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TRANSIENT RANDOM WALK IN Z
2 WITH STATIONARY ORIENTATIONS

Françoise Pène
1, 2

Abstract. In this paper, we extend a result of Campanino and Pétritis [Markov Process. Relat.
Fields 9 (2003) 391–412]. We study a random walk in Z

2 with random orientations. We suppose
that the orientation of the kth floor is given by ξk, where (ξk)k∈Z is a stationary sequence of random
variables. Once the environment fixed, the random walk can go either up or down or can stay in the
present floor (but moving with respect to its orientation). This model was introduced by Campanino
and Pétritis in [Markov Process. Relat. Fields 9 (2003) 391–412] when the (ξk)k∈Z is a sequence of
independent identically distributed random variables. In [Theory Probab. Appl. 52 (2007) 815–826],
Guillotin-Plantard and Le Ny extend this result to a situation where the orientations of the floors are
independent but chosen with stationary probabilities (not equal to 0 and to 1). In the present paper,
we generalize the result of [Markov Process. Relat. Fields 9 (2003) 391–412] to some cases when (ξk)k

is stationary. Moreover we extend slightly a result of [Theory Probab. Appl. 52 (2007) 815–826].
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1. Introduction

Random walks in random environment in Zd have been studied by many authors. For a general reference on
this subject, we refer to chapter 6 of Hughes [10]. Random walks with random orientations have been less studied.
However these two subjects are not far from each other. Indeed, random walks with random orientations can be
viewed as a degenerate case of random walks in random environment in the sense that transition probabilities
are allowed to be null. But this difference is significant. Moreover random walks in Z2 with random orientations
can also be viewed as a question of oriented percolation (see Sect. 12.8 of Grimmett [8]).

The present paper contains an extension of the model introduced by Campanino and Pétritis in [5] in another
direction than the one chosen by Guillotin-Plantard and Le Ny in [9]. But our result will also apply to random
walks of the form studied in [9]. Now, let us present the different models introduced in [5], in [9] and in the present
paper with their common ideas and their differences. Let us construct a random walk (Mn = (X̃n, Ỹn))n≥0 in
Z2 with random orientations as follows. Let (ξk)k∈Z be a stationary sequence of centered random variables with
values in {−1; 1}. The orientations of the kth horizontal floor of Z2 is given by ξk. Once the environment fixed,
the random walk (Mn = (X̃n, Ỹn))n will be such that M0 = (0, 0) and such that the distribution of Mn+1 −Mn

conditioned to σ(Mk; k = 0, . . . , n) is uniform on {(0, 1); (0,−1); (ξỸn
, 0)}.
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In [5], Campanino and Pétritis prove the transience of the random walk (Mn)n when (ξk)k∈Z is sequence of
independent identically distributed random variables. Moreover, they point out the fact that the random walk
(Mn)n≥0 is recurrent in the “alternate” case where ξk only depends on the parity of k. Hence the behaviour of
this random walk depends on the randomness of the orientations (ξk)k∈Z.

In [9], Guillotin-Plantard and Le Ny give a first generalization of the work of Campanino and Pétritis. They
envisage the case when the orientations of the floors are taken independently with stationary probabilities. More
precisely, they consider the following situation: let (fk)k∈Z be a stationary sequence of random variables with
values in [0; 1] and with expectation equal to 1

2 defined on some probability space (M,F , ν). Let us consider
the probability space given by (Ω1 := M × [0; 1]Z,F1 := F ⊗ (B([0; 1]))⊗Z, ν1 := ν ⊗ (λ)⊗Z), where λ is the
Lebesgue measure on [0; 1]. We define (ξ̃k,fk

)k∈Z on this space as follows:

ξ̃k,fk
(ω, (zm)m∈Z) := 2.1{zk≤fk(ω)} − 1.

This means that, once a realization of (fk)k given, the horizontal floors are oriented independently; the kth
floor being oriented to the right with probability fk. We will use this notation ξ̃k,fk

later in the paper. In [9],

Guillotin-Plantard and Le Ny prove that, if (ξk)k =
(
ξ̃k,fk

)
k
, then the corresponding random walk (Mn)n is

transient under the following condition:
∫

M
1√

f0(1−f0)
dν < +∞ (this implies that 0 < f0 < 1 a.s.).

Let us notice that the (ξk)k studied in [9] is stationary. Conversely, if (ξk)k is stationary, then it can be
described by the approach of [9] by taking fk := 1{ξk=1} = 1

2 (ξk + 1). But the method of [9] cannot be applied
to a function f0 that can be equal to 0 or 1 with a non-null probability.

In this paper, we are interested in the case when (ξk)k∈Z is a stationary sequence of random variables
satisfying some strong decorrelation properties. We state our main result in Section 2 and prove it in Section 3.
Examples are given in Section 2 and detailed in the appendix. Our examples satisfy a strong mixing condition.
We complete this paper with a short discussion in Section 4 about the model envisaged by Guillotin-Plantard
and Le Ny. We prove that their result remains true if the condition

∫
M

1√
f0(1−f0)

dν < +∞ is replaced by∫
M

1
[f0(1−f0)]p dν < +∞, for some p > 0.

2. Main result, examples, strong mixing property

Theorem 1. Let (ξk)k∈Z be a stationary sequence of centered random variables with values in {−1; 1} such
that:

(1) We have:
∑

p≥0

√
1 + p |E[ξ0ξp]| < +∞ and c′0 := supN≥1 N−2

∑
k1,k2,k3,k4=0,...,N−1 |E[ξk1ξk2ξk3ξk4 ]| <

+∞.
(2) There exist some C > 0, some (ϕp,s)p,s∈N and some integer r ≥ 1 such that for all positive integers p

and s, we have ϕp+1,s ≤ ϕp,s, such that we have lims→+∞ s6ϕrs,s = 0 and such that, for all integers
n1, n2, n3, n4 with 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4, for all real numbers αn1 , . . . , αn2 and βn3 , . . . , βn4 , we have:

∣∣∣Cov
(
ei
∑n2

k=n1
αkξk , ei

∑n4
k=n3

βkξk

)∣∣∣ ≤ C

(
1 +

n2∑
k=n1

|αk| +
n4∑

k=n3

|βk|
)

ϕn3−n2,n4−n3 .

Then the random walk (Mn)n is transient.

This result is proved in Section 3. We will see in its proof that this question is linked with
∑n−1

k=0 ξSk
where

(Sm)m≥0 is a simple symmetric random walk on Z independent of (ξk)k∈Z. Let us give some examples of
stationary sequences (ξk)k∈Z to which this result applies.
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Theorem 2. (α-mixing condition) Let (gk)k∈Z be a stationary sequence of bounded real-valued random variables
defined on some probability space (Ω,A, P) satisfying the following α-mixing condition:

sup
n≥1

n6αn < +∞, with αn := sup
p≥0; m≥0

sup
A∈σ(g−p,...,g0)

sup
B∈σ(gn,...,gn+m)

|P(A ∩ B) − P(A)P(B)| .

Then:
(a) If gk takes its values in {−1; 1}, if

∫
M

gk dν = 0 and if (ξk := gk)k∈Z, then (Mn)n is transient.
(b) If gk takes its values in [0; 1], if

∫
M

gk dν = 1
2 and if (ξk := ξ̃k,gk

)k∈Z, then (Mn)n is transient.

We will prove that the hypotheses of Theorem 1 are satisfied in the general context of strongly mixing
dynamical systems. We say that (M,F , ν, T ) is an invertible dynamical system if (M,F , ν) is a probability
space endowed with an invertible bi-measurable transformation T : M → M .

Definition 3. We say that an invertible dynamical system (M,F , ν, T ) is strongly mixing if there exists
c0 > 0, there exist two real sequences (ϕn)n≥0 and (κm)m≥0 and, for any function g : M → C, there exist
K

(1)
g ∈ [0; +∞] and K

(2)
g ∈ [0; +∞] such that, for all bounded functions g, h : M → C:

(1) for all integer n ≥ 0, we have: |Covν(g, h ◦ T n)| ≤ c0

(
‖g‖∞‖h‖∞ + ‖h‖∞K

(1)
g + ‖g‖∞K

(2)
h

)
ϕn;

(2) for all integer m ≥ 0, we have: K
(1)
g◦T−m ≤ c0K

(1)
g and: K

(2)
h◦T m ≤ c0K

(2)
h (1 + κm);

(3) we have: K
(1)
g×h ≤ ‖g‖∞K

(1)
h + ‖h‖∞K

(1)
g and: K

(2)
g×h ≤ ‖g‖∞K

(2)
h + ‖h‖∞K

(2)
g ;

(4) the sequence (ϕn)n≥0 is decreasing, the sequence (κm)m≥0 is increasing and there exists an integer r ≥ 1
such that: supn≥1 n6(1 + κn)ϕrn < +∞.

