Nous étudions le test du rapport de vraisemblance (TRV) pour des hypothèses sur la mesure mélangeante dans un mélange en présence éventuelle d'un paramètre structurel, et ce dans toutes les situations possibles. Le résultat principal donne la distribution asymptotique du TRV sous des hypothèses qui ne sont pas loin d'être nécessaires. Nous donnons une solution détaillée pour le test d'une simple distribution contre un mélange avec application aux lois gaussiennes, Poisson et binomiales, ainsi que pour le test du nombre de populations dans un mélange fini avec un paramètre structurel.
This paper deals with the likelihood ratio test (LRT) for testing hypotheses on the mixing measure in mixture models with or without structural parameter. The main result gives the asymptotic distribution of the LRT statistics under some conditions that are proved to be almost necessary. A detailed solution is given for two testing problems: the test of a single distribution against any mixture, with application to gaussian, Poisson and binomial distributions; the test of the number of populations in a finite mixture with or without structural parameter.
Mots clés : likelihood ratio test, mixture models, number of components, local power, contiguity
@article{PS_2009__13__301_0, author = {Aza{\"\i}s, Jean-Marc and Gassiat, \'Elisabeth and Mercadier, C\'ecile}, title = {The likelihood ratio test for general mixture models with or without structural parameter}, journal = {ESAIM: Probability and Statistics}, pages = {301--327}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008010}, mrnumber = {2528086}, zbl = {1180.62069}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2008010/} }
TY - JOUR AU - Azaïs, Jean-Marc AU - Gassiat, Élisabeth AU - Mercadier, Cécile TI - The likelihood ratio test for general mixture models with or without structural parameter JO - ESAIM: Probability and Statistics PY - 2009 SP - 301 EP - 327 VL - 13 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2008010/ DO - 10.1051/ps:2008010 LA - en ID - PS_2009__13__301_0 ER -
%0 Journal Article %A Azaïs, Jean-Marc %A Gassiat, Élisabeth %A Mercadier, Cécile %T The likelihood ratio test for general mixture models with or without structural parameter %J ESAIM: Probability and Statistics %D 2009 %P 301-327 %V 13 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2008010/ %R 10.1051/ps:2008010 %G en %F PS_2009__13__301_0
Azaïs, Jean-Marc; Gassiat, Élisabeth; Mercadier, Cécile. The likelihood ratio test for general mixture models with or without structural parameter. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 301-327. doi : 10.1051/ps:2008010. http://www.numdam.org/articles/10.1051/ps:2008010/
[1] An introduction to continuity, extrema and related topics for general Gaussian processes. Inst. Math. Statist. Lect. Notes-Monograph Ser. 12 (1990). | MR | Zbl
,[2] C. and Mercadier, Asymptotic distribution and power of the likelihood ratio test for mixtures: bounded and unbounded case. Bernoulli 12 (2006) 775-799. | MR | Zbl
,[3] Efficient and adaptive estimation for semiparametric models. Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (1993). | MR | Zbl
, , and ,[4] Testing the order of a model. Ann. Statist. 34 (2006) 1166-1203. | MR | Zbl
,[5] A mdl approach to hmm with Poisson and Gaussian emissions. Application to order identification. Submitted (2005).
, and ,[6] Large sample distribution of the likelihood ratio test for normal mixtures, Statist. Probab. Lett. 2 (2001) 125-133. | MR | Zbl
and ,[7] Test for homogeneity in normal mixtures in the presence of a structural parameter. Statist. Sinica 13 (2003) 355-365. | MR | Zbl
and ,[8] Modified likelihood ratio test in finite mixture models with a structural parameter. J. Stat. Planning Inf. 129 (2005) 93-107. | MR | Zbl
and ,[9] A modified likelihood ratio test for homogeneity in finite mixture models. J. Roy. Statist. Soc. B 63 (2001) 19-29. | MR | Zbl
, and ,[10] Testing for a finite mixture model with two components. J. Roy. Statist. Soc. B 66 (2004) 95-115. | MR | Zbl
, and ,[11] Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial. J. Stat. Planning Inf. 43 (1995) 19-40. | MR | Zbl
and ,[12] An introduction to orthogonal polynomials. Gordon and Breach, New York (1978). | MR | Zbl
,[13] Likelihood ratio statistic for exponential mixtures. Ann. Inst. Statist. Math. 54 (2002) 585-594. | MR | Zbl
,[14] Testing in locally conic models, and application to mixture models. ESAIM Probab. Statist. 1 (1997) 285-317. | Numdam | MR | Zbl
and ,[15] Testing the order of a model using locally conic parameterization: population mixtures and stationary ARMA processes. Ann. Statist. 27 (1999) 1178-1209. | MR | Zbl
and ,[16] On likelihood ratio test in Gaussian mixture models, Sankya 65 (2003) 513-531.
