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ON THE ASYMPTOTIC PROPERTIES OF A SIMPLE ESTIMATE
OF THE MODE

Christophe Abraham1, Gérard Biau2 and Benôıt Cadre3

Abstract. We consider an estimate of the mode θ of a multivariate probability density f with support
in R

d using a kernel estimate fn drawn from a sample X1, . . . , Xn. The estimate θn is defined as any
x in {X1, . . . , Xn} such that fn(x) = maxi=1,...,n fn(Xi). It is shown that θn behaves asymptotically

as any maximizer θ̂n of fn. More precisely, we prove that for any sequence (rn)n≥1 of positive real

numbers such that rn → ∞ and rd
n log n/n → 0, one has rn ‖θn − θ̂n‖ → 0 in probability. The

asymptotic normality of θn follows without further work.
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Introduction

The problem of estimating the mode of a probability density has received considerable attention in the
literature. For a historical and mathematical survey, we refer the reader to Sager [12]. One of the most recent
application of mode estimation is in unsupervised cluster analysis, where one tries to break a complex data set
into a series of piecewise similar groups or structures. The nonparametric approach is based on the premise that
groups correspond to modes of a density. The goal then is to estimate the modes and assign each observation
to the “domain of attraction” of a mode. But there are many other fields where the knowledge of the mode is
of great interest. For example, the estimation of contours, or isopleths, is a natural extension of the estimation
of modal points.

In this paper, we consider the problem of estimating the mode θ of a multivariate unimodal probability
density f with support in R

d from independent random variables X1, . . . , Xn with density f . This problem has
been studied by many authors, see for example Parzen [8], Konakov [5], Samanta [13], Devroye [2], Romano [10],
Vieu [15], Leclerc and Pierre-Loti-Viaud [6], Mokkadem and Pelletier [7] and the references therein. Mostly, the
estimate θ̂n of θ is defined as any maximizer of fn, i.e.,

θ̂n ∈ argmax
Rd fn, (0.1)
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1 ENSAM-INRA, UMR Biométrie et Analyse des Systèmes, 2 place Pierre Viala, 34060 Montpellier Cedex 1, France;
e-mail: abraham@helios.ensam.inra.fr
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where fn is a kernel density estimate
(
Rosenblatt [11], Parzen [8], Devroye [3]

)
. Recall that fn is defined for all

x ∈ R
d by

fn(x) =
1

nhd
n

n∑
i=1

K

(
x − Xi

hn

)
,

where (hn)n≥1 is a sequence of positive real numbers such that hn → 0 and K : R
d → R is an integrable

function with
∫

Rd

K(x) dx = 1.

The estimate (0.1) is widely used, though it is hard to compute. Indeed, in addition to the calculation
of fn, it involves a numerical step for the computation of the argmax. As noticed by Devroye [2], classical
search methods of the argmax perform satisfactorily only when fn is sufficiently regular (continuous, unimodal,
etc.) Thus, in practice, the argmax is usually computed over a finite grid. This failing is seldom discussed by
authors, although it may affect the asymptotic properties of the estimate. Moreover, when the dimension of the
sample space is large, or when accurate estimation is needed, the grid size (which exponentially increases with
the dimension) leads to time-consuming computations. Finally, the search grid should be located around high
density areas. In high dimension, this is a difficult task and the search grid usually includes low density areas.

As an attempt to remedy these problems, we proposed in a previous paper
(
Abraham et al. [1]

)
a concurrent

estimate. Denoting by Sn the set {X1, . . . , Xn}, we let the estimate θn be defined as

θn ∈ argmaxSn
fn,

i.e.,

θn ∈
{

x ∈ Sn : fn(x) = max
i=1,...,n

fn(Xi)
}
·

We emphasize that the main advantage of using θn instead of the argmax estimate (0.1) is that the former is easily
computed in a finite number of operations. Moreover, since the sample points are naturally concentrated in high
density areas, the set Sn can be regarded as the most natural (random) grid for approximating the mode. As
pointed out by the referees, θn may also be an appropriate choice for a start value of any optimization algorithm
to approximate θ̂n. In [1], we established, under the condition nhd

n/ log n → ∞, the strong consistency of θn

towards θ and provided an almost sure rate of convergence without any differentiability condition on f around
the mode. This rate relies on the sharpness of the density near θ, which is measured by a peak index. For
discussion, examples and numerical illustration, we refer the reader to [1].

