic neighborhood method since the moves are selected from a modified
neighborhood N*(z) of the current solution z. In fact, short term structures restrict the neighborhood N (x),
i.e., N*(x) = N(x) — TL where TL is the tabu list, while longer term structures expand the neighborhood
N(z), i.e., N*(z) = N(z) UES, where ES is the set of elite solutions. The tabu list T'L keeps track of solutions
attributes that have changed during the recent past where attributes correspond to information about solution
properties (attributes) that change in moving from one solution to another. The adaptive memory of TS is
used to create a balance between search intensification and diversification. Intensification strategies intensify
the search around solutions historically found good while diversification strategies drive the search into regions
dissimilar to those already examined. An extensive description of the T'S metaheuristic can be found in [17,19].

The Probabilistic Tabu Search (PTS) is a variant of T'S where the move is chosen probabilistically from the
pool of those evaluated (or from a subset of the best members of this pool), weighting the moves so that those
with higher evaluations are especially favored [15,16]. Several implementations of the probabilistic tabu search



PROBABILISTIC TABU SEARCH FOR THE DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 631

have been developed see for example Soriano and Gendreau [37], Crainic et al. [5], Glover and Lokketangen [18],
or Xu et al. [38].

3.1. Initial solution

Several procedures can be designed to generate an initial solution for the DCKP by exploiting the fact that
it is a combination of the maximum weighted independent set problem (WISP) and the classical 0—1 KP. For
example, Yamada et al. [39] adapt the greedy procedure applied to the KP (cf., [6,32]) by adding items selected
in decreasing order of 57 while checking the disjunctive constraints. Similarly, constructive heuristics based on
WISP can be designed by adding procedure to check the knapsack constraint. In this work, we propose a greedy
heuristic where the selection of items take into account the profit, the weight, the degree of the items (number
of conflicts they have), and also the density of the conflict graph. The pseudo code of the proposed heuristic is
given in Algorithm 1. The greedy heuristic assumes that the items are sorted in the decreasing order of the ratio
vt 0(i) ={j € N : (i,j) € E}, that is the set of items incompatible with i, d; = |6(i)| is the degree of 4, n
is the density of the conflict graph G = (N, E), and « is a parameter. In our experimentation the parameter o
is set to 0.1. The algorithm starts with an empty knapsack, i.e., ; = 0 for all i € N. Then the unselected items
are scanned in the given order and at time the current item can be inserted in the knapsack if the capacity
constraint is not violated. Once an item 4 is selected, all items j € () in conflict with ¢ are forbidden to be
selected in the next iterations.

Algorithm 1: Greedy heuristic.

Data: An instance of DCKP
Result: A feasible solution .

. Pi > Pit1 ] — — .
Sort items such that witand, 2 wimtandigr 1,2,....,n—1;

for i =1 ton do z; = 0;
Set A=¢, F =N,
while F # () do
select the first item 4 in F’;
if w; < A then
x»;:].,A:A—’wi, F:F—é(i);
for j € 6(i) do
r; =0

© W N0 U W N =

10 else
11 | 2i=0,F =F—{i};

12 return z ;

3.2. Neighborhood structure and its exploration

The definition of neighborhood structure is one of the most critical features of local search. Each neighbor
2’ is reached from the current solution x by applying a single or multiple elementary moves, i.e., a series of
local modifications of x. Neighborhood structures for the knapsack problem and the independent set problem
usually involve the so-called “Add” and “Drop” elementary moves that set a variable z; to one or zero (i.e.,
complementing a variable x; to 1 — ;).

In our PTS, we use neighborhoods in dynamic ways including multiple Add and Drop moves. Let k be a
non-negative integer, the neighborhood of a solution z is a subset of the search space defined by:

N*(z) = {2’ obtained from z by dropping k items and adding other ones while feasiblity is maintained}.