Proposition 4. Let (M,F , ν, T ) be a strongly mixing dynamical system. Let the sequence (ξk) be of one the
two following kinds:

(a) ξk = f ◦T k with f : M → {−1; 1} a ν-centered function such that K
(1)
f + K

(2)
f < +∞. We suppose that

there exists some real number c1 > 0 such that, for any real number α, we have: K
(1)
exp(iαf) +K

(2)
exp(iαf) ≤

c1|α|.
(b) ξk = ξ̃k,f◦T k with f : M → [0; 1] such that

∫
M

f dν = 1
2 and such that there exists some c1 > 0 such

that, for any a, b ∈ C, we have K
(1)
af+b + K

(2)
af+b ≤ c1|a|.

Then (ξk)k satisfies the hypothesis of Theorem 1.

Proposition 4 is proved in Appendix A. Theorem 2 will appear as a direct consequence (see App. B). Our
strong mixing property is satisfied by a large class of dynamical systems (endowed with some metric) with K

(1)
f

and K
(2)
f dominated by the Hölder constant of f of order η. Interesting examples are given by hyperbolic or

quasi-hyperbolic dynamical systems. We quickly give some examples of such dynamical systems. In the case
of the billiard transformation, because of the discontinuity of the transformation, our class of allowed functions
will contain discontinuous functions.

Examples 2.1. (1) Let (M,F , ν, T ) where T is an ergodic algebraic automorphism of the torus or a diago-
nal transformation on a compact quotient of Sld0(R) by a discrete group. Let η > 0. According to [16],
the strong mixing property holds with K

(1)
g some η-Hölder constant of g along the unstable manifolds

and with K
(2)
h some η-Hölder constant of h along the stable-central manifolds and with ϕn = αn for

some α ∈ (0, 1) and κm = mβ for some β ≥ 0. Moreover K
(1)
g and K

(2)
g are dominated by the Hölder

constant of order η of g.
(2) Let (M,F , ν, T ) where T is the Sinai billiard transformation (in T2) with C3-convex scatterers and with

finite horizon and where ν is the T invariant measure absolutely continuous with respect to the Lebesgue
measure [17]. Let m0 ∈ Z+ and η > 0. According to [6] (Th. 4.3), the strong mixing property holds
with ϕn = αn for some α ∈ (0, 1) and κm = mβ for some β ≥ 0, K

(1)
g being some Hölder constant of
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g along the T−m0(γu)’s (where the γu’s are the unstable curves) and K
(2)
h being some Hölder constant

of h along the T m0(γs)’s (where the γs’s are the stable curves). The quantities K
(1)
h and K

(2)
h will

be dominating by C
(η,m0)
h = supC∈Cm

supx,y∈C, x 
=y
|h(x)−h(y)|

max(d(T k(x),T k(y)); k=−m,...,m)η , where Cm is a set of
open subsets of M on which T m and T−m are C1.

The first example is a direct consequence of [16]. The second example is a consequence of [6]. In Appendix C,
we give a precise definition of K

(1)
f and of K

(2)
f for these examples (and a definition of Cm for the Sinai billiard).

For these systems, we can say a little more:

Theorem 5. Let η ∈ (0, 1) and let (M,F , ν, T ) be a strongly mixing dynamical system (endowed with some
metric) such that there exists α ∈ (0, 1) and β ≥ 0 such that ϕn = αn and κm = mβ and such that K

(1)
h and

K
(2)
h are both dominated by the η-Hölder constant of h. Then:

(A) If (ξk := ξ̃k,g0◦T k)k∈Z with g0 : M → [0; 1] a Hölder continuous function (of order η) such that∫
M g0 dν = 1

2 , then (Mn)n is transient.
(B) If (ξk = 21A ◦T k − 1)k∈Z with ν(A) = 1/2 and with A such that there exist cA > 0 and ζ > 0 such that,

for every ε ∈]0; 1[, we have: ν ({x ∈ M : d(x, A) < ε}) ≤ cAεζ , then (Mn)n is transient.

Conclusion (A) of Theorem 5 follows directly from Proposition 4. Conclusion (B) of Theorem 5 is proved in
Appendix D.

3. Proof of Theorem 1

Let us define T0 := 0 and, for all n ≥ 1: Tn+1 := inf{k > Tn : Ỹk �= Ỹk−1}.
Now, following [5], we construct a realization of (MTn)n. Let us consider a symmetric random walk (Sn)n

on Z independent of (ξk)k∈Z. For any integer m ≥ 1 and any integer k, we define:

Nm(k) := Card{j = 0, . . . , m : Sj = k}.

Let us also consider a sequence of independent random variables (ζ(y)
i )i≥1,y∈Z independent of ((ξy)y∈Z, (Sp)p≥1)

and such that P(ζ(y)
i = k) = 2

3k+1 for every integer k ≥ 0.

Lemma 6. The process (Xn, Sn)n≥1 with Xn :=
∑

y∈Z
ξy

∑Nn−1(y)
i=1 ζ

(y)
i has the same distribution as (MTn)n≥1.

In this lemma, ζ
(y)
i corresponds to the duration of the stay at the yth horizontal floor during the ith visit

to this floor. According to the Borel-Cantelli lemma, it suffices to prove that:
∑

n≥1 P({Xn ≤ 0 ≤ Xn+1

and Sn = 0}) < +∞. We follow the scheme of the proof of [5]. The difference will be in our way of estimating
I
(1)
n and in the introduction of the sets Un. We will consider δ1, δ2, δ3, and γ such that: 0 < δ1 < 2δ2,

δ1 + (27
2 + 16)δ2 < 1

8 , δ3 > 0, 1
4 − 3δ2 < δ3 < 1

4 − 5
2δ2 − δ1, δ3

2 − 2δ2 < β < δ3
2 − δ2, max(δ1, δ2) < γ <

1
2 − 22 max(δ1, δ2). The idea is that δ1, δ2, 1

4 − δ3 and 1
8 −β are positive numbers very close to zero. As in [5,9],

let us define: An := {ω ∈ Ω : max�∈Z Nn−1(�) ≤ n
1
2+δ2 and maxk=0,...,n |Sk| < n

1
2 +δ1}. Moreover, we define:

Un := {ω ∈ An : ∀x, y ∈ Z, |Nn−1(x) − Nn−1(y)| ≤
√
|x − y|n 1

2+γ}. The sketch of the proof is the following:

(1) As in Proposition 4.1 of [5], we have:
∑

n≥1 P ({Xn ≤ 0 ≤ Xn+1 and Sn = 0}\An) < +∞. Actually we
have:

∑
n≥1 P ({Sn = 0}\An) < +∞.

(2) We will see in Lemma 7 of the present paper that we have:
∑

n≥1 P (An\Un) < +∞. Therefore, we
have:

∑
n≥0 P ({Xn ≤ 0 ≤ Xn+1 and Sn = 0}\Un) < +∞.

(3) Let us define Bn := {ω ∈ Un :
∣∣∣∑y∈Z

ξyNn−1(y)
∣∣∣ > n

1
2+δ3}. As in Proposition 4.3 of [5], we have:∑

n≥0 P(Bn ∩ {Xn ≤ 0 ≤ Xn+1 and Sn = 0}) < +∞ since P({Xn ≤ 0 ≤ Xn+1}|(Sp)p, (ξy)y) =∑
q≥0 P({Xn = −q}|(Sp)p, (ξy)y) 1

3q . It remains to prove that:∑
n≥0 P (Un ∩ {Xn ≤ 0 ≤ Xn+1 and Sn = 0}\Bn) < +∞.
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(a) As in Lemma 4.5 of [5], there exists a real number C > 0 such that:

sup
ω∈Un\Bn

P ({Xn ≤ 0 ≤ Xn+1}|(Sp)p≥1, (ξk)k∈Z) ≤ C

√
ln(n)

n

since P({Xn ≤ 0 ≤ Xn+1}|(Sp)p, (ξy)y) =
∑
q≥0

P({Xn = −q}|(Sp)p, (ξy)y)
1
3q

·

(b) We will prove that there exists some δ̃ > 0 and some C′ > 0 such that:

∀ω ∈ Un, P (Un\Bn|(Sp)p) (ω) ≤ C′n−δ̃.

(i) This probability is bounded by c′n
1
2+δ3In(ω) with In(ω) = I

(1)
n (ω) + I

(2)
n (ω) and

I(1)
n (ω) :=

∫
{|t|≤n− 1

2−δ3+δ2}
E

[
eit

∑
y∈Z

ξyNn−1(y)(ω)
∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt

and

I(2)
n (ω) :=

∫
{|t|>n− 1

2−δ3+δ2}
E

[
eit

∑
y∈Z

Nn−1(y)(ω)
∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt;

(ii) we will prove that n
1
2+δ3 supUn

I
(1)
n = O(n−δ) for some δ > 0 (see our Lem. 8);

(iii) on the other hand, following [5], we have:

n
1
2+δ3I(2)

n ≤
∫
{|s|>nδ2}

e−
s2
2 ds ≤ 2n−δ2e−

n2δ2
2 .