One question still unanswered is whether the maximization over a finite sample alters the rate of convergence
of the estimate θn compared to that of θ̂n. In the present paper, we prove that the estimates θn and θ̂n have
the same asymptotic behavior. In Section 1, we set up notation and assumptions and provide the main results.
Proofs are gathered in Section 2.

1. Notation, hypotheses and main results

1.1. Asymptotic proximity of θn and θ̂n

Throughout the paper, we will denote by ‖.‖ the usual Euclidean norm for matrices or vectors and by Hg(x)
the Hessian matrix at the point x of any function g : R

d → R twice continuously differentiable in a neighborhood
of x. The notation diam S will stand for the diameter of any set S ⊂ R

d, i.e.,

diam S = sup
x,y∈S

‖x − y‖.

For all ε > 0, the level set A(ε) defined by

A(ε) = {x ∈ R
d : f(x) ≥ f(θ) − ε}
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will play a crucial role. If P→ stands for the convergence in probability, we finally introduce the following
hypotheses:

H1 the application f is twice continuously differentiable on a neighborhood V of θ and the matrix Hf(θ) is
negative definite;

H2 the convergence diam A(ε) → 0 as ε → 0 holds;
H3 the sequence

(
vn(θ̂n − θ)

)
n≥1

is tight for some sequence (vn)n≥1 of positive real numbers with vn → ∞;

H4 the kernel K is twice continuously differentiable on R
d and moreover supx∈V ‖Hfn(x) − Hf(x)‖ P→ 0;

H5 one has supx∈Rd |fn(x) − Efn(x)| P→ 0.

Let us comment on these hypotheses. Assumption H1 is a mild regularity assumption which is usually required
to obtain rates of convergence in mode kernel estimation (see for example Parzen [8] and Romano [10]). As-
sumption H2 has been introduced to avoid high density areas arbitrarily far from the mode. It can be shown
that H2 is equivalent to the classical condition

sup
x/∈U

f(x) < f(θ)

for any open vicinity U of θ. For further discussion on this condition, we refer to Abraham et al. [1]. As-
sumption H3 is a weak assumption which is in particular true when the sequence

(
vn(θ̂n − θ)

)
n≥1

converges in
distribution. In this respect, sufficient conditions are to be found in Romano [10] (for d = 1) and in Mokkadem
and Pelletier [7] (for d ≥ 1). Regarding H4, we refer to Silverman [14] for the univariate case and to Mokkadem
and Pelletier [7] for the multivariate case. Assumption H5 holds for example if K is of the form K(x) = Ψ

(‖x‖)
where Ψ is a real valued function with bounded variation and nhd

n/ log n → ∞ (see Pollard [9], Th. 37, p. 34).
More generally, it can be shown that H5 holds whenever K satisfies a covering number condition, see Mokkadem
and Pelletier [7] for a detailed discussion.

We are now ready to state the main result of the paper.

Theorem 1.1 (asymptotic proximity of θn and θ̂n). Assume that H1–H5 hold. For any sequence (rn)n≥1

of positive real numbers such that rn → ∞ and rd
n log n/n → 0, we have

rn ‖θn − θ̂n‖ P→ 0.

This theorem gains in interest if we realize that the very weak condition imposed on rn allows to derive
asymptotic properties of θn from analogous asymptotic properties of θ̂n. Examples are presented in the next
paragraph.

1.2. Application

The following corollary follows from Theorem 1.1 without further work. We let D→ denote the convergence
in distribution.

