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Abstract. This paper deals with uniform consistency and uniform confidence bands for the quantile
function and its derivatives. We describe a kernel local polynomial estimator of quantile function and
give uniform consistency. Furthermore, we derive its maximal deviation limit distribution using an
approximation in the spirit of Bickel and Rosenblatt [P.J. Bickel and M. Rosenblatt, Ann. Statist. 1
(1973) 1071–1095].

Mathematics Subject Classification. 62G08, 62G15.

Received March 3, 2011. Revised June 14, 2012.

1. Introduction

Consider a scalar dependent random variable Y and an explanatory random variable X . It can be easily
shown (Rosenblatt [21]) that if U is uniformly distributed over [0, 1] and independent of X , the dependence
between Y and X is expressed by the functional relation

Y = Q (U |X) , (1.1)

which is based on the α–th conditional quantile function Q(α|x) of Y given X = x. The representation (1.1)
can be viewed as an alternative to the regression model

Y = E[Y |X ] + ε. (1.2)

However (1.1) is more general that (1.2) which is well defined only if Y has a mean. In (1.2), the conditional
mean summarizes the dependence between Y and X , which may be inappropriate in many practical situations.
In particular, ε may still depend upon X through heteroscedasticity. In this case, the conditional mean fails to
fully describe the response of Y to X . This contrasts with (1.1) where the quantile function can be used for
such a purpose since U and X are independent. In addition, the representation (1.1) suggests to estimate the
derivatives of Q(α|x) with respect to x to obtain the response of Y to an infinitesimal variation of X .
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The study of conditional quantiles have many other advantages over classical regression. To cite a few,
conditional quantile estimators are robust to the presence of outliers, see the seminal paper Huber [11] and
Maronna, Martin and Yohai [19] for a general overview about robust statistics. The conditional quantile is
also invariant in monotonous transformations, a useful property in e.g. censored-data or logistic models, see
Huber [12] and Powell [20] among others.

The present work is therefore concerned with some properties of a local polynomial estimator of the condi-
tional quantile function. A first contribution is to establish the limit law of the maximal deviations for a local
polynomial estimator of the conditional quantile. A direct use of this limit law is to construct uniform confidence
bands for the conditional quantile function and for its derivatives. Uniform confidence bands allow to evaluate
the variability in the estimation and at the same time provide a prediction tool. Claeskens and Van Keilegom [3],
in the likelihood setup, pointed out that uniform confidence bands are useful to answer graphical queries about
the curve’s shape. For instance, it can be used in order to choose between a linear quantile regression approach
as first developed in [15] and a nonlinear or a nonparametric approach. Uniform confidence bands thus have
direct applications in the scope of model specification.

A second contribution of the paper deals with data–driven bandwidths. The coverage performance of the
uniform confidence bands of Theorem 2.3 depends upon the asymptotic properties of the estimators of the
conditional quantile and of the sparsity function. Indeed, it is known that the bandwidth parameter highly
influence the variability of these nonparametric estimators and therefore affects the covering properties of the
resulting uniform confidence bands. For instance, by adopting an under–smoothed estimation strategy, we
reduce the bias of both estimators and as a consequence, the resulting confidence bands will be more centered
around the true curve x �→ Q(α|x), but at the same time we increase the variability of both estimators that
can lead to a poor coverage performance. See among others Eubanck and Speckman [5] for a discussion about
bias correction in the construction of confidence bands. A natural approach to overcome this issue is to use
data–driven bandwidths. In Corollary 2.4 below, we state that any random bandwidth converging to 0 at an
appropriate rate can be used in the construction of uniform confidence bands. Moreover, when estimating both
the conditional quantile and the sparsity function using such plug–in data–driven bandwidths, Guerre and
Sabbah ([7], Prop. 2) showed that the resulting estimators achieve the global optimal rates of Stone [22]. While
the literature abounds with examples of data–driven bandwidths in the mean regression setup, there are less
references concerning such choices for the conditional quantile. Nevertheless, many usual technics as rule–of–
thumb, plug–in and cross–validation derived from the mean regression setup are available in the literature to
construct adaptive bandwidths for the conditional quantile estimator. See for more details Yu and Jones [26]
which proposes a rule–of–thumb for selecting bandwidths for a local linear estimator of the conditional quantile
and references therein. Li and Racine [18] proposed to use a data–driven bandwidth initially constructed for
the conditional cumulative distribution estimator and to plug it in the estimator of the conditional quantile.
Another approach is to consider a cross–validation method. While classical cross–validation technics builds on
the L2 loss function which is very sensible to the presence of outliers in the data, recently Leung [17] proposed
to consider a general class of robust cross–validation procedures including e.g. the L1 loss function and studied
its asymptotic properties.

