Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 584-606.

We study the exponential growth of branching processes with ancestral dependence. We suppose here that the lifetimes of the cells are dependent random variables, that the numbers of new cells are random and dependent. Lifetimes and new cells’s numbers are also assumed to be dependent. Applying the spectral study of Laplace-type operators recently made in Hervé et al. [ESAIM: PS 23 (2019) 607–637], we illustrate our results in the Markov context, for which the exponential growth property is linked to the Laplace transform of the lifetimes of the cells.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2019001
Classification : 60J05, 60J85
Mots-clés : Markov processes, quasi-compactness, operator, perturbation, ergodicity, Laplace transform, branching process, age-dependent process, Malthusian parameter
Hervé, Loïc 1 ; Louhichi, Sana 1 ; Pène, Françoise 1

1
@article{PS_2019__23__584_0,
     author = {Herv\'e, Lo{\"\i}c and Louhichi, Sana and P\`ene, Fran\c{c}oise},
     title = {Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence},
     journal = {ESAIM: Probability and Statistics},
     pages = {584--606},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019001},
     mrnumber = {4011568},
     zbl = {1506.60067},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2019001/}
}
TY  - JOUR
AU  - Hervé, Loïc
AU  - Louhichi, Sana
AU  - Pène, Françoise
TI  - Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 584
EP  - 606
VL  - 23
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2019001/
DO  - 10.1051/ps/2019001
LA  - en
ID  - PS_2019__23__584_0
ER  - 
%0 Journal Article
%A Hervé, Loïc
%A Louhichi, Sana
%A Pène, Françoise
%T Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence
%J ESAIM: Probability and Statistics
%D 2019
%P 584-606
%V 23
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2019001/
%R 10.1051/ps/2019001
%G en
%F PS_2019__23__584_0
Hervé, Loïc; Louhichi, Sana; Pène, Françoise. Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 584-606. doi : 10.1051/ps/2019001. http://www.numdam.org/articles/10.1051/ps/2019001/

[1] V. Baladi, Positive transfer operators and decay of correlations. World Scientific Publishing Co. Inc., River Edge, NJ (2000) | DOI | MR | Zbl

[2] V. Bansaye, Ancestral lineage and limit theorems for branching Markov chains. To appear in J. Theor. Probab. 32 (2019) 249–281 | DOI | MR | Zbl

[3] V. Bansaye, J.-F. Delmas, L. Marsalle and V.C. Tran, Limit theorems for Markov processes indexed by continuous time Galton-Watson trees. Ann. Appl. Probab. 21 (2011) 2263–2314 | DOI | MR | Zbl

[4] R. Bellman and T. Harris, On the theory of age-dependent stochastic branching processes. Proc. Nat. Acad. Sci. USA 34 (1948) 601–604 | DOI | MR | Zbl

[5] S. Boatto and F. Golse, Diffusion approximation of a Knudsen gas model: dependence of the diffusion constant upon the boundary condition. Asymptot. Anal. 31 (2002) 93–111 | MR | Zbl

[6] J.-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson processes. Stoch. Process. Appl. 120 (2010) 2495–2519 | DOI | MR | Zbl

[7] P. Diaconis and D. Freedman, Iterated random functions. SIAM Rev. 41 (1999) 45–76 | DOI | MR | Zbl

[8] M. Duflo, Random Iterative Models. Applications of Mathematics. Springer-Verlag, Berlin, Heidelberg (1997) | MR | Zbl

[9] Y. Guivarch́ and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. Henri Poincaré 24 (1988) 73–98 | Numdam | MR | Zbl

[10] Y. Guivarch́ and E. Le Page, On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Ergodic Theory Dyn. Syst. 28 (2008) 423–446 | DOI | MR | Zbl

[11] J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569 | DOI | MR | Zbl

[12] T.E. Harris, The theory of branching processes. Springer-Verlag, Berlin (1963) | DOI | MR | Zbl

[13] H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Am. Math. Soc. 118 (1993) 627–634 | MR | Zbl

[14] L. Hervé and F. Pène, The Nagaev-Guivarch́ method via the Keller-Liverani theorem. Bull. Soc. Math. France 138 (2010) 415–489 | DOI | Numdam | MR | Zbl

[15] L. Hervé, S. Louhichi and F. Pène, Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains. ESAIM: PS 23 (2019) 607–637 | DOI | Numdam | MR | Zbl

[16] S.Y. Hwang and I.V. Basawa, Branching Markov processes and related asymptotics. J. Multivar. Anal. 100 (2009) 1155–1167 | DOI | MR | Zbl

[17] G. Keller and C. Liverani, Stability of the Spectrum for Transfer Operators. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze Sér. 4 28 (1999) 141–152 | Numdam | MR | Zbl

[18] M. Kimmel and D. Axelrod, Branching processes in Biology. Springer-Verlag, New York (2002) | DOI | MR | Zbl

[19] I. Kontoyiannis and S.P. Meyn, Spectral theory and limit theorems for geometrically Ergodic Markov processes. Ann. Appl. Probab. 13 (2003) 304–362 | DOI | MR | Zbl

[20] I. Kontoyiannis and S.P. Meyn, Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electr. J. Probab. 10 (2005) 61–123 | MR | Zbl

[21] S. Louhichi and B. Ycart, Exponential growth of bifurcating processes with ancestral dependence. Adv. Appl. Probab. 47 (2015) 545–564 | DOI | MR | Zbl

[22] S.V. Nagaev, Some limit theorems for stationary Markov chains. Theory Probab. Appl. 11 (1957) 378–406 | DOI | MR | Zbl

[23] S.V. Nagaev, More exact statements of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6 (1961) 62–81 | DOI | MR | Zbl

Cité par Sources :