632 M. BEN SALEM ET AL.

In our experimentation, we choose during the process to vary the value of parameter k in {1,3,5,7}. Since
the size of the neighborhood N*(z) becomes larger when the parameter k increases, candidate list strategies
are used to restrict the number of solutions considered on a given iteration. In order to make a balance between
intensification and diversification phases, we develop four types of candidate list strategies using semi-randomly
sample from members of N*(z). Each candidate list CL"(x), h = 1,...,4 is subset of N*(x) \ TL, where TL
is the tabu list. In our experiments, we set the cardinality of each candidate list |CL"(x)| = 30. Each element
of CL"(x) for h = 1,...,4 is obtained by dropping k items from the current solution z. The main difference
between these candidate lists arises in the phase of adding new items to the current solution. More precisely,
after removing the k items, each solution of the four candidate lists is constructed as follows:

CL'(x): The variables i fixed to 0 in the current solution x are sorted in decreasing order according to the ratio
wﬁpiclmdi’ and we add items while the feasibility is satisfied.

CL?(x): The variables i fixed to 0 in the current solution z are sorted in decreasing order according to p; — nd;
and we add items while the feasibility is satisfied.

CL?(z): The variables i fixed to 0 in the current solution z are sorted in decreasing order according to p; — nd;
and at each iteration, we add an item randomly from the [ first ones while the feasibility is satisfied,
where [ is a parameter set to value 3 in our numerical experiments.

CL*(z): We add items randomly while the feasibility is satisfied.

Note that the candidate lists CL!(x) and CL?(x) are used to reinforce the aggressive aspect of TS (i.e.,
intensification phase), while CL?(x) and C'L*(z) incorporate randomness to diversify the search (diversification
phase). Algorithm 2 describes the strategy used to explore the neighborhood ¥ (z) of a given current solution z.
First a candidate list C'L" is selected with some probabilities. In our algorithm, candidate lists CL*(z), CL?(z),
CL3(z) and CL*(x) are chosen with probabilities %, %, % and 11—0, respectively. Moreover, in order to support
the aggressive character of the TS, we chose the best not tabu neighbor solution in each candidate list CL"(x).
This means once a candidate list CL"(z) is chosen, we chose the neighborhood solution z’ € C'L"(x) such that:

2’ = argmax{py : y € CL"(x) — TL}.

Algorithm 2: Exploration of neighborhood N*(x).

Data: A solution =, N* and Tabu list T'L.
Result: The neighborhood solution z’ € A (z).
Function Exploration(z, N*, TL)
Generate a real value r € [0, 1] randomly;
if € [0,0.5] then
L set h = 1;

if » € [0.5,0.75] then
| set h=2;
if 7 € [0.75,0.9] then
| set h=3;
if » €[0.9,1] then
| set h=4;
Choose the best neighborhood ' = argmax{py : y € CL"(z) — TL};
return z’;

© 0N oUW N

-
o

[ST
N =

In our implementation, the tabu list consists of the pair (pz, wz), representing the cost of the visited solution
x and its consumption of the resource, respectively. It is managed in a static way where its size is fixed in our
experiments to |T'L| = 10.



PROBABILISTIC TABU SEARCH FOR THE DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 633

3.3. Probabilistic tabu search algorithm

The probabilistic tabu search (PTS) algorithm starts with an initial solution z° obtained by the greedy
constructive heuristic (see Algorithm 1). The initial solution becomes the current solution # = z° and it
is inserted in the tabu list TL = {z°}. The PTS algorithm cyclically explores the neighborhood structures
NF for k € {1,3,5,7} one after another according to the established order. As soon as the neighborhood
structure A7 is reached, the PTS resumes the search in the first neighborhood structure N''. More precisely,
the neighborhood A'* is changed by setting k = (k+2) modulo 8 after each g iterations (in our implementation,
we set ¢ = 200 iterations). At each iteration, the neighbor solution #’ of the current solution is chosen from the
current neighborhood structure A% by calling the exploration(z, N*, TL) function. To restrict the number of
solutions examined in N*(z), the exploration function selects a candidate list strategy with some probability.
The process is repeated until a stopping condition is verified and the best solution x* found so far is updated
if an improvement occurs. The stopping criterion of the PTS algorithm used in our implementation is a time
limit in seconds (see the next section on Computational Results).

Algorithm 3: Probabilistic Tabu Search Algorithm.

Data: An instance of DCKP
Result: The best feasible solution found so far x*.