Construction of uniform confidence bands have been studied in several contexts. Bickel and Rosenblatt [2]
first gave uniform confidence bands for the density of a random variable. In the classical regression setup, see
among others Knafl et al. [13], Härdle [8] for local constant M–estimation, Sun and Loader [23], Claeskens
and Van Keilegom [3] in the likelihood setup and more recently Wang and Yang [25] in the polynomial spline
regression estimation context and Härdle and Song [10], among others. Among these references Härdle and
Song [10] proposed a closely related to our results by constructing uniform confidence bands for the conditional
quantile functions using local constant estimation. We go one step further extending their result by providing
confidence bounds not only for the conditional quantile but also for its derivatives. It is known that when the
conditional quantile function have a high order of differentiability, its estimator achieves a better bias–variance
trade–off. Thus the uniform confidence band of Härdle and Song [10] are suboptimal and can be improved when
the conditional quantile function is more than twice differentiable as they assumed.
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Now let us describe our setup. From now on we consider independent and identically distributed (i.i.d.)
variables (Xi, Yi), i = 1, . . . , n, having the same distribution than (X, Y ) where X and Y are real random
variables. Define for α in (0, 1) the conditional quantile function of Y given X = x, Q(α|x) = F−1(α|x),
where F (·|x) (resp. f(·|x)) is the cumulative (resp. density) distribution function of Y given X = x. It is
well-known that one way of defining the conditional quantile is Q(α|x) = argmint E [�α(Y − t)|X = x] where
�α(t) = |t| + (2α − 1)t. Following this definition, our local polynomial estimator b̂(α, x) of order p of Q(α|x)
satisfies

b̂(α, x) = arg min
b∈Rp+1

n∑
i=1

�α

⎛⎝Yi −
p∑

j=0

bj(Xi − x)j

⎞⎠K

(
Xi − x

h

)
,

where b = (b0, . . . , bp)�, h is a bandwidth parameter and K(·) a kernel function. In particular, the first coordi-
nate Q̂(α|x) = b̂0(α, x) of the vector b̂(α, x) is an estimator of Q(α|x). Similarly b̂j(α, x), the jth coordinate of
the vector b̂(α, x) is an estimator of Qj(α|x) = Q(j)(α|x)/j! provided this quantity exists.

Our main result can be expressed as follows. For some deterministic diverging sequences {an}, {bn}, and a
map (α, x) �→ rj(α, x) defined below in Theorem 2.2 we have for all t and when n diverges

P

(
an

{
sup
x∈X0

rj(α, x)−1/2
∣∣∣̂bj(α, x) − Qj(α|x)

∣∣∣− bn

}
≤ t

)
→ exp (−2 exp(−t)) , (1.3)

for all 0 ≤ j ≤ �s� and where X0 is an inner compact subset of the support of X .
The rest of the paper is organized as follows. Section 2 describes the main toolst for building uniform

confidence bands. Furthermore we state the main result and the consequent corollaries. Finally, proofs are
gathered in Section 3.

2. Main results

In a first step, we will present a Bahadur representation for the conditional quantile estimator and its
derivatives. In a few words, Bahadur [1] first developed a linear representation of the sample quantile with a
small remainder term. The so-called Bahadur representation is useful to study asymptotic properties of the
sample quantile for mostly two reasons. The first one is that it is quite easy to derive asymptotic properties of
the conditional quantile estimator since its study is reduced to that of a classical empirical process. The second
one is that the remainder term tends to 0 more quickly than the linear term so that this representation well
expresses the behavior of the sample quantile.

In order to build uniform confidence bands, we will furthermore use an uniform Bahadur representation. See
among others Kong et al. [16] which gives an uniform Bahadur representation with respect to the explanatory
variable and Guerre and Sabbah [7] which provides a Bahadur representation perhaps better adapted to our
context since it is uniform with respect to the level of the quantile, the explanatory variable and the bandwidth
parameter. First the uniformity in x allows the construct of uniform confidence bands. Secondly, uniformity in
the quantile level allows the construction of an estimator of the sparsity function derived from the conditional
quantile estimator. Finally, uniformity in the bandwidth parameter allows the use of data–driven bandwidths.

More specifically, we derive from Guerre and Sabbah ([7], Thm. 2) a new Bahadur representation. For all
Assumptions and discussion about, we refer to the Appendix. Let

b(α|x) = (Q(α|x), Q1(α|x), . . . , Q�s�(α|x), 0, . . . 0)� ∈ R
p+1, and where �s� is as in Assumption A.4.

