Testing in locally conic models, and application to mixture models
ESAIM: Probability and Statistics, Tome 1 (1997), pp. 285-317.
@article{PS_1997__1__285_0,
     author = {Dacunha-Castelle, D. and Gassiat, \'E.},
     title = {Testing in locally conic models, and application to mixture models},
     journal = {ESAIM: Probability and Statistics},
     pages = {285--317},
     publisher = {EDP-Sciences},
     volume = {1},
     year = {1997},
     mrnumber = {1468112},
     zbl = {1007.62507},
     language = {en},
     url = {http://www.numdam.org/item/PS_1997__1__285_0/}
}
TY  - JOUR
AU  - Dacunha-Castelle, D.
AU  - Gassiat, É.
TI  - Testing in locally conic models, and application to mixture models
JO  - ESAIM: Probability and Statistics
PY  - 1997
SP  - 285
EP  - 317
VL  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/PS_1997__1__285_0/
LA  - en
ID  - PS_1997__1__285_0
ER  - 
%0 Journal Article
%A Dacunha-Castelle, D.
%A Gassiat, É.
%T Testing in locally conic models, and application to mixture models
%J ESAIM: Probability and Statistics
%D 1997
%P 285-317
%V 1
%I EDP-Sciences
%U http://www.numdam.org/item/PS_1997__1__285_0/
%G en
%F PS_1997__1__285_0
Dacunha-Castelle, D.; Gassiat, É. Testing in locally conic models, and application to mixture models. ESAIM: Probability and Statistics, Tome 1 (1997), pp. 285-317. http://www.numdam.org/item/PS_1997__1__285_0/

Adler, R. J. ( 1990). An introduction to continuity, extrema, and related topics for general Gaussian processes. IMS Lecture Notes-Monograph Series. | MR | Zbl

Azais, J. M. and Wschebor, M. ( 1995). A formula to compute the distribution of the maximum of a random process. Université P. Sabatier, Toulouse.

Azencott, R. and Dacunha-Castelle, D. ( 1984). Séries d'observations irrégulières. Masson. | MR | Zbl

Beran, R. and Millar, P. W. ( 1987). Stochastic estimation and testing. Annals of Stat., 15 1131-1154. | MR | Zbl

Berdai, A. and Garel, B. ( 1994). Performances d'un test d'homogénéité contre une hypothèse de mélange gaussien. Rev. Stat. Appl. 42 63-79. | Numdam | MR | Zbl

Bickel, P. and Chernoff, H. ( 1993). Asymptotic distribution of the likelihood ratio statistic in a prototypical non regular problem. In Statistics and Probability: A Raghu Raj Bahadur Festschrift.

Dacunha-Castelle, D. and Duflo, M. ( 1986). Probability and Statistics. Springer Verlag New-York. | Zbl

Dacunha-Castelle, D. and Gassiat, E. ( 1996). Testing the order of a model using locally conic parametrization: population mixtures and stationary ARMA processes. Submitted. | Zbl

Donoho, D. L. ( 1988). One-sided inference about functionals of a density. Annals of Stat. 16 1390-1420. | MR | Zbl

Dudley, R. M. ( 1967). The size of compact subsets of hilbert space and continuity of Gaussian processes. Journal of Funct. Analysis 1 290-330. | MR | Zbl

Ghosh, J. and Sen, P. ( 1985). On the asymptotic performance of the log-likelihood ratio statistic for the mixture model and related results. In Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer. Le Cam, L.M. and Olshen, R.A. eds. | MR

Hannan, E. J. ( 1982). Testing for autocorrelation and akaike's criterion. In Essays in Statistical Science, p. 403-412. Gani, J.M., Hannan, E.J. eds. | MR | Zbl

Hartigan, J. A. ( 1985). A failure of likelihood ratio asymptotics for normal mixtures. In Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer. Le Cam, L.M. and Olshen, R.A. eds.

Laurent, B. ( 1993). Estimation de fonctionnelles intégrales non linéaires de la densité et de ses dérivées. PhD thesis, Université de Paris XI, France.

Ossiander, M. ( 1987). A central limit theorem under metric entropy with l2 bracketing. Annals of Prob. 15 897-919. | MR | Zbl

Redner, R. ( 1981). Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions. Annals of Stat. 9 225-228. | MR | Zbl

Roussas, G. G. ( 1970). Contiguity of probability measures: some applications in statistics. Princeton University press. | MR | Zbl

Self, S. and Liang, K. ( 1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Jour. Amer. Stat. Assoc. 823 605-610. | MR | Zbl

Teicher, H. ( 1965). Identifiability of finite mixtures. Annals of Math. Statist. 36 423-439. | MR

Van Der Vaart, A. W. and Wellner, J. A. ( 1996). Empirical Processes. Springer Verlag.

Yakowitz, S. J. and Spragins, J. D. ( 1968). On the identifiability of finite mixtures. Annals of Math. Stat. 39 209-214. | MR | Zbl