1 Construct an initial solution z° using a greedy heuristic;
2 Set z* = 2% x = 2%

3 TL = {2°};

4 iter = 0;

5 Select an initial value for k = 1;

6 while The stopped criterion is not met do

7 «’ = Exploration(z, N*, TL);

8 TL=TL+{z'};

9 if pz’ > pz* then

10 L ¥ =1,

11 Set x = 2;

12 iter = iter + 1;

13 if iter modulo ¢ = 0 then

14 | k= (k+2) modulo 8;

15 return z™;

4. COMPUTATIONAL RESULTS

We evaluated the Probabilistic Tabu Search (PTS) method described above on the set of instances generated
by Hifi et Michrafi in [22]. The main characteristics of the instances are grouped in Table 1. The first column
of Table 1 reports the names of the groups of tested instances. These groups are labeled jly, j € {1,2,...,10}
(where y € {1,...,5}). For each group of instances, the remaining columns of Table 1 give respectively the
number n of items, the number m = |E| of edges in the conflict graph, the density n of the graph, and the
capacity c of the knapsack. Instances labeled from 17y to 41y, where y € {1,...,5}, represent the medium-size
instances with n = 500, a capacity ¢ = 1800, and a density n ranging from 0.1 to 0.4. Note that the number m
of disjunctive constraints depends directly of the graph density. Second group of instances labeled from 51y to
101y, where y € {1,...,5}, contains larger instances with n = 1000, ¢ = 1800, or 2000 and a density 1 varying
from 0.05 to 0.10.

The PTS algorithm was coded in Java and tested on an Intel Pentium Core 15-6500, 3.2 GHz, 4Gb RAM.
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TABLE 1. Characteristics of the tested instances [22,27].

Inst. n m n c

11y 500 12475 0.10 1800
21y 500 24950 0.20 1800
31y 500 37425 0.30 1800
41y 500 49900 0.40 1800
5y 1000 24975 0.05 1800
6/y 1000 29970 0.06 2000
7Iy 1000 44955 0.07 2000
8Iy 1000 39960 0.08 2000
9ly 1000 44955 0.09 2000
10/y 1000 49950 0.10 2000

To calibrate the parameters of our PTS, several experiments carried by varying each parameter. The final
choice of the parameter values that are used in our experiments are:

(1) The size of each candidate list is fixed to |CL"(x)| = 30 for h = 1,2, 3, 4.

(2) The [ first Add moves in the definition of candidate list LC3(z), is fixed to [ = 3.

(3) The p;obabilities 51h to choose the current candidate list CL"(x), are fixed as follows: 3; = %, By = %,
ﬁgzﬁand@l:ﬁ.

(4) The size of the tabu list is fixed to |T'L| = 10.

(5) The number of moves performed before changing the current neighborhood, is fixed to ¢ = 200.

(6) The time limit T' computed in seconds to run the PTS algorithm, is varying in the set {250, 500, 1000}.

To evaluate the performance of the proposed PTS algorithm, we conduct extensive experiments on the 50
benchmark instances. The assessment is performed by comparing our results to those of the state-of-the-art
methods and the current best known results reported in the literature [21,27].

In order to avoid the random aspect of PTS algorithm and have an average overview, for each group of instance
jly, where j € {1,...,10} and y € {1,...,5}, tests are computed 10 times.

In Table 2, the first column (inst.) corresponds to the name of the instance and the second column (best)
represents the best known values obtained in [21] or [27]. The best known values are obtained by [27] except
for two instances 1072 and 1074 which are provided by [21] (values in bold). For each time limit 7" = 250,
T =500, or T'= 1000 seconds, we give the maximum, minimum, average and #best value obtained from the 10
previously reported values. The column #best corresponds to the number of times PTS found the best known
value or discovers a new one. Values that are in bold correspond to the best known, for which our method (i.e.,
the PTS) is at least as good as the best known results of methods proposed in [21,27]. Values that are marked
with an asterix denote the instances where our method outperforms the previously mentioned ones.