(c) We have P(Sn = 0) ≤ C′′n− 1
2 .

(d) Hence we have: P (Un ∩ {Xn ≤ 0 ≤ Xn+1 and Sn = 0}\Bn) ≤ C′′′n−1−δ̃
√

ln(n).

We have to prove that points 2 and 3(b)(ii) are true with our choices of parameters. Indeed, all the other points
are true for any positive δ1, δ2, δ3 and for any sequence of random variables (ξk)k∈Z independent of (Sp)p. We
notice that, for any integer n ≥ 1, we have:

∑n−1
j=0 ξSj =

∑
k∈Z

ξkNn−1(k). In our proof, we need some real
numbers δ1, δ2, δ3, δ4, β, γ and ε > 0. We will suppose that:

δ1 > 0, δ2 > 0, δ1 + (27
2 + 16)δ2 < 1

8 , δ3 > 0, δ1 < δ4 < 1
4 − δ3 − 5

2δ2, 1
4 − 3δ2 < δ3 < 1

4 − 5
2δ2, 5

3δ2 < 1
2δ3,

δ3
2 − 2δ2 < β < δ3

2 − δ2, 5
2δ3 > 1

2 + 6δ2 + δ1, max(δ1, δ2) < γ < 1
2 − 22 max(δ1, δ2) and:

nδ1+11δ2
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]| = O(n−ε).

(we have:
∑

m≥N |E[ξ0ξm]| ≤ N− 1
2
∑

m≥N

√
m|E[ξ0ξm]|). All these inequalities are true with the following

choices of parameters:

δ1 =
1

3000
, δ2 =

1
500

, δ3 =
1
4
− 11

4
δ2 = 489/2000, δ4 = 1/2500, β =

δ3

2
− 3

2
δ2 = 477/4000, γ =

1
4
·

Lemma 7. We have:
∑

n≥1 P (An\Un) < +∞.
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Proof. Let us consider any x, y ∈ Z with x �= y and |x − y| ≤ 3n
1
2+δ1 . For any integer j ≥ 1, we define the

time τj(x) of the jth visit of (Sp)p to x and the number Nj(x, y) of visits of (Sp)p to y between the times τj(x)
and τj+1(x). According to [14,18] (see [14] Lem. 2), for any integer p ≥ 1, there exists Kp > 0 such that, for
any x′ �= y,′ we have: E[(Nj(x′, y′))p] ≤ Kp|x′ − y′|p−1. According to [14], on the set {τ1(x) ≤ τ1(y)}, we have:

(Nn−1(x) − Nn−1(y)) =
Nn−1(x)∑

j=1

(1 −Nj(x, y)) +

τNn−1(x)+1(x)∑
k=n

1{Sk=y}.

Let p be any positive integer. We have:

(Nn−1(x) − Nn−1(y))2p1{τ1(x)≤τ1(y)} ≤ 22p

⎡
⎢⎣
⎛
⎝Nn−1(x)∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p

+

⎛
⎝τNn−1(x)+1(x)∑

k=n

1{Sk=y}

⎞
⎠

2p
⎤
⎥⎦.

But, on An, since we have Nn−1(x) ≤ n
1
2+δ2 , we get:

⎛
⎝τNn−1(x)+1(x)∑

k=n

1{Sk=y}

⎞
⎠

2p

≤ (NNn−1(x)(x, y)
)2p ≤

⌊
n

1
2+δ2

⌋∑
j=1

(Nj(x, y))2p .

Hence we have:

E

⎡
⎢⎣
⎛
⎝τNn−1(x)+1(x)∑

k=n

1{Sk=y}

⎞
⎠

2p

1An

⎤
⎥⎦ ≤ n

1
2+δ2K2p|x − y|2p−1

≤ K2p3p−1|x − y|p
(
n

1
2+max(δ1,δ2)

)p

.

Moreover, on An, we have:

⎛
⎝Nn−1(x)∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p

≤ max
k=1,...,

⌊
n

1
2+δ2

⌋
⎛
⎝ k∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p

.

Since
(∑k

j=1(1 −Nj(x, y))
)

k≥1
is a martingale (see [14] Lem. 2), according to a maximal inequality, we have:

∥∥∥∥∥∥∥ max
k=1,...,

⌊
n

1
2+δ2

⌋
⎛
⎝ k∑

j=1

(1 −Nj(x, y))

⎞
⎠

2
∥∥∥∥∥∥∥

Lp

≤ p

p − 1
max

k=1,...,
⌊
n

1
2+δ2

⌋
∥∥∥∥∥∥∥
⎛
⎝ k∑

j=1

(1 −Nj(x, y))

⎞
⎠

2
∥∥∥∥∥∥∥

Lp

.

Hence we have:

E

⎡
⎢⎣
⎛
⎝Nn−1(x)∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p

1An

⎤
⎥⎦ ≤

(
p

p − 1

)p

max
k=1,...,

⌊
n

1
2 +δ2

⌋ E

⎡
⎢⎣
⎛
⎝ k∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p
⎤
⎥⎦ .
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Let us write M2p
ν1,...,νl

= (2p)!∏ l
i=1 νi!

. For any k = 1, . . . ,
⌊
n

1
2+δ2

⌋
, since the Njm ’s are independent and since

E [1 −Nj(x, y)] = 0, we have:

E

⎡
⎢⎣
⎛
⎝ k∑

j=1

(1 −Nj(x, y))

⎞
⎠

2p
⎤
⎥⎦ =

2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥1

M2p
ν1,...,νl

∑
j1<...<jl

l∏
m=1

E [(1 −Njm(x, y))νm ] ,

≤
2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥2

M2p
ν1,...,νl

∑
1≤j1<...<jl≤k

l∏
m=1

(2νmE [1 + (Njm(x, y))νm ])

≤
2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥2

M2p
ν1,...,νl

∑
1≤j1<...<jl≤k

l∏
m=1

2νm(1 + Kνm |x − y|νm−1)

≤ C̃p

2p∑
l=1

|x − y|2p−l(n
1
2+δ2)l ≤ 2p3pC̃p|x − y|p(n 1

2 +max(δ1,δ2))p.

Hence we get: E
[
(Nn−1(x) − Nn−1(y))2p1An

] ≤ C̃′
p|x−y|p(n 1

2+max(δ1,δ2))p. Therefore, according to the Markov
inequality, for any integer p ≥ 1, we have:

P (An\Un) ≤

⌈
n

1
2+δ1

⌉∑
x,y=−

⌈
n

1
2+δ1

⌉ P

(
An ∩

{
|Nn−1(x) − Nn−1(y)| >

√
|x − y|n 1

2+γ

})

≤

⌈
n

1
2+δ1

⌉∑
x,y=−

⌈
n

1
2+δ1

⌉
E[(Nn−1(x) − Nn−1(y))2p1An ]

|x − y|p(n 1
2 +γ)p

≤ cp

(
5n

1
2+δ1

)2 (
nmax(δ1,δ2)−γ

)p

.

By taking p large enough, we get:
∑

n≥1 P(An\Un) < +∞. �

3.1. Estimates on Un

In this section, we suppose that we are in Un. We will estimate:

I(1)
n (ω) :=

∫
{|t|≤n− 1

2−δ3+δ2}

(
E

[
eit

∑
y∈Z

ξyNn−1(y)
∣∣∣ (Sp)p

]
(ω)
)

e−
t2n1+2δ3

2 dt.

Lemma 8. There exists a real number δ > 0 such that: supn≥1 nδ supω∈Un
n

1
2 +δ3I

(1)
n (ω) < +∞.

To prove this lemma, we will use the following formula:

n
1
2+δ3I(1)

n (ω) = nδ2

∫
{|u|≤1}

(
E

[
eiun− 1

2−δ3+δ2
∑

y∈Z
ξyNn−1(y)

∣∣∣∣ (Sp)p

]
(ω)
)

e−
u2n2δ2

2 du.

The main idea is to prove that, in this formula, we can replace the term:

Bn(u)(ω) := E

[
eiun− 1

2−δ3+δ2
∑

y∈Z
ξyNn−1(y)

∣∣∣∣ (Sp)p

]
(ω)

by the term: An(u)(ω) := e−
u2

2n1+2δ3−2δ2

∑
y,z E[ξyξz ](Nn−1(y)(ω))2 . More precisely let us prove that we have:
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Lemma 9. There exists a real number δ0 > 0 such that we have:

sup
n≥1

nδ0 sup
ω∈Un

nδ2

∫
|u|≤1

|Bn(u)(ω) − An(u)(ω)| e−u2n2δ2
2 du < +∞. (3.1)

After proving 9, we will prove that Lemma 8 is a consequence of it. We will use the following notation:
σ2

ξ :=
∑

m∈Z
E[ξ0ξm].

