We consider an estimate of the mode of a multivariate probability density with support in using a kernel estimate drawn from a sample . The estimate is defined as any in such that . It is shown that behaves asymptotically as any maximizer of . More precisely, we prove that for any sequence of positive real numbers such that and , one has in probability. The asymptotic normality of follows without further work.
Mots-clés : multivariate probability density, mode, kernel estimate, central limit theorem
@article{PS_2004__8__1_0, author = {Abraham, Christophe and Biau, G\'erard and Cadre, Beno{\^\i}t}, title = {On the asymptotic properties of a simple estimate of the {Mode}}, journal = {ESAIM: Probability and Statistics}, pages = {1--11}, publisher = {EDP-Sciences}, volume = {8}, year = {2004}, doi = {10.1051/ps:2003015}, mrnumber = {2085601}, zbl = {1033.62043}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2003015/} }
TY - JOUR AU - Abraham, Christophe AU - Biau, Gérard AU - Cadre, Benoît TI - On the asymptotic properties of a simple estimate of the Mode JO - ESAIM: Probability and Statistics PY - 2004 SP - 1 EP - 11 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2003015/ DO - 10.1051/ps:2003015 LA - en ID - PS_2004__8__1_0 ER -
%0 Journal Article %A Abraham, Christophe %A Biau, Gérard %A Cadre, Benoît %T On the asymptotic properties of a simple estimate of the Mode %J ESAIM: Probability and Statistics %D 2004 %P 1-11 %V 8 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2003015/ %R 10.1051/ps:2003015 %G en %F PS_2004__8__1_0
Abraham, Christophe; Biau, Gérard; Cadre, Benoît. On the asymptotic properties of a simple estimate of the Mode. ESAIM: Probability and Statistics, Tome 8 (2004), pp. 1-11. doi : 10.1051/ps:2003015. http://www.numdam.org/articles/10.1051/ps:2003015/
[1] Simple estimation of the mode of a multivariate density. Canadian J. Statist. 31 (2003) 23-34. | MR | Zbl
, and ,[2] Recursive estimation of the mode of a multivariate density. Canadian J. Statist. 7 (1979) 159-167. | MR | Zbl
,[3] A Course in Density Estimation. Birkhäuser, Boston (1987). | MR | Zbl
,[4] Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. | MR | Zbl
,[5] On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. | MR | Zbl
,[6] Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris 331 (2000) 637-640. | Zbl
and ,[7] A law of the iterated logarithm for the kernel mode estimator, ESAIM: Probab. Statist. 7 (2003) 1-21. | EuDML | Numdam | MR | Zbl
and ,[8] On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. | MR | Zbl
,[9] Convergence of Stochastic Processes. Springer-Verlag, New York (1984). | Zbl
,[10] On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. | MR | Zbl
,[11] Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. | MR | Zbl
,[12] Estimating modes and isopleths. Comm. Statist. - Theory Methods 12 (1983) 529-557. | Zbl
,[13] Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. | MR | Zbl
,[14] Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177-184. | MR | Zbl
,[15] A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. | MR | Zbl
,Cité par Sources :