From Table 2, we can deduce that our algorithm performs very well compared to the methods developed
in [21,27]. For the majority of the instances, we have reached the best known values for the different groups
of instances (values in bold). In fact, our PTS approach is able to reach 46 best known values over the 50
benchmarks, that is more than 90% of the tested instances. Moreover, for 8 over 50 of the instances groups,
we have been able to get new best known solutions (values in bold with asterix). For these groups of instances,
our PTS algorithm outperforms the Iterative Rounding Search (IRS) method developed in [21] and the Hybrid
Guided Neighborhood Search (HGNS) algorithm of [27]. For only 4 over 50 instances, our algorithm gives a
result not better than those of [21,27]. However, we have been very close to the best known values, i.e., at most
6% from the best known values. Moreover, for 35 over the 50 groups of instances, we have been able to reach
best known values with less than 250 seconds. For 8 over 50, we got best known values with a time limit set
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TABLE 2.
T =250 s T =500 s T = 1000 s
inst. Best max min avg #best max min avg #best max min avg #best
171 2567 2567 2561 2566 8 2567 2563 2566.6 9 2567 2567 2567 10
112 2594 2594 2594 2594 10 2594 2594 2594 10 2594 2594 2594 10
113 2320 2320 2320 2320 10 2320 2320 2320 10 2320 2320 2320 10
174 2310 2310 2309 2309.9 9 2310 2310 2310 10 2310 2310 2310 10
115 2330 2330 2320 2323 3 2330 2320 2325 5 2330 2320 2321 1
211 2118 2115 2105 2113.5 0 2118 2110 2115.2 1 2118 2110 2115.2 1
212 2110 2110 2107 2109.5 8 2110 2110 2110 10 2110 2110 2110 10
213 2132 2113 2100 2107.4 0 2119 2109 2112.4 0 2119 2109 2112.4 0
274 2109 2109 2097 2103.1 1 2109 2100 2105.6 1 2109 2100 2105.6 1
215 2114 2110 2099 2105 0 2114 2110 2110.4 1 2114 2110 2110.4 1
311 1845 1845 1688 1734.2 1 1845 1700 1760.3 2 1845 1700 1760.3 2
312 1795 1795 1629 1734.2 3 1795 1672 1767.5 4 1795 1672 1767.5 4
373 1774 1774 1712 1742.3 3 1774 1739 1757 3 1774 1739 1757 3
314 1792 1792 1511 1680.7 1 1792 1663 1767.4 6 1792 1663 1767.4 6
315 1794 1775 1706 1742.5 0 1772 1719 1750.9 0 1794 1719 1755.5 1
471 1330 1330 1321 1327.3 7 1330 1321 1329.1 9 1330 1321 1329.1 9
412 1378 1378 1317 1371.9 9 1378 1303 1370.5 9 1378 1303 1370.5 9
413 1374 1374 1327 1352.6 5 1374 1334 1370 9 1374 1334 1370 9
414 1353 1353 1298 1321.8 1 1353 1298 1337.6 2 1353 1298 1337.6 2
415 1354 1330 1298 1321.3 0 1354 1330 1333.2 1 1354 1330 1333.2 1
511 2690 2700* 2680 2694 9 2700* 2690 2697.9 10 2700* 2690 2697.9 10
512 2700 2700 2690 2696.9 6 2700 2690 2699 9 2700 2690 2699 9
513 2690 2690 2690 2690 10 2690 2680 2689 9 2690 2680 2689 9
514 2700 2700 2680 2693 4 2700 2690 2699 9 2700 2690 2699 9
515 2680 2680 2670 2675.9 5 2689* 2680 2682.7 10 2689* 2680 2682.7 10
611 2850 2850 2840 2845 5 2850 2830 2843 5 2850 2830 2843 5
612 2829 2830* 2820 2823.8 4 2830* 2820 2829 9 2830* 2820 2829 9
613 2830 2830 2820 2824 4 2830 2830 2830 10 2830 2830 2830 10
614 2829 2820 2810 2817 0 2830* 2820 2824.7 4 2830* 2820 2824.7 4
615 2830 2840%* 2820 2826.8 5 2840%* 2820 2825 4 2840* 2820 2825 4
711 2780 2780 2760 2768 1 2780 2760 2770 1 2780 2760 2771 2
712 2770 2770 2760 2766 6 2770 2760 2763.5 3 2780* 2750 2769.8 8
713 2760 2770% 2750 2759 7 2770% 2750 2762 9 2770* 2760 2762 10
714 2800 2790 2770 2785 0 2790 2770 2783.6 0 2800 2789 2791.9 2
715 2760 2770* 2750 2757 6 2770* 2759 2762.8 9 2770* 2750 2763.6 9
811 2720 2720 2707 2711 1 2720 2710 2718.9 8 2720 2710 2718.9 8
812 2720 2710 2690 2700.6 0 2720 2700 2713.6 3 2720 2700 2713.6 3
813 2740 2730 2660 2713 0 2740 2720 2731.5 4 2740 2720 2731.5 4
814 2720 2719 2690 2704.7 0 2720 2710 2712 2 2720 2710 2712 2
815 2710 2710 2688 2698.4 1 2710 2700 2705 5 2710 2700 2705 5
911 2670 2670 2640 2659.3 1 2670 2660 2666.9 6 2670 2660 2666.9 6
912 2666 2660 2648 2655.3 0 2670% 2659 2661.7 2 2670* 2659 2661.7 2
913 2670 2670 2644 2656.1 1 2670 2660 2666.5 5 2670 2660 2666.5 5
974 2668 2657 2630 2647.4 0 2663 2650 2657.3 0 2663 2650 2657.3 0
915 2670 2670 2646 2655.2 1 2670 2650 2662 3 2670 2650 2662 3
1071 2620 2620 2609 2611.7 1 2620 2609 2613.7 2 2620 2609 2613.7 2
1072 2642 2629 2606 2615.3 0 2630 2610 2620.8 0 2630 2610 2620.8 0
1013 2620 2620 2600 2609 1 2620 2600 2614.5 5 2620 2600 2614.5 5
10714 2621 2620 2590 2606 0 2620 2600 2609.7 0 2620 2600 2609.7 0
1075 2630 2620 2600 2612.3 0 2627 2610 2617.6 0 2627 2610 2617.6 0
avg  2401.6 2399.4 2367.5 2385.1 3.2 2401.3 2378.4 2392.9 5.0 2402.2 2378.7 2393.3 5.1
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to 500 seconds. And for only 2 instances, we needed to reach 1000 seconds as time limit in order to find a best
value. This shows that our PTS algorithm gives performs very well within a reasonable amount of time.