3.1.1. Proof of Lemma 9

Our proof uses a method introduced by Jan (cf. [12,13]). This method also gives a result of conver-
gence in distribution for

(
n−3/4

∑n−1
k=0 ξSn

)
n≥1

(see [15]). Let n be an integer such that nβ ≥ 2. Let us fix

ω ∈ Un and u ∈ [−1; 1]. Let us recall that 0 < β < δ3
2 − δ2 et let us define: Ln :=

⌊
2
⌊
n

1
2+δ1

⌋
+1

�nβ�

⌋
(we have:

Ln ≤ 4n
1
2+δ1−β) and, for all integer k = 0, . . . , Ln: α(k) := −

⌊
n

1
2+δ1

⌋
+ k�nβ� and α(Ln+1) :=

⌊
n

1
2+δ1

⌋
+ 1;

bk := eiun− 1
2−δ3+δ2

∑α(k+1)−1
y=α(k)

ξyNn−1(y) and ak := e−
u2

2n1+2δ3−2δ2

∑α(k+1)−1
y=α(k)

σ2
ξ(Nn−1(y))2

. We have to estimate:
nδ2

∣∣∣E [∏Ln

k=0 bk

∣∣∣ (Sp)p

]
(ω) −∏Ln

k=0 ak(ω)
∣∣∣. Hence it is enough to estimate:

nδ2

Ln∑
k=0

∣∣∣∣∣E
[(

k−1∏
m=0

bm

)
(bk − ak)

(
Ln∏

m′=k+1

am′

)∣∣∣∣∣ (Sp)p

]
(ω)

∣∣∣∣∣.
• We explain how we can restrict our study to the sum over the k such that (r + 1)4 ≤ k ≤ Ln − 1. Let

k ∈ {0, . . . , Ln}. We have:

E

⎡
⎣
(

α+θ∑
�=α+1

ξ�Nn−1(�)

)2

|(Sp)p

⎤
⎦ (ω) ≤

α+θ∑
�=α+1

α+θ∑
m=α+1

|E[ξ�ξm]| Nn−1(�)(ω)Nn−1(m)(ω)

≤ θ
∑
m∈Z

|E[ξ0ξm]|n1+2δ2 .

Hence we have:
E [|bk − 1||(Sp)p] (ω) ≤ n− 1

2−δ3+δ2

(
E

[∣∣∣∑α(k+1)−1
y=α(k)

ξyNn−1(y)
∣∣∣ |(Sp)p

]
(ω)
)

≤ n− 1
2−δ3+δ2n

β
2

√∑
m∈Z

|E[ξ0ξm]|n 1
2+δ2 ≤ n− 3

4 δ3+ 3
2 δ2

√∑
m∈Z

|E[ξ0ξm]|,

since we have β < δ3
2 − δ2. Moreover we have:

|ak(ω) − 1| ≤
σ2

ξ

∑α(k+1)−1
y=α(k)

(Nn−1(y)(ω))2

2n1+2δ3−2δ2
≤ σ2

ξn1+2δ2

2n1+2δ3−2δ2
nβσ2

ξn1+2δ2 ≤ n− 3
2 δ3+3δ2σ2

ξ

2
·

From which, we get:

nδ2

(r+1)4−1∑
k=0

E [|bk − ak||(Sp)p] (ω) + E [|bLn − aLn ||(Sp)p] (ω) ≤ c0

(
n− 3

4 δ3+ 5
2 δ2 + n− 3

2 δ3+4δ2

)
, (3.2)

with c0 := ((r + 1)4 + 1)
√∑

m∈Z
|E[ξ0ξm]| + 1

2σ2
ξ . Let us recall that 5

3δ2 < 1
2δ3.
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Hence, it remains to estimate:

nδ2

Ln−1∑
k=(r+1)4

∣∣∣∣∣E
[(

k−1∏
m=0

bm

)
(bk − ak)

Ln∏
m′=k+1

am′ |(Sp)p

]∣∣∣∣∣ . (3.3)

• Let us introduce some holes in the indices m in order to use our decorrelation hypothesis. Let us control
the following quantity:

B̃n := nδ2

Ln−1∑
k=(r+1)4

∣∣∣∣∣∣E
⎡
⎣
⎛
⎝k−(r+1)4∏

m=0

bm

⎞
⎠ 3∏

j=1

⎛
⎝
⎛
⎝ k−(r+1)j∏

m=k−(r+1)j+1+1

bm

⎞
⎠− 1

⎞
⎠

×
k−1∏

m′′=k−r

bm′′(bk − ak)
Ln∏

m′=k+1

am′

∣∣∣∣∣ (Sp)p

]∣∣∣∣∣ .
We have:

B̃n(ω) ≤ nδ2

Ln−1∑
k=(r+1)4

3∏
j=1

∥∥∥∥∥∥
⎛
⎝ k−(r+1)j∏

m=k−(r+1)j+1+1

bm

⎞
⎠− 1

∥∥∥∥∥∥
L∞(Un)

‖bk − ak‖L∞(Un).

On Un, we have: |bk − 1| ≤ n− 1
2−δ3+δ2nβn

1
2 +δ2 ≤ n−δ3+2δ2+β .

Analogously, we get:
∣∣∣(∏k−(r+1)j

m=k−(r+1)j+1+1 bm

)
− 1

∣∣∣ ≤ r(r + 1)jn−δ3+2δ2+β . On the other hand, we

have: |ak − 1| ≤ 1
2n−2δ3+4δ2+βσ2

ξ . Therefore, since we have β < δ3
2 − δ2, we get:

B̃n ≤ 4nδ2n
1
2+δ1−βr3(r + 1)6

(
1 +

1
2
σ2

ξ

)(
n−δ3+2δ2+β

)4
= O

(
n

1
2− 5

2 δ3+6δ2+δ1

)
.

The control of the quantity B̃n comes from the fact that 5
2δ3 > 1

2 + 6δ2 + δ1.
It remains to estimate: nδ2

∑Ln−1
k=(r+1)4+1

∑
1≤j0<j1≤j2≤4 Cn,k,j0,j1,j2 , where Cn,k,j0,j1,j2 is the following

quantity:
∣∣∣∣∣∣E
⎡
⎣
⎛
⎝k−(r+1)4∏

m=0

bm

⎞
⎠
⎛
⎝ k−(r+1)j1∏

m=k−(r+1)j2+1

bm

⎞
⎠
⎛
⎝ k−1∏

m=k−(r+1)j0+1

bm

⎞
⎠ (bk − ak)

Ln∏
m′=k+1

am′

∣∣∣∣∣∣ (Sp)p

⎤
⎦
∣∣∣∣∣∣ ,

with the convention:
∏β

m=α bm = 1 if β < α. Let j0, j1, j2 be fixed. We have: Cn,k,j0,j1,j2 ≤
Dn,k,j0,j1,j2 + En,k,j0,j1,j2 , with:

Dn,k,j0,j1,j2 :=

∣∣∣∣∣Cov|(Sp)p
(Δn,k,j1,j2 , Γn,k,j0)

Ln∏
m′=k+1

am′

∣∣∣∣∣

and En,k,j0,j1,j2 :=

∣∣∣∣∣E [Δn,k,j1,j2 | (Sp)p] E [Γn,k,j0 | (Sp)p]
Ln∏

m′=k+1

am′

∣∣∣∣∣ ,
with Δn,k,j1,j2 :=

∏k−(r+1)4

m=0 bm

∏k−(r+1)j1

m′=k−(r+1)j2+1
bm′ and Γn,k,j0 :=

(∏k−1
m=k−(r+1)j0+1 bm

)
(bk − ak).
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• Control of the covariance terms (thanks to our decorrelation hypothesis). Let j0, j1, j2 be fixed. Let
k = (r + 1)4, . . . , Ln − 1. We have:

Dn,k,j0,j1,j2 ≤
∣∣∣∣∣∣Cov|(Sp)p

⎛
⎝Δn,k,j1,j2 ,

k∏
m=k−(r+1)j0+1

bm

⎞
⎠ Ln∏

m′=k+1

am′

∣∣∣∣∣∣
+

∣∣∣∣∣∣Cov|(Sp)p

⎛
⎝Δn,k,j1,j2 ,

k−1∏
m=k−(r+1)j0+1

bm

⎞
⎠ Ln∏

m′=k

am′

∣∣∣∣∣∣ .

