Our first theorem states that the convolution of two symmetric densities which are k-monotone on (0,∞) is again (symmetric) k-monotone provided 0 < k ≤ 1. We then apply this result, together with an extremality approach, to derive sharp moment and exponential bounds for distributions having such shape constrained densities.
Mots clés : multiply monotonicity, symmetric densities, unimodality, Wintner's theorem, Bernstein's inequality
@article{PS_2013__17__605_0, author = {Lef\`evre, Claude and Utev, Sergey}, title = {Convolution property and exponential bounds for symmetric monotone densities}, journal = {ESAIM: Probability and Statistics}, pages = {605--613}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2012012}, mrnumber = {3085635}, zbl = {1291.60030}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2012012/} }
TY - JOUR AU - Lefèvre, Claude AU - Utev, Sergey TI - Convolution property and exponential bounds for symmetric monotone densities JO - ESAIM: Probability and Statistics PY - 2013 SP - 605 EP - 613 VL - 17 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2012012/ DO - 10.1051/ps/2012012 LA - en ID - PS_2013__17__605_0 ER -
%0 Journal Article %A Lefèvre, Claude %A Utev, Sergey %T Convolution property and exponential bounds for symmetric monotone densities %J ESAIM: Probability and Statistics %D 2013 %P 605-613 %V 17 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2012012/ %R 10.1051/ps/2012012 %G en %F PS_2013__17__605_0
Lefèvre, Claude; Utev, Sergey. Convolution property and exponential bounds for symmetric monotone densities. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 605-613. doi : 10.1051/ps/2012012. http://www.numdam.org/articles/10.1051/ps/2012012/
[1] Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Stat. 35 (2007) 2536-2564. | MR | Zbl
and ,[2] Extremal slabs in the cube and the Laplace transform. Adv. Math. 174 (2003) 89-114. | MR | Zbl
and ,[3] Generalized Dirichlet distributions on the ball and moments. ALEA - Latin Amer. J. Probab. Math. Stat. 7 (2010) 319-340. | MR | Zbl
, , and ,[4] Unimodality of Probability Measures. Kluwer, Dordrecht (1997). | MR | Zbl
, and ,[5] S. Dharmadhikari and K. Joag-dev, Unimodality, Convexity, and Applications. Academic, San Diego (1988). | MR | Zbl
[6] A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41 (1970) 1223-1226. | MR | Zbl
,[7] Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities. Trans. Amer. Math. Soc. 349 (1997) 997-1027. | MR | Zbl
, , , and ,[8] Radial positive definite functions generated by Euclid's hat. J. Multiv. Anal. 69 (1999) 88-119. | MR | Zbl
,[9] The extrema of the expected value of a function of independent random variables. Ann. Math. Stat. 26 (1955) 268-275. | MR | Zbl
,[10] Preservation of log-concavity on summation. ESAIM: PS 10 (2005) 206-215. | Numdam | MR | Zbl
and ,[11] On unimodal distributions. Izv. Nauchno- Issled. Inst. Mat. Mech. Tomsk. Gos. Univ. 2 (1938) 1-7 (in Russian). | JFM | Zbl
,[12] On multiply monotone distributions, discrete or continuous, with applications. Working paper, ISFA, Université de Lyon 1 (2011). | Zbl
and ,[13] Exact norms of a Stein-type operator and associated stochastic orderings. Probab. Theory Relat. Fields 127 (2003) 353-366. | MR | Zbl
and ,[14] Extensions d'un théorème de D. Dugué et M. Girault. Wahrscheinlichkeitstheorie 1 (1962) 159-173. | Zbl
,[15] Inequalities: Theory of Majorization and its Applications. Academic, New York (1979). | MR | Zbl
and ,[16] Distributional characterizations through scaling relations. Aust. N. Z. J. Stat. 49 (2007) 115-135. | MR | Zbl
and ,[17] Toward the best constant factor for the Rademacher-Gaussian tail comparison. ESAIM: PS 11 (2007) 412-426. | Numdam | MR | Zbl
,[18] Fractional Differential Equations. Academic, San Diego (1999). | MR | Zbl
,[19] Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Springer, Berlin (2000). | MR | Zbl
,[20] Stochatic Orders. Springer, New York (2007). | MR | Zbl
and ,[21] Extremal problems in moment inequalities, in Limit Theorems of Probability Theory of Trudy Inst. Mat., vol. 5. Nauka Sibirsk. Otdel., Novosibirsk. (1985) 56-75 (in Russian). | MR | Zbl
,[22] Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956) 189-207. | MR | Zbl
,[23] On a class of Fourier transforms. Amer. J. Math. 58 (1936) 45-90. | JFM | MR
,Cité par Sources :