Define Np =
(∫

K(u)ui+jdu
)
0≤i,j≤p

and J(α, x) = 2f(Q(α|x)|x)f(x)Np, where f(·) is the density of X . Further-
more define for any integer number p ≥ �s� the vectors in R

p+1, U(u) = (1, u, . . . , up)� and KU(u) = K(u)U(u).
Finally define the (p + 1) × (p + 1) standardization diagonal matrix H = Diag (hv

n, v ∈ N, v ≤ p). In the sequel
α will be any element of [α, α] ⊂ (0, 1).
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Lemma 2.1. Under Assumptions A.1–A.5

(nhn)1/2H
(
b̂(α, x) − b(α|x)

)
=

2J−1(α, x)
(nhn)1/2

n∑
i=1

{α − I(Yi ≤ Q(α|Xi))}KU

(
Xi − x

hn

)
+ rn(α, x),

with supx∈X0
‖rn(α, x)‖ = OP

(
(nhn)1/2hs

n + hn log1/2(n) + (log(n))3/4/(nhn)1/4
)
.

An interesting feature of this result compared with the vast majority of existing results is that the order of
the local polynomial estimator may differ from the actual differentiability order �s� of Q(α|x).

With the Bahadur’s representation of Theorem 2.1, we are in position to state the limit law of the L∞ norm
of the conditional quantile estimator. Indeed, as explained in the proof section, the study of the limit law of
the conditional quantile estimator is reduced to that of the linear term in the RHS in Theorem 2.1 since the
remainder term vanishes at an appropriate rate when n diverges.

Our limit distribution result depends upon

Qp =
[∫

K ′(u)2ui+jdu − {i(i − 1) + j(j − 1)}
2

∫
K(u)ui+j−2du

]
0≤i,j≤p

,

Tp =
(∫

K2(u)ui+jdu

)
0≤i,j≤p

, Cj =

(
N−1

p QpN−1
p

)
j+1,j+1(

N−1
p TpN−1

p

)
j+1,j+1

·

Theorem 2.2. Assume that Assumptions A.1–A.5 are verified. Then (1.3) holds for all j = 0, . . . , �s� with

an = (−2 log(hn))1/2
, bn = (−2 log(hn))1/2 + (−2 log(hn))−1/2 log(Cj/(2π)),

rj(α, x) =
α(1 − α)

f2(Q(α|x)|x)f(x)
(N−1

p TpN−1
p )j,j .

Note that rj(α, x) involves the sparsity function q(α|x) = f(Q(α|x)|x)−1 and f(x). Our feasible quantile
confidence bound relies on an estimator of q(α|x), q̂(α|x) which can be found in Guerre and Sabbah ([7],
Prop. 3). Let q̂(α|x) = 1

hn

∫
Q̂(α + hnt|x)dKq(t), where Kq(·) is a signed measure over R with compact support

Kq and satisfying ∫
dKq(t) = 0,

∫
tdKq(t) = 1,

∫
|dKq(t)| < ∞.

Observe that a Taylor development of Q(α + hnt|x) in h of order 1 yields that q(α|x) = limhn→0
1

hn

∫
Q(α +

hnt|x)dKq(t). This is the idea behind our sparsity function estimation.
Now define f̂(x) =

∑n
i=1 K((Xi − x)/hn)/(nhn) and

V̂(α, x) =
α(1 − α)q̂(α|x)2

f̂(x)
N−1

p TpN−1
p ,

so that
(
V̂(α, x)

)
j,j

is an estimator of rj(α, x). The next Theorem deals with the construction of the uniform

confidence bands.

Theorem 2.3. Under Assumptions A.1–A.5, for any 0 < λ < 1, a (1 − λ)100% confidence band for x �→
Q(j)(α|x), j = 0, . . . , �s� is given by the collection of all functions belonging to the set of functions Qj{

Qj ; sup
x∈X0

[∣∣∣j! b̂j(α, x) −Qj(α, x)
∣∣∣ (V̂(α, x)

)−1/2

j,j

]
≤ Lλ,j

}
,
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where for all j = 0, . . . , �s�,

Lλ,j = j!
(
nh2j+1

n

)−1/2
(−2 log(hn))

(
1 + (−2 log(hn))−1

[
aλ + log

(
C

1/2
j /(2π)

)])
,

and aλ = − log(− log(1 − λ)/2).

The next Corollary is concerned with the use of random bandwidths.

Corollary 2.4. Consider a data–driven bandwidth ĥn satisfying

ĥn

hn
= 1 + oP(1) for some hn as in Assumption A.5,

when n diverges. Then under Assumptions A.1–A.5, Theorem 2.3 remains valid replacing hn by ĥn in the
estimation of both b̂(α, x) and V̂(α, x).

As a concluding remark, note that the convergence in law considered in the present paper is known to be slow
(at the rate O(log(n)−1)). In order to remedy this inconvenient, several theoretical attempts are available in the
literature. Among others Claeskens and Van Keilegom [3] and Härdle et al. [9] propose a bootstrap approach
in order to ameliorate the rate of convergence of the limit law of their estimators. It is likely that a similar
bootstrap procedure can be extended to our setting and lead to a better rate of convergence.

