This article is motivated by the quantitative study of the exponential growth of Markov-driven bifurcating processes [see Hervé et al., ESAIM: PS 23 (2019) 584–606]. In this respect, a key property is the multiplicative ergodicity, which deals with the asymptotic behaviour of some Laplace-type transform of nonnegative additive functional of a Markov chain. We establish a spectral version of this multiplicative ergodicity property in a general framework. Our approach is based on the use of the operator perturbation method. We apply our general results to two examples of Markov chains, including linear autoregressive models. In these two examples the operator-type assumptions reduce to some expected finite moment conditions on the functional (no exponential moment conditions are assumed in this work).
Mots-clés : Markov processes, quasi-compactness, operator, perturbation, ergodicity, Laplace transform, branching process, age-dependent process, Malthusian parameter
@article{PS_2019__23__607_0, author = {Herv\'e, Lo{\"\i}c and Louhichi, Sana and P\`ene, Fran\c{c}oise}, title = {Multiplicative ergodicity of {Laplace} transforms for additive functional of {Markov} chains}, journal = {ESAIM: Probability and Statistics}, pages = {607--637}, publisher = {EDP-Sciences}, volume = {23}, year = {2019}, doi = {10.1051/ps/2019003}, mrnumber = {4011572}, zbl = {1506.60068}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2019003/} }
TY - JOUR AU - Hervé, Loïc AU - Louhichi, Sana AU - Pène, Françoise TI - Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains JO - ESAIM: Probability and Statistics PY - 2019 SP - 607 EP - 637 VL - 23 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2019003/ DO - 10.1051/ps/2019003 LA - en ID - PS_2019__23__607_0 ER -
%0 Journal Article %A Hervé, Loïc %A Louhichi, Sana %A Pène, Françoise %T Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains %J ESAIM: Probability and Statistics %D 2019 %P 607-637 %V 23 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2019003/ %R 10.1051/ps/2019003 %G en %F PS_2019__23__607_0
Hervé, Loïc; Louhichi, Sana; Pène, Françoise. Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 607-637. doi : 10.1051/ps/2019003. http://www.numdam.org/articles/10.1051/ps/2019003/
[1] Positive transfer operators and decay of correlations, World Scientific Publishing Co. Inc., River Edge, NJ, 2000 | DOI | MR | Zbl
,[2] Diffusion approximation of a Knudsen gas model: dependence of the diffusion constant upon the boundary condition. Asymptot. Anal. 31 (2002) 93–111 | MR | Zbl
and ,[3] Études spectrales d’opérateurs de transfert et applications. In Vol. 238 of Astérisque (1996) | Numdam | Zbl
, and ,[4] Iterated random functions. SIAM Rev. 41 (1999) 45–76 | MR | Zbl
and ,[5] Random Iterative Models. Applications of Mathematics. Springer-Verlag, Berlin, Heidelberg (1997) | MR | Zbl
,[6] Théorème de Keller-Liverani et forte ergodicité. Preprint (2010) | HAL
,[7] Regular perturbation of V -geometrically ergodic Markov chains. J. Appl. Probab. 50 (2013) 184–194 | DOI | MR | Zbl
, and ,[8] Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. Henri Poincaré 24 (1988) 73–98 | Numdam | MR | Zbl
and ,[9] On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Ergodic Theory Dyn. Syst. 28 (2008) 423–446 | DOI | MR | Zbl
and ,[10] Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Am. Math. Soc. 118 (1993) 627–634 | MR | Zbl
,[11] Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness. In Vol. 1766 of Lecture Notes in Mathematics. Springer (2001) | DOI | MR | Zbl
and ,[12] Approximating Markov chains and V -geometric ergodicity via weak perturbation theory. Stoch. Process. Their Appl. 124 (2014) 613–638 | DOI | MR | Zbl
and ,[13] Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence. ESAIM: PS 23 (2019) 584–606 | DOI | Numdam | MR | Zbl
, and ,[14] The Nagaev-Guivarc’h method via the Keller-Liverani theorem. Bull. Soc. Math. France 138 (2010) 415–489 | DOI | Numdam | MR | Zbl
and ,[15] Stability of the Spectrum for Transfer Operators, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 28 (1999) 141–152 | Numdam | MR | Zbl
and ,[16] Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Prob. 13 (2003) 304–362 | DOI | MR | Zbl
and ,[17] Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electr. J. Prob. 10 (2005) 61–123 | MR | Zbl
and ,[18] Théorèmes limites pour les produits de matrices aléatoires. In Vol. 928 of Lecture Notes. Springer (1992) 258–303 | MR | Zbl
,[19] Exponential growth of bifurcating processes with ancestral dependence. Adv. Appl. Probab. 47 (2015) 545–564 | DOI | MR | Zbl
and ,[20] Markov chains and stochastic stability, 2nd edn Cambridge University Press (2009) | DOI | MR | Zbl
and ,[21] Some limit theorems for stationary Markov chains. Theory Prob. Appl. 11 (1957) 378–406 | DOI | MR | Zbl
,[22] More exact statements of limit theorems for homogeneous Markov chains. Theory Prob. Appl. 6 (1961) 62–81 | DOI | MR | Zbl
,[23] Essential spectral radius for Markov semigroups. I. Discrete time case. Probab. Theory Related Fields 128 (2004) 255–321 | DOI | MR | Zbl
,Cité par Sources :