But we have:
∏θ1+θ2

m=θ1+1 bm = e
iun− 1

2−δ3+δ2
∑α(θ1+θ2+1)−1

�=α(θ1)
ξ�Nn−1(�)

. Therefore, according to point 2 of the
hypothesis of our theorem, we have:

Dn,k,j0,j1,j2 ≤ 2C

(
1 + n− 1

2−δ3+δ2
∑
�∈Z

Nn−1(�)

)
ϕp,s

with p := �nβ�((r + 1)j1 − (r + 1)j0) and s := �nβ�(r + 1)j0 − 1. Let us notice that we have: p ≥ rs.
Since

∑
�∈Z

Nn−1(�) = n, we have:

nδ2

Ln−1∑
k=(r+1)4

Dn,k,j0,j1,j2 ≤ 4C
(
n1−δ3+δ1−β+2δ2

)
n−6β sup

s≥nβ

s6ϕrs,s

≤ 4C
(
n1− 9

8+δ1+( 27
2 +16)δ2

)
sup
s≥nβ

s6ϕrs,s,

since β > δ3
2 − 2δ2 and δ3 > 1

4 − 3δ2. We end this point by noticing that δ1 + (27
2 + 16)δ2 < 1

8 .
• Control of the term with the product of the expectations. Let j0, j1, j2 be fixed. Let k = (r+1)4, . . . , Ln−

1. We can notice that En,k,j0,j1,j2 is bounded by the following quantity:

Fn,k,j0 :=

∣∣∣∣∣∣E
⎡
⎣ k∏

m=k−(r+1)j0+1

bm −
⎛
⎝ k−1∏

m=k−(r+1)j0+1

bm

⎞
⎠ ak

∣∣∣∣∣∣ (Sp)p

⎤
⎦
∣∣∣∣∣∣ .

We approximate the terms with exponential using Taylor expansions.
– First we explain that, in Fn,k,j0 , we can replace

k∏
m=k−(r+1)j0+1

bm = exp

⎛
⎝iun− 1

2−δ3+δ2

α(k+1)−1∑
�=α(k−(r+1)j0 +1)

ξ�Nn−1(�)

⎞
⎠

by the formula given by the second order Taylor expansion of the exponential function:

1 + iun− 1
2−δ3+δ2

α(k+1)−1∑
�=α(k−(r+1)j0 +1)

ξ�Nn−1(�) − u2

2n1+2δ3−2δ2

⎛
⎝ α(k+1)−1∑

�=α(k−(r+1)j0 +1)

ξ�Nn−1(�)

⎞
⎠

2

. (3.4)
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Indeed, the induced error is less than: 1
6n− 3

2−3δ3+3δ2E

[∣∣∣∑α(k+1)−1

�=α(k−(r+1)j0 +1)
ξ�Nn−1(�)

∣∣∣3 |(Sp)p

]
.

Moreover, we have:

E

⎡
⎢⎣
∣∣∣∣∣∣

α(k+1)−1∑
�=α(k−(r+1)j0 +1)

ξ�Nn−1(�)

∣∣∣∣∣∣
4

|(Sp)p

⎤
⎥⎦ ≤

α(k+1)−1∑
y1,y2,y3,y4=α(k−(r+1)j0 +1)

|E[ξy1ξy2ξy3ξy4 ]|
(
n

1
2+δ2

)4

≤ c′0n
2+4δ2(r + 1)6n2β ,

according to the hypothesis of our theorem. Hence, taking the sum over k = (r + 1)4, . . . , Ln − 1
and multiplying by nδ2 , this substitution induces a total error bounded by:

(c′0)
3/4

6
nδ2+ 1

2+δ1−βn− 3
2−3δ3+3δ2n

3
2+3δ2(r + 1)

9
2 n

3
2 β

and so by: (c′0)
3/4

6 n7δ2+
1
2+δ1−3δ3+ 1

2 β(r+1)
9
2 . Since β < δ3

2 −δ2, δ3 > 1
4−3δ2 and δ1+(27

2 +16)δ2 < 1
8 ,

we have: 7δ2 + 1
2 + δ1 − 3δ3 + 1

2β ≤ − 1
16 .

– Let us introduce Yk :=
∑α(k)−1

�=α(k−(r+1)j0 +1)
ξ�Nn−1(�) and Zk :=

∑α(k+1)−1

�=α(k)
σ2

ξNn−1(�)2. We ex-

plain that, in Fn,k,j0 , we can replace
(∏k−1

m=k−(r+1)j0+1 bm

)
ak = e

iu

n
1
2+δ3−δ2

Yk− u2

2n1+2δ3−2δ2
Zk

by the
formula given by the Taylor expansion of the exponential function at the second order:

1 +
iu

n
1
2+δ3−δ2

Yk − u2

2n1+2δ3−2δ2
Zk +

1
2

(
iu

n
1
2 +δ3−δ2

Yk − u2

2n1+2δ3−2δ2
Zk

)2

. (3.5)

Indeed the modulus of the error between these two quantities is less than:

1
6

E

[∣∣∣∣ iu

n
1
2+δ3−δ2

Yk − u2

2n1+2δ3−2δ2
Zk

∣∣∣∣
3

|(Sp)p

]
≤ 4

3
E

[∣∣∣∣ 1
n

1
2+δ3−δ2

Yk

∣∣∣∣
3

+
∣∣∣∣ 1
2n1+2δ3−2δ2

Zk

∣∣∣∣
3

|(Sp)p

]
,

We control the first term as in the preceding point. Moreover, we have:

∣∣n−1−2δ3+2δ2Zk

∣∣3 ≤ n−3−6δ3+6δ2
(
σ2

ξ

)3
n3βn3+6δ2 ≤ n−6δ3+12δ2+3β

(
σ2

ξ

)3
.

Hence, taking the sum over k = (r + 1)4, . . . , Ln − 1 and multiplying by nδ2 , we get a quantity

bounded by: 2n
1
2+δ1−6δ3+13δ2+2β

(
σ2

ξ

)3

and we have: 1
2 + δ1 − 6δ3 + 13δ2 + 2β < 0.

– Now, we show that in formula (3.5), we can omit the term with (Zk)2. Indeed, we have:

nδ2

Ln−1∑
(r+1)4

(
n−1−2δ3+2δ2Zk

)2 ≤ 2nδ2+
1
2+δ1−β−2−4δ3+4δ2n2β(σ2

ξ )2n2+4δ2

≤ 2n− 1
5− 2

5 δ1− 2
5 δ2(σ2

ξ )2

since β < δ3
2 − δ2 and 5

2δ3 > 1
2 + 6δ2 + δ1.
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– Hence, it remains to estimate the following quantity called Gn,k,j0 :

∣∣∣∣E
[

iu

n
1
2+δ3−δ2

(Yk + Wk) − u2

2n1+2δ3−2δ2
(Yk + Wk)2 − iu

n
1
2+δ3−δ2

Yk +
u2

2n1+2δ3−2δ2
Zk

+
u2

2n1+2δ3−2δ2
(Yk)2 +

iu

n
1
2+δ3−δ2

Yk
u2

2n1+2δ3−2δ2
Zk

∣∣∣∣ (Sp)p

]∣∣∣∣ ,
with Wk :=

∑α(k+1)−1

�=α(k)
ξ�Nn−1(�). We get:

Gn,k,j0 =
∣∣∣∣E
[
− u2

2n1+2δ3−2δ2
(Yk + Wk)2 +

u2

2n1+2δ3−2δ2
Zk +

u2

2n1+2δ3−2δ2
(Yk)2

∣∣∣∣ (Sp)p

]∣∣∣∣
=

u2

2n1+2δ3−2δ2

∣∣∣E [ (Wk)2 + 2WkYk − Zk

∣∣∣ (Sp)p

]∣∣∣.
Let us notice that we have:

Zk :=
α(k+1)−1∑

�=α(k)

⎛
⎝E[(ξ�)2]Nn−1(�)2 + 2

∑
m≤�−1

E[ξ�ξm]Nn−1(�)2

⎞
⎠.

– Let us show that, in the last expression of Gn,k,j0 , we can replace Zk by:

Z̃k :=
α(k+1)−1∑

�=α(k)

⎛
⎝E[(ξ�)2]Nn−1(�)2 + 2

∑
m≤�−1

E[ξ�ξm]Nn−1(�)Nn−1(m)

⎞
⎠ .

Indeed, by definition of Un, we have:

u2

2n1+2δ3−2δ2
E

[ ∣∣∣Zk − Z̃k

∣∣∣ ∣∣∣ (Sp)p

]
≤ 1

n1+2δ3−2δ2

α(k+1)−1∑
�=α(k)

∑
m≤�−1

|E[ξ�ξm]|Nn−1(�)|Nn−1(m) − Nn−1(�)|

≤ n− 1
4−2δ3+3δ2+β+ γ

2

∑
m≥1

√
m|E[ξ0ξm]|.