Corollary 1.1 (limit law). Assume that the assumptions H1, H2, H4 and H5 hold, nd/2−1h
d(d+2)/2
n log n →

0 and √
nhd+2

n (θ̂n − θ) D→ Z,

where Z is some R
d-valued random variable. Then√

nhd+2
n (θn − θ) D→ Z.
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The weak convergence of θ̂n to θ was first studied in the univariate framework by Parzen [8] who proved that
if hn is chosen such that nh6

n → ∞ and nh7
n → 0, then

√
nh3

n (θ̂n − θ) D→ N
(

0,
f(θ)[

f ′′(θ)
]2
∫

R

K ′2(x) dx

)
,

where N is the Gaussian distribution. Eddy [4] and Romano [10] then proved that this central limit theorem
still holds when the condition nh6

n → ∞ is weakened to nh5
n/ logn → ∞. Recently, Mokkadem and Pelletier [7]

extended these results to the multivariate framework. Precisely, these authors show, under suitable assumptions,
that √

nhd+2
n (θ̂n − θ) D→ N

(
0, f(θ)

[
Hf(θ)

]−1G
[
Hf(θ)

]−1
)

, (1.1)

where G is the d × d matrix defined by

Gi,j =
∫

Rd

∂K

∂xi
(x)

∂K

∂xj
(x) dx.

Therefore, under the assumptions of these authors, which imply H1, H2, H4 and H5, the results above transfer
to θn.

Following the remark of a referee, we would like to shed light on the fact that there are some problems
associated with the use of results of this type. As an example, if one is interested in constructing confidence
sets, it will be necessary to estimate the limiting variance matrix, which involves not only f(θ) but also the
local sharpness around the peak, that is, the Hessian matrix Hf(θ). A possible answer is to use the weakly
consistent estimates fn(θn) and Hfn(θn) of f(θ) and Hf(θ) as well as (1.1) in order to obtain, under suitable
assumptions, √

nhd+2
n

[
fn(θn)

[
Hfn(θn)

]−1G
[
Hfn(θn)

]−1
]−1/2

(θn − θ) D→ N (0, I),

where I denotes the d × d identity matrix.

2. Proofs

2.1. Proof of Theorem 1.1

In the sequel, B(a, ε) stands for the closed ball in
(
R

d, ‖.‖) with center at a and radius ε > 0. For all n ≥ 1,
An(ε) will denote the random set

An(ε) =
{
x ∈ R

d : fn(x) ≥ fn(θ̂n) − ε
}
·

First of all, we state two fundamental results. For the sake of clarity, their proofs are delayed to the end of the
section.

Lemma 2.1. Assume that H1–H3 and H5 hold. Then, for any sequence (αn)n≥1 of positive random variables
vanishing in probability, we have

diam An(αn) P→ 0.

Observe the correspondence between Lemma 2.1 and Assumption H2, where A and ε have been replaced by
the random quantities An and αn.

Proposition 2.1. Assume that H1 and H3 hold, and let (un)n≥1 be a sequence of positive real numbers such
that un → 0 and nud

n/ logn → ∞. Then

P
(∀i ≤ n : ‖Xi − θ̂n‖ ≥ un

)→ 0.
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The interest of Proposition 2.1 is in the assertion that there exists with high probability an observation within
a distance un of θ̂n. The main idea of the proof of Theorem 1.1 is to show that such an observation is also close
to θn.

Proof of Theorem 1.1. Let η > 0 and, for all n ≥ 1, Bn = B(θ̂n, cη/rn), where c ≥ 1 denotes a constant to be
specified later. We have

P
(
θn /∈ Bn

)
≤ P

(
θn /∈ Bn, ∃k ≤ n : ‖Xk − θ̂n‖ < η/rn

)
+ P

(
∀k ≤ n : ‖Xk − θ̂n‖ ≥ η/rn

)
.