The rest of the paper is devoted to Assumptions and Proofs.

Appendix A. Assumptions and proofs

Define the lowest integer part �s� of s as the unique integer number with �s� < s ≤ �s� + 1. For the rest
of the paper let [α, α] be a compact subset of (0, 1). ‖(x, y)‖ stands for the Euclidean norm and I(·) for the
indicator function. Positive constants are denoted by the generic letter C and may vary from line to line. Our
main Assumptions are as follows.

Assumption A.1. The distribution of X has a cumulative distribution function F (·) continuously differentiable
over the compact support X of X and F ′(·) = f(·) ≥ C > 0.

Assumption A.2. The cumulative distribution function F (·|x) of Y given X = x is continuously differentiable
over R with derivative f(·|x) ≥ C > 0 for all x in X . The map (x, y) ∈ X ×R �→ f(y|x) is Lipschitz continuous.

Assumption A.3. The nonnegative kernel function K(·) has a compact support K = [a, b] with
∫

K(z)dz = 1.
For some K > 0, K(·) ≥ KI (| · | ≤ 1). The kernel K(·) is continuously differentiable over K, and K(a) =
K(b) = 0.

Assumption A.4. For some real number s > 1, x �→ Q(α|x) is �s + 1�–times continuously differentiable. The
map x ∈ X �→ ∂�s+1�Q(α|x)/∂x�s+1� is Hölder continuous with exponent s − �s� for all x in X . The function
α ∈ [α, α] �→ Q(α|x) is continuously differentiable for all α in [α, α].

Assumption A.5. The order p of the local polynomial estimator satisfies p ≥ �s� for s as in Assumption A.4.
The bandwidth parameter h = hn is such that h → 0, nh → ∞, log5(n)/(nh) → 0, (nh)1/2hs log1/2(n) → 0
when n diverges. Furthermore lim sup log(n)/(nhs+1)1/2 < ∞ when n diverges.

We now shortly discuss our Assumptions. Assumption A.2 implies in particular that the conditional quan-
tile Q(α|x) is uniquely defined for all α. Assumptions A.1 and A.3 are standard. For s = 2 Assumption A.5
is similar to Assumption A2 of Härdle and Song [10] since it allows the bandwidth to belong to the inter-

val
[
C
((

log2(n)
)
/n
)1/3

, h̃n

]
, for any sequence h̃n = o(n log(n))−1/5. Finally Assumption A.4 is common in

nonparametric statistics.
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A.1. Proof of Theorem 2.2

Define m(z) = α(1 − α)f(z), z in X0 and observe that there exists 0 < m ≤ m < ∞ such that

m ≤ inf
(α,z)∈[α,α]×X0

m(z) ≤ sup
(α,z)∈[α,α]×X0

m(z) ≤ m,

under Assumption A.1. Define for all 0 ≤ j ≤ p, Kj(u) = K(u)uj and

Yn,j(x) =
{α(1 − α)f(x)}−1/2

(nh)1/2

n∑
i=1

{I (Yi ≤ Q(α|Xi)) − α}Kj

(
Xi − x

h

)
·

In a first step we will write the process Yn,j(x) as a particular transformation of the uniform empirical process.
In a second step we will compare the process Yn,j(x) with the process

Zj(x) = h−1/2

∫
Kj

(
z − x

h

)
dW (z),

where W (·) is a Wiener process defined on the support of X , and we prove that for all j = 0, . . . , p, Yn,j(x)
has the same limit distribution than the one of Zj(x). This will end the proof arguing as in Claeskens and Van
Keilegom ([3], proof of Thm. 2.2).

Since K(·) is continuously differentiable and has compact support under Assumption A.3, and since
F (Q(α|X)|X) = α, we have

Yn,j(x) =
{α(1 − α)f(x)}−1/2

(nh)1/2

n∑
i=1

∫
{α − I(F (Yi|Xi) ≤ α)} I(F (Xi) ≤ F (z))dKj

(
z − x

h

)
.

Rosenblatt [21] yields that (F (Xi), F (Yi|Xi)) is uniformly distributed over [0, 1]2 so that there exists a sequence
of i.i.d. random vectors (Ui, Vi)i≥1 uniformly distributed on [0, 1]2 such that

Yn,j(x) =
{α(1 − α)f(x)}−1/2

(nh)1/2

n∑
i=1

∫
{α − I(Vi ≤ α)} I(Ui ≤ F (z))dKj

(
z − x

h

)
.

