On the asymptotic properties of a simple estimate of the Mode
ESAIM: Probability and Statistics, Tome 8 (2004), pp. 1-11.

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate f n drawn from a sample X 1 ,,X n . The estimate θ n is defined as any x in {X 1 ,,X n } such that f n (x)=max i=1,,n f n (X i ). It is shown that θ n behaves asymptotically as any maximizer θ ^ n of f n . More precisely, we prove that for any sequence (r n ) n1 of positive real numbers such that r n and r n d logn/n0, one has r n θ n -θ ^ n 0 in probability. The asymptotic normality of θ n follows without further work.

DOI : 10.1051/ps:2003015
Classification : 62G05
Mots clés : multivariate probability density, mode, kernel estimate, central limit theorem
@article{PS_2004__8__1_0,
     author = {Abraham, Christophe and Biau, G\'erard and Cadre, Beno{\^\i}t},
     title = {On the asymptotic properties of a simple estimate of the {Mode}},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--11},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2004},
     doi = {10.1051/ps:2003015},
     mrnumber = {2085601},
     zbl = {1033.62043},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2003015/}
}
TY  - JOUR
AU  - Abraham, Christophe
AU  - Biau, Gérard
AU  - Cadre, Benoît
TI  - On the asymptotic properties of a simple estimate of the Mode
JO  - ESAIM: Probability and Statistics
PY  - 2004
SP  - 1
EP  - 11
VL  - 8
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2003015/
DO  - 10.1051/ps:2003015
LA  - en
ID  - PS_2004__8__1_0
ER  - 
%0 Journal Article
%A Abraham, Christophe
%A Biau, Gérard
%A Cadre, Benoît
%T On the asymptotic properties of a simple estimate of the Mode
%J ESAIM: Probability and Statistics
%D 2004
%P 1-11
%V 8
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2003015/
%R 10.1051/ps:2003015
%G en
%F PS_2004__8__1_0
Abraham, Christophe; Biau, Gérard; Cadre, Benoît. On the asymptotic properties of a simple estimate of the Mode. ESAIM: Probability and Statistics, Tome 8 (2004), pp. 1-11. doi : 10.1051/ps:2003015. http://www.numdam.org/articles/10.1051/ps:2003015/

[1] C. Abraham, G. Biau and B. Cadre, Simple estimation of the mode of a multivariate density. Canadian J. Statist. 31 (2003) 23-34. | MR | Zbl

[2] L. Devroye, Recursive estimation of the mode of a multivariate density. Canadian J. Statist. 7 (1979) 159-167. | MR | Zbl

[3] L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987). | MR | Zbl

[4] W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. | MR | Zbl

[5] V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. | MR | Zbl

[6] J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris 331 (2000) 637-640. | Zbl

[7] A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator, ESAIM: Probab. Statist. 7 (2003) 1-21. | EuDML | Numdam | MR | Zbl

[8] E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. | MR | Zbl

[9] D. Pollard, Convergence of Stochastic Processes. Springer-Verlag, New York (1984). | Zbl

[10] J.P. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. | MR | Zbl

[11] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. | MR | Zbl

[12] T.W. Sager, Estimating modes and isopleths. Comm. Statist. - Theory Methods 12 (1983) 529-557. | Zbl

[13] M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. | MR | Zbl

[14] B. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177-184. | MR | Zbl

[15] P. Vieu, A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. | MR | Zbl

Cité par Sources :