By Proposition 2.1, the second term of the right member vanishes as n grows to infinity. Thus, one only needs
to prove that the first term tends to 0. Note first that, since c ≥ 1, the event

[
θn /∈ Bn, ∃k ≤ n : ‖Xk − θ̂n‖ < η/rn

]

is contained in the event [
max

Xi /∈Bn, i≤n
fn(Xi) ≥ max

Xi∈Bn, i≤n
fn(Xi) ≥ fn(Xk)

]
,

where the data Xk satisfies ‖Xk − θ̂n‖ < η/rn. Now, denoting by ∇fn(x) the gradient of fn at the point x, we
have, according to the previous condition on Xk,

|fn(Xk) − fn(θ̂n)| ≤ sup
x∈B(θ̂n,η/rn)

‖∇fn(x)‖ η

rn

= sup
x∈B(θ̂n,η/rn)

‖∇fn(x) −∇fn(θ̂n)‖ η

rn

(since ∇fn(θ̂n) = 0)

≤ an

(
η

rn

)2

,

where an = supx∈B(θ̂n,η/rn) ‖Hfn(x)‖. Consequently,

P
(
θn /∈ Bn, ∃k ≤ n : ‖Xk − θ̂n‖ < η/rn

)
≤ P

(
max

Xi /∈Bn, i≤n
fn(Xi) ≥ fn(θ̂n) − an(η/rn)2

)
≤ 1 − P

(
sup
Bc

n

fn < fn(θ̂n) − an(η/rn)2
)
.

Hence, one only needs now to show that

P
(

sup
Bc

n

fn < fn(θ̂n) − an(η/rn)2
)
→ 1 as n tends to infinity.

To this aim, observe that if αn = 2an(η/rn)2, the event

[
∀x ∈ Bc

n : fn(x) < fn(θ̂n) − αn

]
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is contained in the event [
sup
Bc

n

fn < fn(θ̂n) − an(η/rn)2
]

.

The first of the two events equals the event [An(αn) ⊂ Bn]. Consequently, the problem is reduced to showing
that

P
(
An(αn) ⊂ Bn

)
→ 1.

Using Taylor’s formula and H4 we have, for all n ≥ 1 and x ∈ An(αn),

fn(x) − fn(θ̂n) =
1
2
(
x − θ̂n

)tRn(x)
(
x − θ̂n

)
, (2.1)

where Rn(x) = Hfn

(
x + ξn

x (x − θ̂n)
)

and ξn
x ∈ (0, 1). Let us introduce the event En defined by

En =
[
∀x ∈ An(αn) : (x − θ̂n)tRn(x)(x − θ̂n) ≤ 1

2
(x − θ̂n)tHf(θ)(x − θ̂n)

]
.

From (2.1), it is deduced that on the event En,

∀x ∈ An(αn) : −(x − θ̂n

)tHf(θ)
(
x − θ̂n

) ≤ 4αn,

and consequently, that
An(αn) ⊂ B

(
θ̂n, 2

√
αn/γ

)
, (2.2)

where γ = inf‖x‖=1 ‖
(−Hf(θ)

)1/2
x‖2. Obviously γ > 0 according to H1. Therefore, according to (2.2), on the

event En, An(αn) ⊂ Bn as soon as c ≥ 2
√

2an/γ. Thus, recalling that c ≥ 1, we choose

c = 2 max

(
1, 2

√
2‖Hf(θ)‖

γ

)
·

We obtain as sort

P
(
An(αn) ⊂ Bn

)
≥ P

(
An(αn) ⊂ Bn, En, c ≥ 2

√
2an/γ

)
= P

(
En, c ≥ 2

√
2an/γ

)
.

Since θ̂n
P→ θ by H3, supx∈V ‖Hfn(x) − Hf(x)‖ P→ 0 by H4 and Hf is continuous on V by H1, we get

P
(
c ≥ 2

√
2an/γ

)
→ 1.

Thus, it remains to prove that P(En) → 1. First note that

sup
x∈An(αn)

‖Rn(x) − Hf(θ)‖ ≤ sup
x∈An(αn)

∥∥∥Rn(x) − Hf
(
x + ξn

x

(
x − θ̂n

))∥∥∥
+ sup

x∈An(αn)

∥∥∥Hf
(
x + ξn

x

(
x − θ̂n

))− Hf(θ)
∥∥∥ .