In the last row of Table 2, we report the average over all the groups of the tested instances. According to this
row, we note that our PTS algorithm has the best total average value. This shows that in average our method

performs better than all the previous ones developed in the literature.
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5. CONCLUDING REMARKS

In this paper, we presented a Probabilistic Tabu Search (PTS) heuristic with multiple neighborhood structures
for The Disjunctively Constrained Knapsack Problem (DCKP). The DCKP is is a combination of two well-
known combinatorial optimization problems, namely the maximum independent set and the standard Knapsack
Problem, i.e., an extension of the knapsack problem in which a conflict graph describing incompatibilities
between items is given. Our PTS algorithm starts with an initial solution constructed by a new greedy heuristic.
The proposed greedy heuristic selects items in non-increasing order of their efficiency taking in account the
profit, weight, degree of the items and also the density of the conflict graph. The PTS algorithm uses multiple
neighborhood structures based on drop and add moves which are explored cyclically. Four candidate lists are
proposed for a given neighborhood structure where two are used to reinforce the aggressive aspect of TS (i.e.
intensification phase) while the other incorporates randomness to diversifies the search (diversification phase).
At each iteration a candidate list is selected with some probabilities. The proposed algorithm is evaluated on a
total of 50 benchmark instances from the literature up to 1000 items. Computational results disclose that the
proposed tabu search method outperforms a state-of-the-art approach. In particular, our approach is able to
reach 46 best known solutions and discover 8 new best known solutions out of 50 benchmark instances.

Acknowledgements. The authors would like to thank Oualid Guemri for substantial discussion on the problem and Mhand
Hifi for providing the benchmark of test instances. We are grateful for the comments of the referees which helped a lot
to improve the exposition of the paper.
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