Hence, taking the sum over k = (r + 1)4, . . . , Ln − 1 and multiplying by nδ2 , we get a quan-
tity bounded by: 4n

1
4+δ1−2δ3+4δ2+ γ

2
∑

m≥1

√
m|E[ξ0ξm]|. But, since δ3 > 1

4 − 3δ2 and γ < 1
2 −

22 max(δ1, δ2), we have: 1
4 + δ1 − 2δ3 + 4δ2 + γ

2 < 0.
– Hence we have to estimate:

G̃n,k,j0 =
u2

2n1+2δ3−2δ2

∣∣∣E [ (Wk)2 + 2WkYk − Z̃k

∣∣∣ (Sp)p

]∣∣∣ .
We have:

E
[
(Wk)2

∣∣ (Sp)p

]
=

α(k+1)−1∑
�=α(k)

⎛
⎝E[(ξ�)2](Nn−1(�))2 + 2

�−1∑
m=α(k)

E[ξ�ξm]Nn−1(�)Nn−1(m)

⎞
⎠ .
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Hence we have:

E
[
(Wk)2 + 2WkYk

∣∣ (Sp)p

]
=

α(k+1)−1∑
�=α(k)

⎛
⎝E[(ξ�)2](Nn−1(�))2 + 2

�−1∑
m=α(k−(r+1)j0+1)

E[ξ�ξm]Nn−1(�)Nn−1(m)

⎞
⎠ .

We get:

G̃n,k,j0 =
u2

n1+2δ3−2δ2

∣∣∣∣∣∣
α(k+1)−1∑

�=α(k)

∑
m≤α(k−(r+1)j0 +1)−1

E[ξ�ξm]Nn−1(�)Nn−1(m)

∣∣∣∣∣∣

≤ u2

n1+2δ3−2δ2
nβ

∑
m≥ (r+1)nβ

2

|E[ξ0ξm]|n1+2δ2 ≤ n−2δ3+4δ2+β
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]|.

Hence, taking the sum over k = (r + 1)4, . . . , Ln − 1 of these quantities and multiplying by nδ2 , we get
a quantity bounded by:

4n
1
2+δ1−2δ3+5δ2

∑
m≥ (r+1)nβ

2

|E[ξ0ξm]| ≤ 4nδ1+11δ2
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]|,

since δ3 > 1
4 − 3δ2. To conclude it suffices to notice that: nδ1+11δ2

∑
m≥ (r+1)nβ

2
|E[ξ0ξm]| = O(n−ε). �

3.1.2. Proof of Lemma 8

Let us consider n ≥ 2. According to Lemma 9, it suffices to prove that there exists a real number δ′ > 0 such
that we have:

sup
n≥1

nδ′
sup

ω∈Un

nδ2

∫
|u|≤1

exp

(
− u2

2n1+2δ3−2δ2

∑
y,z

E[ξyξz](Nn−1(y)(ω))2
)

e−
u2n2δ2

2 du < +∞.

Let us take ω ∈ Un. We have:

exp

(
− u2

2n1+2δ3−2δ2

∑
y,z

E[ξyξz](Nn−1(y)(ω))2
)

= exp

(
− u2

2n1+2δ3−2δ2
σ2

ξ

∑
y

(Nn−1(y)(ω))2
)

.

Let us define: pn := Card{y ∈ Z : Nn−1(y) ≥ n
1
2−δ4

3 }. We have:

n =

⌊
n

1
2+δ1

⌋∑
y=−

⌊
n

1
2+δ1

⌋ Nn−1(y) ≤ pnn
1
2+δ2 +

n
1
2−δ4

3

(
3n

1
2+δ1 − pn

)

≤ pnn
1
2 +δ2

(
1 − n−(δ2+δ4)

3

)
+ n1+δ1−δ4 .
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Since δ1 < δ4, we have: pn ≥ n− 1
2−δ2

(
n − n1−(δ4−δ1)

) ≥ n
1
2−δ2

(
1 − n−(δ4−δ1)

) ≥ c0n
1
2−δ2 , with c0 := 1 −

2−(δ4−δ1). Hence we have:
∑

y∈Z
(Nn−1(y)(ω))2 ≥ pn

(
n

1
2−δ4

3

)2

≥ c0n
3
2−δ2−2δ4

9 and

e−
u2 ∑

y σ2
ξ
(Nn−1(y)(ω))2

2n1+2δ3−2δ2 ≤ e−
u2σ2

ξ
c0n

3
2 −δ2−2δ4

18n1+2δ3−2δ2

≤ e−
u2
18 σ2

ξc0n
1
2+δ2−2δ3−2δ4

.

Therefore, we have:

nδ2

∫
|u|≤1

e−
u2

2n1+2δ3−2δ2

∑
y,z E[ξyξz](Nn−1(y)(ω))2e−

u2n2δ2
2 du ≤ nδ2

∫
|u|≤1

e−
u2
18 σ2

ξc0n
1
2+δ2−2δ3−2δ4

du

≤ n− 1
4+δ4+ 1

2 δ2+δ3

∫
R

e−
v2
18 σ2

ξc0 dv.

This ends the proof since δ4 + δ3 + 1
2δ2 < 1

4 . �

4. About the model of Guillotin-Plantard and Le Ny

In this section, we prove that the hypothesis
∫

M
1√

f0(1−f0)
dν < +∞ of Guillotin-Plantard and Le Ny in [9]

can be replaced by the existence of p ≥ 1 such that
∫

M
1

(f0(1−f0))p dν < +∞, for some p > 0. In this situation,
there is no need to introduce the set Un; we take Un = An. If we take δ1 > 0, δ2 > 0 and δ3 > 0, all the points
(of the sketch of the proof of Sect. 3) except the point 3(b)(ii) come in the same way without the need of the
hypothesis

∫
M

1√
f0(1−f0)

dν < +∞. It remains to estimate:

sup
ω∈An

n
1
2+δ3I(1)

n (ω) := n
1
2+δ3

∫
{|t|≤n− 1

2−δ3+δ2}
E

[
eit

∑
y∈Z

ξyNn−1(y)
∣∣∣ (Sp)p

]
(ω)e−

t2n1+2δ3
2 dt.

Let us take ω ∈ An. We suppose δ3 > 2δ2 and δ1 < δ4 < 1
4 − δ3 − δ2

2 . The idea of Guillotin-Plantard and Le
Ny is to write:

n
1
2+δ3

∣∣∣I(1)
n

∣∣∣ ≤ n
1
2 +δ3

∫
{|t|≤n− 1

2−δ3+δ2}
E

⎡
⎣∏

y∈Z

|cos(tNn−1(y)) + i(2fy − 1) sin(tNn−1(y))|
∣∣∣∣∣∣ (Sp)p

⎤
⎦ e−

t2n1+2δ3
2 dt

≤ n
1
2 +δ3

∫
{|t|≤n− 1

2−δ3+δ2}
E

⎡
⎣∏

y∈Z

√
1 − 4fy(1 − fy) sin2(tNn−1(y))

∣∣∣∣∣∣ (Sp)p

⎤
⎦ e−

t2n1+2δ3
2 dt

≤ n
1
2 +δ3

∫
{|t|≤n− 1

2−δ3+δ2}
E

⎡
⎣∏

y∈Z

√
1 − fy(1 − fy)

16
π2

(tNn−1(y))2

∣∣∣∣∣∣ (Sp)p

⎤
⎦ e−

t2n1+2δ3
2 dt

≤ n
1
2 +δ3

∫
{|t|≤n− 1

2−δ3+δ2}
E

⎡
⎣∏

y∈Z

e−
8

π2 fy(1−fy)t2Nn−1(y)2

∣∣∣∣∣∣ (Sp)p

⎤
⎦ e−

t2n1+2δ3
2 dt

since |tNn−1(y)| ≤ n− 1
2−δ3+δ2n

1
2 +δ2 = n2δ2−δ3 . Hence, if n is large enough, then |tNn−1(y)| will be uniformly

less than π
2 and |sin(tNn−1(y))| ≥ 2

π |tNn−1(y)|. We also use the fact that, for positive u, we have: 1− u ≤ e−u.
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According to the Hölder inequality with
∑

y
Nn−1(y)2∑
k Nn−1(k)2 = 1, we have:

n
1
2 +δ3

∣∣∣I(1)
n

∣∣∣ ≤ n
1
2+δ3

∫
{|t|≤n− 1

2 −δ3+δ2}
E

[
e−

8
π2 f0(1−f0)t

2 ∑
k Nn−1(k)2

∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt.

Now, we use the fact that, since δ4 > δ1, there exists a constant c such that we have:

∀ω′ ∈ An,
∑
y∈Z

(Nn−1(y))2(ω′) ≥ cn
3
2−δ2−2δ4 .