Observe now that
sup

x∈An(αn)

∥∥∥x + ξn
x

(
x − θ̂n

)− θ̂n

∥∥∥ ≤ 2 diam An(αn)
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and that the bound vanishes in probability according to Lemma 2.1. Therefore, since θ̂n
P→ θ, we deduce from

H1 and H4 that
sup

x∈An(αn)

‖Rn(x) − Hf(θ)‖ P→ 0. (2.3)

Consequently,

P(En) ≥ P
(∀x ∈ An(αn), ∀‖y‖ = 1 : −ytRn(x)y ≥ −1/2 ytHf(θ)y

)
≥ P

(∀‖y‖ = 1 : sup
x∈An(αn)

|yt
(
Rn(x) − Hf(θ)

)
y| ≤ −1/2 ytHf(θ)y

)
(using the triangle inequality)

≥ P
(

sup
x∈An(αn)

‖Rn(x) − Hf(θ)‖ ≤ −1/2 inf
‖y‖=1

ytHf(θ)y
)

(2.4)

where, for the last inequality, we used the fact that

sup
‖y‖=1

sup
x∈An(αn)

|yt
(
Rn(x) − Hf(θ)

)
y| ≤ sup

x∈An(αn)

‖Rn(x) − Hf(θ)‖.

The probability (2.4) tends to 1 according to (2.3), since Hf(θ) is negative definite. Consequently, P(En) → 1,
hence the theorem is proved. �

2.2. Proof of Lemma 2.1

For all n ≥ 1 and µ > 0, we set

βn = αn + sup
x∈Rd

|fn(x) − Efn(x)| +
∣∣∣f(θ) − fn

(
θ̂n

)∣∣∣
and

Dn(µ) =
{
x ∈ R

d : Efn(x) ≥ f(θ) − µ
} ·

We note that the first two terms in βn go to zero in virtue of H5. With respect to the third term, it is
bounded by ∣∣∣f(θ) − f

(
θ̂n

)∣∣∣+ ∣∣∣f(θ̂n

)− fn

(
θ̂n

)∣∣∣ .
The first of the two terms above tends to 0 in probability by the continuity of f around θ and the fact that
θ̂n

P→ θ. Finally, the second term vanishes under H5 and the uniform continuity of f around its mode.
Moreover, attention shows that

An(αn) ⊂ Dn(βn).

Let ε > 0. Then, for all γ > 0, the following chain of inequalities is valid.

P
(
diam An(αn) > 4ε

)
≤ P

(
diam Dn(βn) > 4ε

)
≤ P

(
diam Dn(βn) > 4ε, βn ≤ γ

)
+ P

(
βn ≥ γ

)
≤ P

(
diam Dn(γ) > 4ε

)
+ P

(
βn ≥ γ

)
.

As mentioned above, we have βn
P→ 0. Thus, one only needs to prove the existence of γ > 0 such that, for all n

large enough,
Dn(γ) ⊂ B(θ, 2ε).
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It is easy to deduce from H2 (see also Abraham et al. [1], Lem. 1) the existence of γ > 0 such that

sup
B(θ,ε)c

f < f(θ) − 2γ.

Now, since K is integrable, there exists a compact set T ⊂ R
d with

f(θ)
∫

T c

|K(y)| dy < γ.

Consequently, if n is large enough, we have, for all x ∈ B(θ, 2ε)c,

Efn(x) =
∫

T

K(y)f(x − hny) dy +
∫

T c

K(y)f(x − hny) dy

≤ sup
B(θ,ε)c

f + f(θ)
∫

T c

|K(y)| dy

< f(θ) − γ.

Hence, for all n large enough, Dn(γ) ⊂ B(θ, 2ε), and the proof of the lemma is complete. �

2.3. Proof of Proposition 2.1

We have divided the proof of Proposition 2.1 into a sequence of two lemmas. Before stating these two lemmas,
we need to introduce some additional notations. From now on, ρ denotes a fixed positive real number such that
infB(θ,ρ) f > 0. Note that such a ρ does exist under Assumption H1. For any R

d-valued random variable Z,
we let Z∗ be the random variable defined as follows:

Z∗ =

{
θ + ρ(Z − θ)/‖Z − θ‖ if Z /∈ B(θ, ρ)

Z if Z ∈ B(θ, ρ).

