This paper deals with uniform consistency and uniform confidence bands for the quantile function and its derivatives. We describe a kernel local polynomial estimator of quantile function and give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1 (1973) 1071-1095].
Mots-clés : uniform confidence bands, conditional quantile estimation
@article{PS_2014__18__265_0, author = {Sabbah, Camille}, title = {Uniform {Confidence} {Bands} for {Local} {Polynomial} {Quantile} {Estimators}}, journal = {ESAIM: Probability and Statistics}, pages = {265--276}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013035}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2013035/} }
TY - JOUR AU - Sabbah, Camille TI - Uniform Confidence Bands for Local Polynomial Quantile Estimators JO - ESAIM: Probability and Statistics PY - 2014 SP - 265 EP - 276 VL - 18 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2013035/ DO - 10.1051/ps/2013035 LA - en ID - PS_2014__18__265_0 ER -
Sabbah, Camille. Uniform Confidence Bands for Local Polynomial Quantile Estimators. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 265-276. doi : 10.1051/ps/2013035. http://www.numdam.org/articles/10.1051/ps/2013035/
[1] A note on quantiles in large samples. Ann. Math. Stat. 37 (1966) 577-580. | MR | Zbl
,[2] On some global measures of the deviation of density function estimates. Ann. Statist. 1 (1973) 1071-1095. | MR | Zbl
and ,[3] Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist. 31 (2003) 1852-1884. | MR | Zbl
and ,[4] Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 3 (2005) 1380-1403. | MR | Zbl
and ,[5] Confidence bands in nonparametric regression. J. Amer. Stat. Associat. 88 (1993) 1287-1301. | MR | Zbl
and ,[6] Local Polynomial Modeling And Its Applications. Monogr. Stat. Appl. Prob. Chapman and Hall 66 (1996). | MR | Zbl
and ,[7] Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom. Theory. 28 (2012) 87-129. | MR | Zbl
and ,[8] Asymptotic maximal deviation of M-smoothers. J. Mult. Anal. 29 (1989) 163-179. | Zbl
,[9] Partial linear quantile regression and bootstrap confidence bands. J. Mult. Ana. 107 (2012) 244-262. | Zbl
, and ,[10] The Stochastic fluctuation of the quantile regression curve. Econom. Theory 26 (2010) 1180-1200. | Zbl
and ,[11] Robust estimation of a location parameter. Ann. Math. Stat. 37 (1964) 73-101. | MR | Zbl
,[12] Robust Statistics. Wiley Series in Probab. Math. Statist. John Wiley and Sons, Inc., New York (1981). | MR | Zbl
,[13] Confidence bands for regression functions. J. Amer. Stat. Associat. 80 (1985) 683-691. | MR | Zbl
, and ,[14] Quantile Regression. New York, Cambridge University Press (2005). | Zbl
,[15] Regression quantiles. Econometrica 46 (1978) 33-50. | MR | Zbl
and ,[16] Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econom. Theory. 26 (2010) 159-166. | MR | Zbl
, and ,[17] Cross-validation in nonparametric regression with outliers. Ann. Statist. 33 (2005) 2291-2310. | MR | Zbl
,[18] Nonparametric estimation of conditional CDF and quantile function with mixed categorical and continuous data. J. Busin. Econ. Statist. 26 (2008) 423-434. | MR
and ,[19] Robust statistics, theory and methods. Wiley (2006). | MR | Zbl
, and ,[20] Censored regression quantiles. J. Econom. 32 (1986) 143-155. | MR | Zbl
,[21] Remarks on a multivariate transformation. Ann. Math. Stat. 23 (1952) 470-472. | MR | Zbl
,[22] Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040-1053. | MR | Zbl
,[23] Simultaneous confidence bands for linear regression and smoothing. Ann. Statist. 22 (1994) 1328-1345. | MR | Zbl
and ,[24] A remark on the approximation of the sample distribution function in the multidimensional case. Period. Math. Hungar. 8 (1977) 53-55. | MR | Zbl
,[25] Polynomial spline confidence bands for regression curves. Statistica Sinica. 19 (2009) 325-342. | MR | Zbl
and ,[26] Local Linear Quantile Regression. J. Amer. Stat. Associat. 93 (1998) 228-237. | MR | Zbl
and ,Cité par Sources :