Now let Un(·, ·) be the bivariate empirical process Un(u, v) = n−1/2
∑n

i=1 {I(Ui ≤ z, Vi ≤ v) − uv}, (u, v) in
[0, 1]2. Then Yn,j(x) can be written w.r.t. Un(·, ·) as

Yn,j(x) =
(α(1 − α)f(x))−1/2

h1/2

∫
{αUn(F (z), 1) − Un(F (z), α)} dKj

(
z − x

h

)
. (A.1)

from this last expression, we can combine the Tusnàdy [24] approximation Theorem with the methodology of
Bickel and Rosenblatt [2] to achieve the proof.

Yn,j(x) and Zj(x) have the same limit distribution.
First recall that the result of Tusnàdy ([24], Thm. 1) yields that there exists a sequence of Brownian bridges

(Bn(·, ·))n≥1 defined on [0, 1]2 such that

sup
(u,v)∈[0,1]2

|Un(u, v) − Bn(u, v)| = OP

(
log2(n)
n1/2

)
.
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Now take Yn,j(x) as in (A.1) and observe that

sup
x∈X0

∣∣∣∣ h−1/2

m(x)1/2

∫
|α (Un(F (z), 1) − Bn(F (z), 1)) − Un(F (z), α) + Bn(F (z), α)| dKj

(
z − x

h

)∣∣∣∣
≤ sup

x∈X0

∣∣∣∣∣ h−1/2

m(x)1/2

∫
(1 + α) sup

(u,v)∈[0,1]2
|Un(u, v) − Bn(u, v)| dKj

(
z − x

h

)∣∣∣∣∣
≤ sup

x∈X0

∣∣∣∣ 1
m(x)1/2

∫
dKj

(
z − x

h

)∣∣∣∣× OP

(
log2(n)
(nh)1/2

)
.

The change of variable z = x + hu in the integral above yields that

sup
x∈X0

∣∣∣∣ 1
m(x)1/2

∫
dKj (u)

∣∣∣∣ ≤ ( inf
x∈X0

m(x)1/2

)−1 ∫ ∣∣K ′
j (u)

∣∣ du.

Since K(·) is continuously differentiable over its compact support under Assumption A.3, and since
infx∈X0 m(x) ≥ C > 0, we have that

sup
x∈X0

∣∣∣∣ 1
m(x)1/2

∫
dKj

(
z − x

h

)∣∣∣∣ = C.

It follows that

Yn,j(x) =
h−1/2

m(x)1/2

∫
{αBn(F (z), 1) − Bn(F (z), α)} dKj

(
z − x

h

)
+ ε1(α, x), (A.2)

with supx∈X0
|ε1(α, x)| = oP((− log(h))−1/2) under Assumption A.5.

Define now a sequence of bivariate Wiener processes (Wn(·, ·))n ≥ 1 on [0, 1]2 such that Bn(u, v) = Wn(u, v)−
uvWn(1, 1) for all (u, v) in [0, 1]2. Equation (A.2) then yields that

Yn,j(x) =
h−1/2

m(x)1/2

∫
(αWn(F (z), 1) − Wn(F (z), α)) dKj

(
z − x

h

)
+Wn(1, 1)

h−1/2

m(x)1/2

∫
(αF (z) − αF (z))Kj

(
z − x

h

)
+ ε1(α, x)

=
h−1/2

m(x)1/2

∫
(αWn(F (z), 1) − Wn(F (z), α)) dKj

(
z − x

h

)
+ ε1(α, x) (A.3)

since Wn(1, 1) is almost surely finite. We now rewrite the integral in (A.3). For that observe that since Wn(u, 0) =
Wn(0, t) = 0 for all (u, t) in [0, 1]2 we have

αWn(F (z), 1) − Wn(F (z), α) =
∫ ∫

[α − I(v ≤ α)] I(u ≤ F (z))dWn(u, v).

Then (A.3) and Fubini’s Theorem yield that Yn,j(x) − ε1(α, x) can be written as

h−1/2

m(x)1/2

∫ (∫ ∫
[α − I(v ≤ α)] I(u ≤ F (z))dWn(u, v)

)
dKj

(
z − x

h

)
=

h−1/2

m(x)1/2

∫ ∫ ∫
[α − I(v ≤ α)] I(F−1(u) ≤ z)dKj

(
z − x

h

)
dWn(u, v)