,[17] Likelihood Ratio Test for Univariate Gaussian Mixture. J. Statist. Planning Inf. 96 (2001) 325-350. | MR | Zbl
,[18] Asymptotic theory of the likelihood ratio test for the identification of a mixture. J. Statist. Planning Inf. 131 (2005) 271-296. | MR | Zbl
,[19] Likelihood ratio inequalities with applications to various mixtures. Ann. Inst. H. Poincaré Probab. Statist. 6 (2002) 897-906. | Numdam | MR | Zbl
,[20] The likelihood ratio test for the number of components in a mixture with Markov regime, 2000. ESAIM Probab. Stat. 4 (2000) 25-52. | Numdam | MR | Zbl
and ,[21] On the asymptotic performance of the log likelihood ratio statistic for the mixture model and related results, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Wadsworth, Belmont, CA (1985) 789-806. | MR
and ,[22] Theoretical analysis of power in a two-component normal mixture model. J. Statist. Planning Inf. 134 (2005) 158-179. | MR | Zbl
and ,[23] A failure of likelihood asymptotics for normal mixtures, In Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer (Berkeley, CA, 1983), Vol. II. Wadsworth, Belmont, CA (1985) 807-810. | MR
,[24] Estimation of the number of components of finite mixtures of multivariate distributions. Ann. Inst. Statist. Math. 57 (2005) 655-664. | MR | Zbl
,[25] Consistent Estimation of Mixture Complexity. Ann. Statist. 29 (2001) 1281-1296. | MR | Zbl
, and ,[26] Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 (2000) 49-66. | MR | Zbl
,[27] Likelihood ratio test for genetic linkage. Statis. Probab. Lett. 33 (1997) 15-22. | MR | Zbl
and ,[28] Likelihood ratio in contamination models. Bernoulli 5 (1999) 705-719. | MR | Zbl
and ,[29] Mixture models: Theory, geometry, and applications. NSF-CBMS Regional Conf. Ser. Probab. Statist., Vol. 5. Hayward, CA, Institute for Mathematical Statistics (1995). | Zbl
,[30] Asymptotics for the likelihood ratio test in two-component normal mixture models. J. Statist. Planning Inf. 123 (2004) 61-81. | MR | Zbl
and ,[31] Testing homogeneity in gamma mixture models. Scand. J. Statist. 30 (2003) 227-239. | MR | Zbl
, and ,[32] Likelihood ratio tests of the number of components in a normal mixture with unequal variances. Statis. Probab. Lett. 71 (2005) 225-235. | MR | Zbl
,[33] Estimating the true-score distributions in psychological testing (an empirical bayes estimation problem). Psychometrika 34 (1969) 259-299. | Zbl
,[34] Finite mixture models Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience, New York (2000). | MR | Zbl
and ,[35] toolbox MATLAB. http://www.math.univ-lyon1.fr/mercadier/MAGP/
(2005),[36] Stochastic comparisons of poisson and binomial random varaibles with their mixtures. Statist. Probab. Lett. 65 279-290. | MR | Zbl
, and ,[37] Semiparametric likelihood ratio inference. Ann. Statist. 25 (1997) 1471-1509. | MR | Zbl
and ,[38] Likelihood ratio test for homogeneity in normal mixtures in the presence of a structural parameter. Statist. Sinica 143 (2004) 1165-1177. | MR | Zbl
and ,[39] The likelihood ratio test for homogeneity in bivariate normal mixtures. J. Multivariate Anal. 97 (2006) 474-491. | MR | Zbl
and ,[40] Statistical analysis of finite mixture distributions. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Ltd (1985). | MR | Zbl
, and ,[41] Weak convergence and empirical processes, Springer Ser. Statist. Springer-Verlag (1996). | MR | Zbl
and ,[42] Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998). | MR | Zbl
,[43] Semiparametric Statistics, Lectures on probability theory and statistics, Saint-Flour, 1999. Lect. Notes Math. 1781 331-457. Springer, Berlin (2002). | MR | Zbl
,[44] Binomial mixtures: geometric estimation of the mixing distribution. Ann. Statist. 5 (1999) 1706-1721. | MR | Zbl
,Cité par Sources :