It is worth pointing out that Z∗ is a truncated version of Z. Indeed, for Z /∈ B(θ, ρ), Z∗ is defined as the
intersection of the line θZ with the sphere {x : ‖x − θ‖ = ρ}.

We also introduce a ghost sample Y1, . . . , Yn of independent and identically distributed random variables
with density f . This sample is assumed to be independent of the sample X1, . . . , Xn. Finally, for any subsets
E, F ⊂ R

d, we define δ(E, F ) as

δ(E, F ) = sup
x∈E

inf
y∈F

‖x − y‖.

The quantity δ(E, F ) may be regarded as a distance between the sets E and F reminiscent of the usual Hausdorff
metric.

Lemma 2.2. Assume that H1 holds and let (un)n≥1 be a sequence of positive real numbers such that un → 0
and nud

n/ logn → ∞. Then

P
(
δ
({Y ∗

1 , . . . , Y ∗
n }, {X∗

1 , . . . , X∗
n}
) ≥ un

)
→ 0.
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Proof of Lemma 2.2. Set Y = Y1 and δ∗n = δ
({Y ∗

1 , . . . , Y ∗
n }, {X∗

1 , . . . , X∗
n}
)
. We have, for all n ≥ 1,

P
(
δ∗n ≥ un

)
= P

(
∃i ≤ n, ∀j ≤ n : ‖Y ∗

i − X∗
j ‖ ≥ un

)
= 1 − P

(
∀i ≤ n, ∃j ≤ n : ‖Y ∗

i − X∗
j ‖ < un

)
= 1 − E

[
P
(
∃j ≤ n : ‖Y ∗ − X∗

j ‖ < un|X∗
1 , . . . , X∗

n

)n
]

≤ 1 − P
(
∃j ≤ n : ‖Y ∗ − X∗

j ‖ < un

)n

(using Jensen’s inequality)

= 1 −
(

1 − P
(
∀j ≤ n : ‖Y ∗ − X∗

j ‖ ≥ un

))n

= 1 −
(

1 − E
[
P
(
‖Y ∗ − X∗‖ ≥ un|Y ∗

)n])n

,

where X = X1. Hence, one only needs to prove that

nE
[
P
(
‖Y ∗ − X∗‖ ≥ un|Y ∗

)n]
→ 0 as n → ∞.

By the very definition of X∗, we have

P
(
‖Y ∗ − X∗‖ ≥ un|Y ∗

)
≤ 1 − P

(
X∗ ∈ B(Y ∗, un/2)|Y ∗

)
≤ 1 − P

(
X∗ ∈ B(Y ∗, un/2), X ∈ B(θ, ρ)|Y ∗

)
= 1 − P

(
X ∈ B(Y ∗, un/2) ∩ B(θ, ρ)|Y ∗

)
= 1 −

∫
B(Y ∗,un/2)∩B(θ,ρ)

f(x) dx

≤ 1 − λ
(
B(Y ∗, un/2) ∩ B(θ, ρ)

)
inf

B(θ,ρ)
f,

where λ denotes the Lebesgue measure on R
d. Since Y ∗ ∈ B(θ, ρ), we deduce that for some constant c > 0

depending only on ρ, f and d, we have, with probability one,

P
(
‖Y ∗ − X∗‖ ≥ un|Y ∗

)
≤ 1 − c ud

n.