=
h−1/2

m(x)1/2

∫ ∫
{I(v ≤ α) − α}Kj

(
F−1(u) − x

h

)
dWn(u, v) (A.4)
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Observe that Yn,j(x) − ε1(α, x) is a centered Gaussian processes. Define r(·, ·) the covariance function of the
process Yn,j(x) − ε1(α, x).Then

r(x1, x2) =
h−1

(m(x1)m(x2))
1/2

∫ ∫
{I(v ≤ α) − α}2

Kj

(
F (u)−1 − x1

h

)
Kj

(
F (u)−1 − x2

h

)
dvdu

=
h−1

(m(x1)m(x2))
1/2

∫
α(1 − α)f(z)Kj

(
z − x1

h

)
Kj

(
z − x2

h

)
dz

=
h−1

(m(x1)m(x2))
1/2

∫
m(z)Kj

(
z − x1

h

)
Kj

(
z − x2

h

)
dz = r1(x1, x2),

where r1(·, ·) is the covariance function of the centered Gaussian process

x ∈ X �→ h−1/2

∫ (
m(z)
m(x)

)1/2

Kj

(
z − x

h

)
dW (z),

and where W (·) is a Wiener process defined on X . It then follows from (A.4) that Yn,j(x) − ε1(α, x) have the
same distribution than

x ∈ X �→ h−1/2

∫ (
m(z)
m(x)

)1/2

Kj

(
z − x

h

)
dW (z).

To achieve the proof, it remains to show that

A = sup
x∈X

∣∣∣∣∣h−1/2

∫ ([
m(z)
m(x)

]1/2

− 1

)
Kj

(
z − x

h

)
dW (z)

∣∣∣∣∣ = oP((− log(h))1/2). (A.5)

The change of variable z = x + hu and integration by parts in (A.5) under Assumptions A.1 and A.3 yield that∣∣∣∣∣h−1/2

∫ ([
m(z)
m(x)

]1/2

− 1

)
Kj

(
z − x

h

)
dW (z)

∣∣∣∣∣
≤
∣∣∣∣∣h−1/2

∫
W (x + hu)

([
f(x + hu)

f(x)

]1/2

− 1

)
K ′

j (u) du +
h1/2

2

∫
W (x + hu)

f ′(x + hu)Kj (u)

(f(x)f(x + hu))1/2
du

∣∣∣∣∣ .
Since f(·) is continuously differentiable, bounded away from 0 under Assumption X and supu∈X0

|W (u)| =
OP(1), Assumption A.3 yields that the second integral in the inequality above is a OP(h1/2) uniformly in x
in X0. To control the first integral in the inequality above, observe continuous differentiability of f(·) under
Assumption A.1 and compactness of X0 yield that supx∈X0

|[f(x + hu)/f(x)]1/2 − 1| ≤ Ch|u|. Hence A ≤∣∣∫ CK ′
j (u) |u|du

∣∣OP

(
h1/2

)
, since supx∈X0

|W (x)| = OP(1), which gives the result under Assumption A.3.

A.2. Proof of Theorem 2.3

The Theorem is proved if we show that

sup
x∈X0

∥∥∥∥V̂(α, x) − α(1 − α)q(α|x)2

f(x)
N−1

p TpN−1
p

∥∥∥∥ = oP (log(n))−1/2
.

First observe that Einmahl and Mason ([4], Thm. 1) under Assumptions A.1, A.3 and A.5 yields that

sup
x∈X0

∣∣∣∣∣f(x) − 1
nh

n∑
i=1

K

(
Xi − x

h

)∣∣∣∣∣ = OP

(
log1/2(n)
(nh)1/2

+ h

)
·
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Then since infx∈X0 f(x) ≥ C > 0 under Assumption A.1 and infx∈X0 q(α|x) ≥ C > 0 under Assumption A.2,
the Theorem is proved if we show that

sup
x∈X0

|q̂(α|x) − q(α|x)| = oP (log(n))−1/2
.

Guerre and Sabbah ([7], Lems. A.2, A.3 and Thms. 1 and 2) under Assumptions A.1, A.2, A.3, A.4, and A.5
yields that

sup
(α,x)∈[α,α]×X0

∣∣∣Q̂(α|x) − Q(α|x)
∣∣∣ = OP

(
log1/2(n)
(nh)1/2

+ hs+1

)
Now recall that q̂(α|x) = 1

h

∫
Q̂(α + ht|x)dKq(t). Then

sup
x∈X0

∣∣∣∣q̂(α|x) − 1
h

∫
Q(α + ht|x)dKq(t)

∣∣∣∣ ≤ 1
h

sup
(α,x)∈[α,α]×X0

∣∣∣Q̂(α|x) − Q(α|x)
∣∣∣ ∫ |dKq(t)|

= OP

(
log1/2(n)
h(nh)1/2

+ hs

)
·

Now since
sup
t∈Kq

(α,x)∈[α,α]×X0

|Q(α + ht) − Q(α|x) − htq(α|x)| = O(h),

under Assumptions A.4 and A.5, and since
∫

dKq(t) = 0 and
∫

tdKq(t) = 1, we have

sup
x∈X0

|q̂(α|x) − q(α|x)| = OP

(
log1/2(n)
h(nh)1/2

+ hs + h

)
= oP (log(n))−1/2 , under Assumption A.5.