This has been proved in the previous Section 3.1.2. Hence, under the hypothesis
∫

M
1√

f0(1−f0)
dν < +∞ of

Guillotin-Plantard and Le Ny, we have:

n
1
2 +δ3

∣∣∣I(1)
n (ω)

∣∣∣ ≤ n
1
2+δ3

∫
{|t|≤n− 1

2 −δ3+δ2}
E

[
e−

8c
π2 f0(1−f0)t2n

3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt

≤ n− 1
4+δ3+

δ2
2 +δ4

∫
R

E

[
1√

f0(1 − f0)

]
e−

8
π2 v2

dv

with the change of variable v = t

√
f0(1 − f0)n

3
2−δ2−2δ4 . This gives the result of Guillotin-Plantard and Le Ny

since − 1
4 + δ3 + δ2

2 + δ4 < 0. We adapt this argument to our hypothesis. Now let us replace the hypothesis∫
M

1√
f0(1−f0)

dν < +∞ by
∫

M
1

[f0(1−f0)]p dν < +∞ for some p > 0. Let us take δ3 > 2δ2 and δ1 < δ4 <

1
4 − δ3 − δ2

2 − δ2
p . We have:

n
1
2+δ3

∫
{|t|≤n

− 3
4+

δ2
2 +δ4+

δ2
p }

E

[
e−

8
π2 f0(1−f0)t

2n
3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt ≤ 2n

1
2 +δ3n− 3

4+
δ2
2 +δ4+

δ2
p

≤ 2n− 1
4+δ3+

δ2
2 +δ4+

δ2
p .

On the other hand, let cp = supu>0 upe−u, we have:

n
1
2 +δ3

∫
{n

− 3
4 +

δ2
2 +δ4+

δ2
p <|t|<n− 1

2 −δ3+δ2}
E

[
e−

8
π2 f0(1−f0)t2n

3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt ≤

2n
1
2+δ3n− 1

2−δ3+δ2

∫
M

e−
8

π2 f0(1−f0)n
2δ2

p

dν ≤ n−δ2cp

(
π2

8

)p ∫
M

[f0(1 − f0)]−p dν.

Appendix A: Proof of Proposition 4

In cases (a) and (b), (ξk)k is a stationary sequence of bounded centered random variables.

A.1 Proof of (a)

We have:
∑

p≥0

√
1 + p|E[ξ0ξp]| =

∑
p≥0

√
1 + p|Eν [f.f ◦ T p]| which is less than:

c0‖f‖∞
(
‖f‖∞ + K

(1)
f + K

(2)
f

)∑
p≥0

√
1 + pϕp

and hence is finite. Let us consider an integer N ≥ 1. We have:

1
N2

∑
k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| ≤
24
N2

∑
0≤k1≤k2≤k3≤k4≤N−1

|E[ξk1ξk2ξk3ξk4 ]| .
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Let us consider the set E
(1)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and k4 − k3 ≥ N

1
3 . We

have: ∑
(k1,k2,k3,k4)∈E

(1)
N

|E[ξk1ξk2ξk3ξk4 ]| =
∑

(k1,k2,k3,k4)∈E
(1)
N

∣∣Covν

(
f ◦ T k1−k3f ◦ T k2−k3f, f ◦ T k4−k3

)∣∣
≤ c0N

4
(
‖f‖4

∞ + ‖f‖3
∞(K(2)

f + 3c0K
(1)
f )

)
ϕN 1

3 �

≤ c0N
2
(
‖f‖4

∞ + ‖f‖3
∞(K(2)

f + 3c0K
(1)
f )

)
sup
n≥1

n6ϕn.

Let us consider the set E
(2)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and k4 − k3 < N

1
3 and

k3 − k2 ≥ rN
1
3 . We have:∑

(k1,k2,k3,k4)∈E
(2)
N

|Cov (ξk1ξk2 , ξk3ξk4)| =
∑

(k1,k2,k3,k4)∈E
(2)
N

∣∣Covν

(
f ◦ T k1−k2f, (f.f ◦ T k4−k3) ◦ T k3−k2

)∣∣
≤ 26c0N

2
(
‖f‖4

∞ + 2c0‖f‖3
∞(K(2)

f + K
(1)
f )

)
sup
n≥1

n6(1 + κn)ϕrn.

Moreover, we have:

∑
(k1,k2,k3,k4)∈E

(2)
N

|E[ξk1ξk2 ]E[ξk3ξk4 ]| ≤
⎛
⎝ ∑

0≤k1≤k2≤N−1

|E[ξk1ξk2 ]|
⎞
⎠

2

≤
⎛
⎝N

∑
k≥0

∣∣Eν [f.f ◦ T k]
∣∣
⎞
⎠

2

≤ N2

⎛
⎝c0

(
‖f‖2

∞ + ‖f‖∞(K(1)
f + K

(2)
f )

)∑
k≥0

ϕk

⎞
⎠

2

.

Let us consider the set E
(3)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and k4 − k3 < N

1
3 and

k3 − k2 < rN
1
3 and k2 − k1 ≥ r(1 + r)N

1
3 . By the same method, we get:

∑
(k1,k2,k3,k4)∈E

(3)
N

|E [ξk1ξk2ξk3ξk4 ]| ≤ N2 c026

(1 + r)6
(
‖f‖4

∞ + 3c0‖f‖3
∞(K(2)

f + K
(1)
f )

)
sup
n≥1

n6(1 + κn)ϕrn.

Since the number of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and that do not belong to
E

(1)
N ∪ E

(2)
N ∪ E

(3)
N is bounded by N22(r + 1)3, we get:

sup
N≥1

1
N2

∑
k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.

Now, let us prove the point 2 of the hypothesis of Theorem 1. Let n1, n2, n3 and n4 be four integers such that
0 ≤ n1 ≤ n2 ≤ n3 ≤ n4. Let us consider any real numbers αn1 , . . . , αn2 and βn3 , . . . , βn4 . We have:∣∣∣Cov

(
ei
∑n2

k=n1
αkξk , ei

∑n4
k=n3

βkξk

)∣∣∣ =
∣∣∣Covν

(
ei
∑n2

k=n1
αkf◦T−(n2−k)

,
(
ei
∑n4

k=n3
βkf◦T k−n3

)
◦ T n3−n2

)∣∣∣
≤ c0

(
1 + K

(1)

exp
(

i
∑n2

k=n1
αkf◦T−(n2−k)

) + K
(2)

exp
(

i
∑n4

k=n3
βkf◦T k−n3

)
)

ϕn3−n2

≤ c0

(
1 +

n2∑
k=n1

c0c1|αk| +
n4∑

k=n3

c0c1|βk|(1 + κn4−n3)

)
ϕn3−n2 .
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This gives the point 2 of the hypothesis of Theorem 1 with ϕp,s := (1 + κs)ϕp. �

A.2 Proof of (b)

Let us define the function g = 2f − 1. This function is ν-centered. More generally, for any integer m ≥ 1,
let us define: g2m = 1 and g2m+1 = g. We observe that, conditionally to ω ∈ M , the expectation of (ξk(ω, ·))m

is equal to gm ◦ T k(ω). Using the Fubini theorem and starting by integrating over [0; 1]Z, we observe that,
for any integers p ≥ 1, we have: E[ξ0ξp] = Eν [g.g ◦ T p] and that, for any integers k1, k2, k3, k4, we have:

E [ξk1
n1ξk2

n2ξk3
n3ξk4

n4 ] = Eν

[∏4
j=1 gnj ◦ T kj

]
. Hence, we can prove the point 1 of Theorem 1 as we did for

(a).
Now, let us prove the point 2 of the hypothesis of Theorem 1. We observe that, conditionally to ω ∈ M , the

ξk(ω, ·) are independent and that the expectation of exp(iuξk(ω, ·)) is hu◦T k(ω) with (hu := e−iu+2i sin(u)f◦T k.
The modulus of this function is bounded by 1 and we have: max

(
K

(1)
hu

, K
(2)
hu

)
≤ 2c1|u|. Let n1, n2, n3 and

n4 be four integers such that 0 ≤ n1 ≤ n2 < n3 ≤ n4. Let us consider any real numbers αn1 , . . . , αn2 and
βn3 , . . . , βn4 . We have:∣∣∣Cov

(
ei
∑n2

k=n1
αkξk , ei

∑n4
k=n3

βkξk

)∣∣∣ =

∣∣∣∣∣Covν

(
n2∏

k=n1

hαk
◦ T k,

n4∏
k=n3

hβk
◦ T k

)∣∣∣∣∣

≤ c0

(
1 + 2c0c1

(
n2∑

k=n1

|αk| +
n4∑

k=n3

|βk|
))

(1 + κn4−n3)ϕn3−n2 . �

Appendix B: Proof of Theorem 2: α-mixing condition

Let us define (M,F) = (RZ,B(R)⊗Z). Let T : M → M be such that T ((ωk)k∈Z) = (ωk+1)k∈Z. Let ν
be the image probability measure on (M,F) of Π : Ω → RZ with Π(ω) = (ξk(ω))k∈Z

. The process (ξk)k∈Z

(with respect to P) has the same distribution as (f ◦ T k)k∈Z (with respect to ν) with f : M → R given by
f ((ωk)k∈Z) = ω0. According to [11], Lemma 1.2, (M,F , ν, T ) is strongly mixing (in the sense of our Def. 3)
with the following choice of K

(1)
· and of K

(2)
· . If g is σ(f ◦T k, k ≤ 0)-measurable, we have K

(1)
g := 0; otherwise

we have K
(1)
g := ∞. If h is σ(f ◦ T k, k ≥ 0)-measurable, we have K

(2)
h := 0; otherwise we have K

(2)
h := ∞. We

conclude with Proposition 4.

