It is proved that the best constant factor in the Rademacher-gaussian tail comparison is between two explicitly defined absolute constants and such that 1.01 . A discussion of relative merits of this result versus limit theorems is given.
Mots clés : probability inequalities, Rademacher random variables, sums of independent random variables, Student's test, self-normalized sums
@article{PS_2007__11__412_0, author = {Pinelis, Iosif}, title = {Toward the best constant factor for the {Rademacher-gaussian} tail comparison}, journal = {ESAIM: Probability and Statistics}, pages = {412--426}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007027}, mrnumber = {2339301}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007027/} }
TY - JOUR AU - Pinelis, Iosif TI - Toward the best constant factor for the Rademacher-gaussian tail comparison JO - ESAIM: Probability and Statistics PY - 2007 SP - 412 EP - 426 VL - 11 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007027/ DO - 10.1051/ps:2007027 LA - en ID - PS_2007__11__412_0 ER -
Pinelis, Iosif. Toward the best constant factor for the Rademacher-gaussian tail comparison. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 412-426. doi : 10.1051/ps:2007027. http://www.numdam.org/articles/10.1051/ps:2007027/
[1] A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand. Lithuanian Math. J. 42 (2002) 262-269. | Zbl
,[2] An inequality for tail probabilities of martingales with differences bounded from one side. J. Theoret. Probab. 16 (2003) 161-173 | Zbl
,[3] On Hoeffding's inequalities. Ann. Probab. 32 (2004) 1650-1673. | Zbl
,[4] On Gaussian and Bernoulli covariance representations. Bernoulli 7 (2002) 439-451. | Zbl
, , ,[5] Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. Lect. Notes Comput. Sci. 33 (1975) 134-183. | Zbl
,[6] A probability inequality for linear combinations of bounded random variables. Ann. Statist. 2 (1974) 609-614. | Zbl
,[7] An inequality of optimal order for the tail probabilities of the statistic under symmetry. J. Amer. Statist. Assoc. 85 (1990) 120-122. | Zbl
,[8] Student’s test under symmetry conditions. J. Amer. Statist. Assoc. 64 (1969) 1278-1302. | Zbl
,[9] Extremal problems in the maximal inequalities of Khintchine. Math. Proc. Cambridge Philos. Soc. 123 (1998) 169-177. | Zbl
, ,[10] Sur les ensembles semi-analytiques. Actes du Congrès International des Mathématiciens (Nice, 1970). Tome 2, Gauthier-Villars, Paris (1970) 237-241. | Zbl
,[11] Extremal probabilistic problems and Hotelling’s test under a symmetry condition. Ann. Statist. 22 (1994) 357-368. | Zbl
,[12] Optimal tail comparison based on comparison of moments. High dimensional probability (Oberwolfach, 1996). Birkhäuser, Basel Progr. Probab. . 43 (1998) 297-314. | Zbl
,[13] Fractional sums and integrals of -concave tails and applications to comparison probability inequalities Advances in stochastic inequalities (Atlanta, GA, 1997). Amer. Math. Soc., Providence, RI. 234 Contemp. Math., . (1999) 149-168. | Zbl
,[14] On exact maximal Khinchine inequalities. High dimensional probability, II (Seattle, WA, 1999). Birkhäuser Boston, Boston, MA Progr. Probab.. 47 (2000) 49-63. | Zbl
,[15] Birkhäuser, Basel L'Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables. J. Inequal. Pure Appl. Math. 3 (2002) Article 7, 9 pp. (electronic). | Zbl
,[16] Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. IMS Lecture Notes Monograph Series 51 (2006) 33-52. | MR | Zbl
,[17] On normal domination of (super)martingales. Electronic Journal of Probality 11 (2006) 1049-1070. | MR | Zbl
,[18] On l'Hospital-type rules for monotonicity. J. Inequal. Pure Appl. Math. 7 (2006) art40 (electronic). | Zbl
,[19] Exact inequalities for sums of asymmetric random variables, with applications. Probability Theory and Related Fields (2007) DOI 10.1007/s00440-007-0055-4. | MR | Zbl
,[20] On inequalities for sums of bounded random variables. Preprint (2006) http://arxiv.org/abs/math.PR/0603030.
,[21] A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, Calif. (1948). | MR | Zbl
,Cité par Sources :