Therefore

nE
[
P
(
‖Y ∗ − X∗‖ ≥ un|Y ∗

)n]
≤ n

(
1 − c ud

n

)n
,

and the bound vanishes under the conditions un → 0 and nud
n/ logn → ∞. �

Lemma 2.3. Assume that H1 and H3 hold, and let (un)n≥1 be a sequence of positive real numbers such that
un → 0 and nud

n → ∞. Then

P
(
∀i ≤ n : ‖Yi − θ̂n‖ ≥ un

)
→ 0.
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Proof of Lemma 2.3. Let ε > 0. By H3, there exists a > 0 such that supn≥1 P(vn‖θ̂n − θ‖ > a) ≤ ε. If, for all
n ≥ 1, Tn denotes the ball B(θ, a/vn), νn denotes the law of θ̂n and Y = Y1, we deduce from the independence
of θ̂n and (Y1, . . . , Yn) that

P
(
∀i ≤ n : ‖Yi − θ̂n‖ ≥ un

)
=
∫

P (∀i ≤ n : ‖Yi − t‖ ≥ un) νn(dt)

≤ ε +
∫

Tn

P
(
‖Y − t‖ ≥ un

)n

νn(dt)

≤ ε + sup
t∈Tn

P
(
‖Y − t‖ ≥ un

)n

.

Now, for all n large enough,

sup
t∈Tn

P (‖Y − t‖ ≥ un)n = sup
t∈Tn

(
1 −

∫
B(t,un)

f(x) dx

)n

(using the compactness of Tn)

≤
(

1 − c ud
n inf

B(θ,ρ)
f

)n

,

where c > 0 is a constant which only depends on the dimension d. Since un → 0, nud
n → ∞ and infB(θ,ρ) f > 0,

the lemma is proved. �
We are now in a position to prove Proposition 2.1.

Proof of Proposition 2.1. As in the proof of Lemma 2.2, we use the notation δ∗n = δ
({Y ∗

1 , . . . , Y ∗
n }, {X∗

1 , . . . , X∗
n}
)
.

For all n ≥ 1, we have

P
(
∀i ≤ n : ‖Xi − θ̂n‖ ≥ un

)
≤ P

(
∀i ≤ n : ‖Xi − θ̂n‖ ≥ un, θ̂n ∈ B(θ, ρ/2)

)
+ P

(
θ̂n /∈ B(θ, ρ/2)

)
.

By H3, the last term vanishes. Moreover, assuming that n is large enough to ensure that un ≤ ρ/2, we can
write

P
(
∀i ≤ n : ‖Xi − θ̂n‖ ≥ un, θ̂n ∈ B(θ, ρ/2)

)
= P

(
∀i ≤ n : ‖X∗

i − θ̂n‖ ≥ un, θ̂n ∈ B(θ, ρ/2)
)

≤ P
(
∀i ≤ n : ‖X∗

i − θ̂n‖ ≥ un, δ∗n ≤ un/2, θ̂n ∈ B(θ, ρ/2)
)

+ P
(
δ∗n > un/2

)
.
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By Lemma 2.2 the latter term tends to 0. Finally, by the very definition of the Y ∗
j ’s, we obtain

P
(
∀i ≤ n : ‖X∗

i − θ̂n‖ ≥ un, δ∗n ≤ un/2, θ̂n ∈ B(θ, ρ/2)
)

= P
(
∀i ≤ n : ‖X∗

i − θ̂n‖ ≥ un, ∀j ≤ n, ∃k ≤ n : ‖Y ∗
j − X∗

k‖ ≤ un/2,

θ̂n ∈ B(θ, ρ/2)
)

≤ P
(
∀j ≤ n, ∃k ≤ n : ‖X∗

k − θ̂n‖ ≥ un, ‖Y ∗
j − X∗

k‖ ≤ un/2, θ̂n ∈ B(θ, ρ/2)
)

≤ P
(
∀j ≤ n : ‖Y ∗

j − θ̂n‖ ≥ un/2, θ̂n ∈ B(θ, ρ/2)
)

= P
(
∀j ≤ n : ‖Yj − θ̂n‖ ≥ un/2, θ̂n ∈ B(θ, ρ/2)

)
,

where the last equality holds if n is large enough, to ensure that un ≤ ρ. The lemma is then a straightforward
consequence of Lemma 2.3. �
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