Appendix C: Proof of Example 2.1

C.1 Case 1

Let η > 0. Let us denote by Γ(s,e) the set of stable-central manifolds and by Γu the set of unstable manifolds.
In [16], each γu ∈ Γu is endowed with some metric du and each γ(s,e) ∈ Γ(s,e) is endowed with some metric
d(s,e) such that there exist c̃0 > 0, δ0 ∈]0; 1[ and β > 0 such that, for any integer n ≥ 0, for any γu ∈ Γu and
any γ(s,e) ∈ Γ(s,e), we have:

• For any y, z ∈ γu, du(y, z) ≥ d(y, z) and for any y′, z′ ∈ γ(s,e), d(s,e)(y′, z′) ≥ d(y′, z′).
• For any y, z ∈ γu, there exists γu

(n) ∈ Γu such that T−n(y) and T−n(z) belong to γu
(n) and we have:

du(T−n(y), T−n(z)) ≤ c̃0(δ0)ndu(y, z).
• For any y, z ∈ γ(s,e), there exists γ

(s,e)
(n) ∈ Γ(s,e) such that T n(y) and T n(z) belong to γ

(s,e)
(n) and we have:

d(s,e)(T n(y), T n(z)) ≤ c̃0(1 + nβ)d(s,e)(y, z).
We take:

K
(1)
f := sup

γu∈Γu

sup
y,z∈γu:y 
=z

|f(y) − f(z)|
(du(y, z))η

and K
(2)
f := sup

γ(s,e)∈Γ(s,e)
sup

y,z∈γ(s,e):y 
=z

|f(y) − f(z)|
(d(s,e)(y, z))η

·
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For these examples, the result follows from [16] (cf. Lem. 1.3.1 in [16]).

C.2 Case 2: Sinai billiard

Since the early work of Sinai [17], this billiard system has been studied by many authors ([1–4,7,19] and
others). Let us recall that a point of M is a couple (q, v) corresponds to a reflected unit speed vector v at
the position q on some obstacle Oi and is parametrised by (i, rϕ) where i is the index of the obstacle Oi,
r the curvilinear of x on it and ϕ the measure of the angle (taken in [−π/2; π/2]) made by v with the unit
normal vector �n(q) to Oi at q directed to the outside of the obstacle. We endow M with a metric d such
that: d((i, r, ϕ), (i, r′, ϕ′)) = |r − r′| + |ϕ − ϕ′|. Let us denote by R0 the set of points in M corresponding
to a reflected vectors tangent to the obstacles, i.e. such that ϕ = ±π/2. The transformation T n defines a
C1-diffeomorphism from M \⋃n

k=0 T−k(R0) onto M \⋃n
k=0 T k(R0). Let us consider the set Cm of connected

components of M \⋃m
k=−m T k(R0). For all k = −m, . . . , m, T k is C1 on each C belonging to Cm. We will

use the notations of Chernov in [6]. Let us consider the set Γs of homogeneous stable curves and the set Γu

of homogeneous unstable curves and the two separation times s+(·, ·) (in the future) and s−(·, ·) (in the past)
considered in [6]. We recall that there exist two constants c1 > 0 and δ1 ∈]0; 1[ such that, for any nonnegative
integer n, for any y and z in M , we have:

• If y and z belong to the same homogeneous unstable curve, then s+(x, y) ∈ Z+, moreover T−n(y) and
T−n(z) belong to a same homogeneous unstable curve and we have: d(T−n(y), T−n(z)) ≤ c1δ1

n and
s+(T−n(x), T−n(y)) ≥ n + s+(x, y).

• If y and z belong to the same homogeneous stable curve, then s−(x, y) ∈ Z+, moreover T n(y) and
T n(z) belong to a same homogeneous stable curve and we have: d(T n(y), T n(z)) ≤ c1δ1

n and s−(T n(x),
T n(y)) ≥ n + s−(x, y).

With these notations, according to [6] (Th. 4.3 in [6] and the remark after Th. 4.3 in [6]), this system is strongly
mixing with:

K
(1)
f := sup

γu∈Γu

sup
y, z ∈ γu; y �= z;
s+(y, z) ≥ m + 1

|f(y) − f(z)|
(δ1)ηs+(y,z)

and K
(2)
f := sup

γs∈Γs

sup
y, z ∈ γs; y �= z;
s−(y, z) ≥ m + 1

|f(y) − f(z)|
(δ1)ηs−(y,z)

· �

Appendix D: Proof of conclusion (B) of Theorem 5

We will use b and δ of Proposition 2.1. First let us notice that there exists c′A > 0 such that, for every ε ∈]0; 1[,
there exists a Lipschitz continuous function fε such that: ‖1A − fε‖L1(ν) ≤ cAεζ, ‖fε‖∞ ≤ 1 and C

(1)
fε

≤ c′A
ε .

It suffices to take fε = max
(
0, 1 − d(·,A)

ε

)
.

• Let us prove that:
∑

p≥0

√
1 + p|E[ξ0ξp]| < +∞. This quantity can be rewritten:

4
∑
p≥0

√
1 + p|Covν(1A,1A ◦ T p)|

and is less than: 4
∑

p≥0

√
1 + p|Covν(fp−2/ζ , fp−2/ζ ◦ T p) + 2cAp−2|. Moreover, we have:

|Covν(fp−2/ζ , fp−2/ζ ◦ T p)| ≤ c0

(
1 + K

(1)
f

p−2/ζ
+ K

(2)
f

p−2/ζ

)
αp ≤ c0

(
1 + 2c′Ap2/ζ

)
αp.

• Let us prove that:

sup
N≥1

N−2
∑

k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.
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We use the notations E
(1)
N , E

(2)
N and E

(3)
N and the calculations done in Section A.1.

– To estimate
∑

(k1,k2,k3,k4)∈E
(1)
N ∪E

(3)
N

|E[ξk1ξk2ξk3ξk4 ]|, we replace each ξk by gN ◦ T k, with gN :=

2
(
f

N
−2
ζ

− Eν [f
N

−2
ζ

]
)
. We have: ‖ξk − gN ◦ T k‖L1(ν) ≤ 4cAN−2. This substitution makes a total

error in O(N2). Moreover, according to the calculations of Section A.1, we have:

∑
(k1,k2,k3,k4)∈E

(1)
N ∪E

(3)
N

∣∣E[gN ◦ T k1gN ◦ T k2gN ◦ T k3gN ◦ T k4 ]
∣∣ ≤ CN4(1 + C(1)

gN
)(1 + Nβ/3)αN

1
3 = O(N2).

– With the same technique, we get:
∑

(k1,k2,k3,k4)∈E
(2)
N

|Covν(ξk1ξk2 , ξk3ξk4)| = O(N2). Moreover, as

in Section A.1, we have:
∑

(k1,k2,k3,k4)∈E
(2)
N

|Eν [ξk1ξk2 ]Eν [ξk3ξk4 ]| ≤ N2
(∑

k≥0 |E[ξ0ξk]|
)2

and we
have already proved that:

∑
k≥0 |E[ξ0ξk]| < +∞.

– The sum of |E[ξk1ξk2ξk3ξk4 ]| over the k = (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 but that
do not belong to E

(1)
N ∪ E

(2)
N ∪ E

(3)
N is controlled as in Section A.1.

• Let us prove point 2 of hypothesis of Theorem 1. By replacing each ξk by ξ̂
(n3−n2)
k := hn3−n2 ◦ T k,

with hN := 2
(
f

N
−7
ζ

− Eν [f
N

−7
ζ

]
)
, we make a total error in

(
1 +

∑n2
k=n1

|αk| +
∑n4

k=n3
|βk|

)
(n3−n2)−7.

Moreover, according to the calculations done in Section A.1, we have:

∣∣∣Cov
(
ei
∑n2

k=n1
αk ξ̂

n3−n2
k , ei

∑n4
k=n3

βk ξ̂
n3−n2
k

)∣∣∣ ≤ c0

(
1+(

n2∑
k=n1

|αk|+
n4∑

k=n3

|βk|)c0C
(1)
hn3−n2

)
(1+(n4 − n3)β)αn3−n2

≤ C

(
1 +

n2∑
k=n1

|αk| +
n4∑

k=n3

|βk|
)

(1 +(n4 − n3)β)(n3 − n2)
7
ζ αn3−n2 .

This gives the point 2 of the hypothesis of Theorem 1 with ϕp,s = p−7 + (1 + sβ)p7/ζδp. �
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