A.2.1. Proof of Corollary 2.4

The proof is a direct consequence of Guerre and Sabbah ([7], Prop. 2), so it is omitted.

A.3. Proof of Lemma 2.1

The vector b̂(α, x) is in a first step an estimator of

b∗(α, x) = arg min
b∈Rp+1

E

[
�α

(
Y − U(X − x)�b

)
K

(
X − x

h

)]
·

Under Assumptions A.1–A.5 and provided h is small enough we have by Guerre and Sabbah ([7], Thm. 1),

sup
x∈X0

∣∣∣∣H (b∗(α, x) − b(α|x))
hs

∣∣∣∣ ≤ C. (A.6)

We now present the Bahadur representation given in Guerre and Sabbah [7]. Define Q∗(Xi; α, x) = U(Xi −
x)�b∗(α, x) and

Sn(α, x) =
2

(nh)1/2

n∑
i=1

{I (Yi ≤ Q∗(Xi; α, x)) − α}KU

(
Xi − x

h

)
,

Jn(α, x) =
2

nh

n∑
i=1

f (Q∗(Xi; α, x)|Xi)KU

(
Xi − x

h

)
U
(

Xi − x

h

)�
,

En(α, x) = (nh)1/2H
(
b̂(α, x) − b∗(α, x)

)
+

Sn(α, x)
Jn(α, x)

·
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Under Assumptions A.1–A.5, Guerre and Sabbah ([7], Thm. 2) yields that

sup
x∈X0

‖En(α, x)‖ = OP

(
log3(n)

nh

)1/4

· (A.7)

Lemma A.6. Under Assumptions A.1–A.3, A.5 and uniformly in x in X0,∥∥∥∥∥Sn(α, x) − 2
(nh)1/2

n∑
i=1

I(Yi ≤ Q(α|Xi))KU

(
Xi − x

h

)∥∥∥∥∥ = OP

(
(nh)1/2hs

)
,

and supx∈X0
‖J(α, x) − Jn(α, x)‖ = OP

(
h + (log(n))1/2/(nh)1/2

)
.

We now return to the Proof of Lemma 2.1. We consider the Bahadur representation in equation (A.7) so that
(nh)1/2H(b̂(α, x) − b(α, x)) can be written as

2J(α, x)−1

(nh)1/2

n∑
i=1

{α − I(Yi ≤ Q(α|Xi))}KU

(
Xi − x

h

)
+ rn(α, x),

with rn(α, x) =
∑4

j=1 rn,j(α, x), and where

J(α, x)rn,1(α, x) =
1

(nh)1/2

n∑
i=1

{I(Yi ≤ Q(α|Xi)) − α}KU

(
Xi − x

h

)
− Sn(α, x),

rn,2(α, x) = (nh)1/2H (b∗(α, x) − b(α|x)) , rn,3(α, x) =
Jn(α, x) − J(α, x)
J(α, x)Jn(α, x)

Sn(α, x),

and rn,4(α, x) = En(α, x). We now bound the rn,j(α, x) for j = 1, 2, 3, 4, uniformly in x in X0 showing that
max1≤j≤4 supx∈X0

‖rn,j(α, x)‖ = oP(log(n))−1/2. Lemma A.6 and the fact infx∈X0 ‖J(α, x)‖ ≥ C > 0 yield that
rn,1(α, x) is a OP((nh)1/2hs) uniformly in x in X0. Equation (A.6) yields that rn,2(α, x) is a O(hs) uniformly
in x in X0. Now observe that Guerre and Sabbah ([7], Lem. A.3) together with the fact that Guerre and
Sabbah ([7], Lem. A.2) yields that infx∈X0 ‖Jn(α, x)‖ ≥ C > 0 with a probability that can be arbitrarily
large yield that rn,3(α, x) is a OP(log(n)/(nh)1/2 + h log1/2(n)) uniformly in x in X0. Finally (A.7) yields that

supx∈X0
‖En(α, x)‖ = OP

(
log3(n)/(nh)

)1/4
. Then

(nh)1/2 H
(
b̂(α, x) − b(α|x)

)
= −J(α, x)−1

(nh)1/2

n∑
i=1

{I(Yi ≤ Q(α|Xi)) − α} + rn(α, x),

with

sup
x∈X0

‖rn(α, x)‖ = OP

(
(nh)1/2hs +

log(n)
(nh)1/2

+ h log1/2(n) +
log3/4(n)
(nh)1/4

)
·

The result then follows since (log(n))/(nh)1/2 = o
(
(log3/4(n))/(nh)1/4

)
under Assumption A.5.

