In this paper, we extend a result of Campanino and Pétritis [Markov Process. Relat. Fields 9 (2003) 391-412]. We study a random walk in with random orientations. We suppose that the orientation of the th floor is given by , where is a stationary sequence of random variables. Once the environment fixed, the random walk can go either up or down or can stay in the present floor (but moving with respect to its orientation). This model was introduced by Campanino and Pétritis in [Markov Process. Relat. Fields 9 (2003) 391-412] when the is a sequence of independent identically distributed random variables. In [Theory Probab. Appl. 52 (2007) 815-826], Guillotin-Plantard and Le Ny extend this result to a situation where the orientations of the floors are independent but chosen with stationary probabilities (not equal to 0 and to 1). In the present paper, we generalize the result of [Markov Process. Relat. Fields 9 (2003) 391-412] to some cases when is stationary. Moreover we extend slightly a result of [Theory Probab. Appl. 52 (2007) 815-826].
Mots-clés : transience, random walk, Markov chain, oriented graphs, stationary orientations
@article{PS_2009__13__417_0, author = {P\`ene, Fran\c{c}oise}, title = {Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations}, journal = {ESAIM: Probability and Statistics}, pages = {417--436}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008019}, mrnumber = {2554964}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2008019/} }
TY - JOUR AU - Pène, Françoise TI - Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations JO - ESAIM: Probability and Statistics PY - 2009 SP - 417 EP - 436 VL - 13 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2008019/ DO - 10.1051/ps:2008019 LA - en ID - PS_2009__13__417_0 ER -
Pène, Françoise. Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 417-436. doi : 10.1051/ps:2008019. http://www.numdam.org/articles/10.1051/ps:2008019/
[1] Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247-280. | MR | Zbl
and ,[2] Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479-497. | MR | Zbl
and ,[3] Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45 (1990) 105-152. | MR | Zbl
, and ,[4] Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46 (1991) 47-106. | MR | Zbl
, and ,[5] Random walks on randomly oriented lattices. Markov Process. Relat. Fields 9 (2003) 391-412. | MR | Zbl
and ,[6] Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122 (2006) 1061-1094. | MR | Zbl
,[7] Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83-101. | MR | Zbl
and ,[8] Percolation, second edition. Springer, Berlin (1999). | MR
,[9] Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815-826. | Zbl
and ,[10] Random walks and random environments. Vol. 2: Random environments. Oxford Science Publications, Clarendon Press, Oxford. (1996) xxiv. | MR | Zbl
,[11] Some limit theorems for stationary processes. Th. Probab. Appl. 7 (1962) 349-382. | MR | Zbl
,[12] Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés à des systèmes dynamiques. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 395-398. | MR | Zbl
,[13] Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires. Thèse, Université de Rennes 1, 2001.
,[14] A limit theorem related to a new class of self similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979) 5-25. | MR | Zbl
and ,[15] Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes. C. R. Acad. Sci. Paris Ser. I Math. 343 (2006) 125-128. | MR | Zbl
,[16] Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques. Bull. Soc. Math. France 133 (2005) 395-417. | Numdam | MR | Zbl
and ,[17] Dynamical systems with elastic reflections. Russ. Math. Surv. 25 (1970) 137-189. | Zbl
,[18] Principles of random walk. Univ. Ser. Higher Math., Van Nostrand, Princeton (1964). | MR | Zbl
,[19] Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585-650. | MR | Zbl
,Cité par Sources :