One-step estimation for the fractional Gaussian noise at high-frequency
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 827-841.

The present paper concerns the parametric estimation for the fractional Gaussian noise in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood estimators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less computationally demanding. It is also advantageous with respect to the QGV which is not variance efficient. Performances of the estimators on finite size observation samples are illustrated by means of Monte-Carlo simulations.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020022
Classification : 62F12, 62M09, 65U05
Mots-clés : Fractional Gaussian noise, infill asymptotics, efficient estimation, Fisher scoring
@article{PS_2020__24_1_827_0,
     author = {Brouste, Alexandre and Soltane, Marius and Votsi, Irene},
     title = {One-step estimation for the fractional {Gaussian} noise at high-frequency},
     journal = {ESAIM: Probability and Statistics},
     pages = {827--841},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020022},
     mrnumber = {4178369},
     zbl = {1454.62092},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2020022/}
}
TY  - JOUR
AU  - Brouste, Alexandre
AU  - Soltane, Marius
AU  - Votsi, Irene
TI  - One-step estimation for the fractional Gaussian noise at high-frequency
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 827
EP  - 841
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2020022/
DO  - 10.1051/ps/2020022
LA  - en
ID  - PS_2020__24_1_827_0
ER  - 
%0 Journal Article
%A Brouste, Alexandre
%A Soltane, Marius
%A Votsi, Irene
%T One-step estimation for the fractional Gaussian noise at high-frequency
%J ESAIM: Probability and Statistics
%D 2020
%P 827-841
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2020022/
%R 10.1051/ps/2020022
%G en
%F PS_2020__24_1_827_0
Brouste, Alexandre; Soltane, Marius; Votsi, Irene. One-step estimation for the fractional Gaussian noise at high-frequency. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 827-841. doi : 10.1051/ps/2020022. http://www.numdam.org/articles/10.1051/ps/2020022/

[1] A. Aït-Sahalia and J. Jacod, Fisher’s information for discretely sampled Lévy processes. Econometrica 76 (2008) 727–761. | DOI | MR | Zbl

[2] C. Berzin and J. Léon, Estimation in models driven by fractional Brownian motion. Ann. Inst. Henri Poincaré - Probab. Statist. 44 (2008) 191–213. | DOI | Numdam | MR | Zbl

[3] A. Brouste and M. Fukasawa, Local asymptotic normality property for fractional Gaussian noise under high-frequency observations. Ann. Statist. 46 (2018) 2045–2061. | DOI | MR | Zbl

[4] A. Brouste and H. Masuda, Efficient estimation of stable Lévy process with symmetric jumps. Statist. Inference Stoch. Processes 21 (2018) 289–307. | DOI | MR | Zbl

[5] J.F. Cœurjolly, Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Statist. Softw. 5 (2000) 1–53. | DOI

[6] S. Cohen, F. Gamboa, C. Lacaux and J.-M. Loubes, LAN property for some fractional type Brownian motion. ALEA: Latin Am. J. Probab. Math. Statist. 10 (2013) 91–106. | MR | Zbl

[7] R. Dahlhaus, Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989) 1749–1766. | DOI | MR | Zbl

[8] R. Dahlhaus, Correction efficient parameter estimation for self-similar processes. Ann. Statist. 34 (2006) 1045–1047. | DOI | MR

[9] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inform. Theory 38 (1992) 910–917. | DOI | MR | Zbl

[10] R. Fox and M. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517–532. | MR | Zbl

[11] M. Fukasawa and T. Takabatake, Asymptotically efficient estimators for self-similar stationary Gaussian noises under high frequency observations. Bernoulli 25 (2019) 1870–1900. | DOI | MR | Zbl

[12] X. Guyon and J. Léon, Convergence en loi des H-variations d’un processus gaussien stationnaire sur R. Ann. Inst. Henri Poincaré - Probab. Statist. B 25 (1989) 265–282. | Numdam | MR | Zbl

[13] J. Hájek, Local asymptotic minimax and admissibility in estimation, in Proceedings of 6th Berkeley Symposium on Math. Statist. Prob. (1972) 175–194. | MR | Zbl

[14] I. Ibragimov and R. Has’Minski, Statistical Estimation: Asymptotic Theory. Springer-Verlag (1981). | DOI | Zbl

[15] J. Istas and G. Lang, Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Instit. Henri Poincaré - Probab. Statist. B 33 (1997) 407–436. | DOI | Numdam | MR | Zbl

[16] R. Kawai, Fisher information for fractional Brownian motion under high-frequency discrete sampling. Commun. Statist. - Theory Methods 42 (2013) 1628–1636. | DOI | MR | Zbl

[17] Y. Kutoyants and A. Motrunich, On multi-step MLE-process for Markov sequences. Metrika 79 (2016) 705–724. | DOI | MR | Zbl

[18] L. Le Cam, Limits of experiments, in Proceedings of the 6th Berkeley Symposium (1972) 245–261. | MR | Zbl

[19] L. Le Cam, On the asymptotic theory of estimation and testing hypothesis, in Proceedings of the 3rd Berkeley Symposium (1956) 355–368. | MR | Zbl

[20] S. Mazur, D. Otryakhin and M. Podolskij, Estimation of the linear fractional stable motion. Bernoulli 26 (2020) 226–252. | DOI | MR | Zbl

[21] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. Available from: https://www.R-project.org/ (2016).

[22] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall (2000). | MR | Zbl

[23] T. Sweeting, Uniform asymptotic normality of the maximum likelihood estimator. Ann. Statist. 8 (1980) 1375–1381. | DOI | MR | Zbl

[24] A. Van Der Vaart, Asymptotic Statistics. Cambridge University Press (1998). | DOI | MR | Zbl

Cité par Sources :