A.4. Proof of Lemma A.6

For simplicity of notations, define Q∗(u) = Q∗(u; α, x) and Q(u) = Q(α|u). A Taylor expansion of Q(·) in a
neighborhood of x can be written as

Q(x + hz) = U(hz)b(α, x) + RQ(α, x, z),
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where b(α, x) is as in Lemma 2.1. This gives that

sup
(x,z)∈X0×K

|Q∗(x + hz) − Q(x + hz)| = sup
(x,z)∈X0×K

|U(hz)b∗(α, x) − U(hz)b(α, x) − RQ(α, x)|

≤ sup
z∈K

‖U(z)‖ sup
x∈X0

‖H (b∗(α, x) − b(α, x))| + sup
(x,z)∈X0×K

|RQ(α, x, z)|

= O(hs), (A.8)

by equation (A.6) and under Assumption A.4. Define

An,j(α, x) =
n∑

i=1

{I (Yi ≤ Q∗(Xi)) − I (Yi ≤ Q(Xi))}Kj

(
Xi − x

h

)
·

Define Wi = Yi − Q(α|Xi) and observe that (A.8) yields that

|An,j(α, x)| ≤ nhs+1 1
nhs+1

n∑
i=1

I (|Yi − Q(Xi)| ≤ Chs)
∣∣∣∣Kj

(
Xi − x

h

)∣∣∣∣
= nhs+1 1

nhs+1

n∑
i=1

I (|Wi| ≤ Chs)
∣∣∣∣Kj

(
Xi − x

h

)∣∣∣∣
= nhs+1f̃(x, 0), (A.9)

where f̃(x, 0) is a kernel estimator of the density of the couple (Xi, Wi) at (x, 0). Observe that

sup
x∈X0

∣∣∣f̃(x, 0)
∣∣∣ ≤ sup

x∈X0

∣∣∣f̃(x, 0) − E

[
f̃(x, 0)

]∣∣∣+ sup
x∈X0

∣∣∣E [f̃(x, 0)
]∣∣∣ . (A.10)

We now bound the two terms in the RHS of (A.10). Einmahl and Mason ([4], Thm. 1) yields that

sup
x∈X0

∣∣∣f̃(x, 0) − E

[
f̃(x, 0)

]∣∣∣ = OP

(
log1/2(n)

(nhs+1)1/2

)
, (A.11)

under Assumptions A.1, A.2 and A.3. The change of variables z = x+ hu yields that E

[
f̃(x, 0)

]
can be written

as ∫ ∫
I (|y − Q(x + hu)| ≤ Chs) |Kj(u)| f(y|x + hu)f(x + hu)dydu .

It then follows from Assumptions A.1, A.2 and A.3 that supx∈X0

∣∣∣E [f̃(x, 0)
]∣∣∣ ≤ C. This, Assumption A.5

and (A.11) yield that the RHS in (A.10) is a OP(1) which together with (A.9) proves the first part of the
Lemma.

We now prove the second part of the Lemma. For that first note that

sup
x∈X0

‖Jn(α, x) − J(α, x)‖ ≤ sup
x∈X0

‖Jn(α, x) − E [Jn(α, x)]‖ + sup
x∈X0

‖E [Jn(α, x)] − J(α, x)‖ .

We control the first term in the RHS of the above equation. Observe that Jn(α, x) is the matrix with entries

Jv1,v2(α, x) =
n∑

i=1

2
nh

Kv1+v2

(
Xi − x

h

)
f (Q∗(Xi)|Xi) =

n∑
i=1

Jv1,v2,i(α, x),

where 0 ≤ v1, v2 ≤ p. Using Einmahl and Mason ([4], Thm. 1) yields that

sup
x∈X0

‖Jv1,v2(α, x) − E [Jv1,v2(α, x)] ‖ ≤ C

(
log(n)

nh

)1/2

,
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for all 0 ≤ v1, v2 ≤ p, under Assumptions A.1–A.3 and A.5. The Lemma is then proved if we show that
supx∈X0

‖E [Jn(α, x)] − J(α, x)‖ = O(h). (A.8) and the change of variables z = x + hu then yield that the
generic entries of ‖Jn(α, x) − J(α, x)‖ are less than∫ (

sup
(x,u)∈X0×K

|f (Q∗(x + hu)|x + hu) (f(x + hu) − f(x))|

+ sup
(x,u)∈X0×K

|f(x) (f (Q∗(x + hu)|x + hu) − f(Q(x)|x)f(x))|
)
|Kv1+v2(u)| du

≤ C

∫ (
sup

(x,u)∈X0×K
|f(x + hu) − f(x)| + sup

(x,u)∈X0×K
|f (Q∗(x + hu)|x + hu) − f(Q(x)|x)|

)
|Kv1+v2(u)| du

= O(h),

under Assumptions A.1, A.2 and equation (A.6).
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