In this note, taking the killed Brownian motion as an illustrative model, we derive a conditional deviation inequality for for certain (unbounded) functions . Then we apply it to prove a quasi -ergodic theorem for the killed process.
Accepté le :
DOI : 10.1051/ps/2017009
Mots-clés : Absorbing Markov process, deviation inequality, quasi-ergodicity
@article{PS_2017__21__159_0, author = {Chen, Jinwen and Jian, Siqi}, title = {Quasi-ergodicity for absorbing {Markov} processes via deviation inequality}, journal = {ESAIM: Probability and Statistics}, pages = {159--167}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017009}, mrnumber = {3716124}, zbl = {1393.60086}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2017009/} }
TY - JOUR AU - Chen, Jinwen AU - Jian, Siqi TI - Quasi-ergodicity for absorbing Markov processes via deviation inequality JO - ESAIM: Probability and Statistics PY - 2017 SP - 159 EP - 167 VL - 21 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2017009/ DO - 10.1051/ps/2017009 LA - en ID - PS_2017__21__159_0 ER -
%0 Journal Article %A Chen, Jinwen %A Jian, Siqi %T Quasi-ergodicity for absorbing Markov processes via deviation inequality %J ESAIM: Probability and Statistics %D 2017 %P 159-167 %V 21 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2017009/ %R 10.1051/ps/2017009 %G en %F PS_2017__21__159_0
Chen, Jinwen; Jian, Siqi. Quasi-ergodicity for absorbing Markov processes via deviation inequality. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 159-167. doi : 10.1051/ps/2017009. http://www.numdam.org/articles/10.1051/ps/2017009/
A quasi-ergodic theorem for evanescent processes. Stochastic Processes Appl. 84 (1999) 177–186. | DOI | MR | Zbl
and ,Some limit theorems of killed Brownian motion, Sci. China Math. 56 (2013) 497–514. | DOI | MR | Zbl
and ,Some limit theorems for absorbing Markov processes. J. Phys. A: Math. Theor. 45 (2012) 345–003. | MR | Zbl
, and ,K.L. Chung and Z.X. Zhao, From Brownian motion to Schrodinger’s equation. Springer, Berlin (1995). | MR | Zbl
J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, Boston (1989). | MR | Zbl
L.C. Evans, Partial Differential Equations. American Mathematical society (1998). | MR | Zbl
S.C. Port and C.J. Stone, Brownian motion and classical potential theory. Academic Press, Inc (1978). | MR | Zbl
A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincaré. Prob. Stat. 11 (2000) 435–445. | DOI | Numdam | MR | Zbl
,Cité par Sources :