@article{AIHPB_2000__36_4_435_0, author = {Wu, Liming}, title = {A deviation inequality for non-reversible {Markov} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {435--445}, publisher = {Gauthier-Villars}, volume = {36}, number = {4}, year = {2000}, mrnumber = {1785390}, zbl = {0972.60003}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2000__36_4_435_0/} }
TY - JOUR AU - Wu, Liming TI - A deviation inequality for non-reversible Markov processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 435 EP - 445 VL - 36 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_2000__36_4_435_0/ LA - en ID - AIHPB_2000__36_4_435_0 ER -
Wu, Liming. A deviation inequality for non-reversible Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 4, pp. 435-445. http://www.numdam.org/item/AIHPB_2000__36_4_435_0/
[1] The rate function of hypoelliptic diffusions, Comm. Pure Appl. Math. XLVII (6) (1994) 843-860. | MR | Zbl
, ,[2] On the convergence of averages of mixing sequences, J. Theoret. Probab. 6 (3) (1993) 473-484. | MR | Zbl
, ,[3] Martingale representation and a simple proof of logarithmic Sobolev inequality on path spaces, Elect. Comm. Probab. 2 (7) (1997). | MR | Zbl
, , ,[4] Large deviations, Pure and Appl. Math. 137 (1989). | Zbl
, ,[5] Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1984; (2nd corrected printing). | MR | Zbl
,[6] Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probab. XXXIII, Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 120-216. | Numdam | MR | Zbl
,[7] Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1) (1994) 202-231. | MR | Zbl
,[8] An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336; (in chinese).
,[9] Functional Analysis, 3rd edn., Springer, 1971. | Zbl
,