L p -theory for the stochastic heat equation with infinite-dimensional fractional noise
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 110-138.

In this article, we consider the stochastic heat equation du=(Δu+f(t,x))dt+ k=1 g k (t,x)δβ t k ,t[0,T], with random coefficients f and gk, driven by a sequence (βk)k of i.i.d. fractional Brownian motions of index H>1/2. Using the Malliavin calculus techniques and a p-th moment maximal inequality for the infinite sum of Skorohod integrals with respect to (βk)k, we prove that the equation has a unique solution (in a Banach space of summability exponent p ≥ 2), and this solution is Hölder continuous in both time and space.

DOI : 10.1051/ps/2009006
Classification : 60H15, 60H07
Mots-clés : fractional brownian motion, Skorohod integral, maximal inequality, stochastic heat equation
@article{PS_2011__15__110_0,
     author = {Balan, Raluca M.},
     title = {$L_p$-theory for the stochastic heat equation with infinite-dimensional fractional noise},
     journal = {ESAIM: Probability and Statistics},
     pages = {110--138},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2009006},
     zbl = {1263.60054},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2009006/}
}
TY  - JOUR
AU  - Balan, Raluca M.
TI  - $L_p$-theory for the stochastic heat equation with infinite-dimensional fractional noise
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 110
EP  - 138
VL  - 15
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2009006/
DO  - 10.1051/ps/2009006
LA  - en
ID  - PS_2011__15__110_0
ER  - 
%0 Journal Article
%A Balan, Raluca M.
%T $L_p$-theory for the stochastic heat equation with infinite-dimensional fractional noise
%J ESAIM: Probability and Statistics
%D 2011
%P 110-138
%V 15
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2009006/
%R 10.1051/ps/2009006
%G en
%F PS_2011__15__110_0
Balan, Raluca M. $L_p$-theory for the stochastic heat equation with infinite-dimensional fractional noise. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 110-138. doi : 10.1051/ps/2009006. http://www.numdam.org/articles/10.1051/ps/2009006/

[1] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766-801. | MR | Zbl

[2] E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129-152. | MR | Zbl

[3] R.M. Balan and C.A. Tudor, The stochastic heat equation with a fractional-colored noise: existence of the solution. Latin Amer. J. Probab. Math. Stat. 4 (2008) 57-87. | MR | Zbl

[4] P. Carmona and L. Coutin, Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Poincaré, Probab. & Stat. 39 (2003) 27-68. | Numdam | MR | Zbl

[5] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press (1992). | MR

[6] L. Decreusefond and A.S. Ustünel, Stochastic analysis of the fractional Brownian motion. Potent. Anal. 10 (1999) 177-214. | MR | Zbl

[7] T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochstic calculus for fractional Brownian motion I. theory. SIAM J. Contr. Optim. 38 (2000) 582-612. | MR | Zbl

[8] W. Grecksch and V.V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input. Stat. Probab. Lett. 41 (1999) 337-346. | MR | Zbl

[9] Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions. Memoirs AMS 175 (2005) viii+127. | MR | Zbl

[10] G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces. IMS Lect. Notes 26, Hayward, CA (1995). | MR | Zbl

[11] N.V. Krylov, A generalization of the Littlewood-Paley inequality and some other results related to stochstic partial differential equations. Ulam Quarterly 2 (1994) 16-26. | MR | Zbl

[12] N.V. Krylov, On Lp-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27 (1996) 313-340 | MR | Zbl

[13] N.V. Krylov, An analytic approach to SPDEs. In Stochastic partial differential equations: six perspectives. Math. Surveys Monogr. 64 (1999) 185-242 AMS, Providence, RI. | MR | Zbl

[14] N.V. Krylov, On the foundation of the L p-theory of stochastic partial differential equations. In “Stochastic partial differential equations and application VII”. Chapman & Hall, CRC (2006) 179-191. | MR | Zbl

[15] T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl

[16] T. Lyons and Z. Qian, System Control and Rough Paths. Oxford University Press (2002). | MR | Zbl

[17] B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202 (2003) 277-305. | MR | Zbl

[18] D. Nualart, Analysis on Wiener space and anticipative stochastic calculus. Lect. Notes. Math. 1690 (1998) 123-227. | MR | Zbl

[19] D. Nualart, Stochastic integration with respect to fractional Brownian motion and applications. Contem. Math. 336 (2003) 3-39. | MR | Zbl

[20] D. Nualart, Malliavin Calculus and Related Topics, Second Edition. Springer-Verlag, Berlin. | MR | Zbl

[21] D. Nualart and P.-A. Vuillermot, Variational solutions for partial differential equations driven by fractional a noise. J. Funct. Anal. 232 (2006) 390-454. | MR | Zbl

[22] B.L. Rozovskii, Stochastic evolution systems. Kluwer, Dordrecht (1990). | MR

[23] M. Sanz-Solé and P.-A. Vuillermot, Mild solutions for a class of fractional SPDE's and their sample paths (2007). Preprint available at http://www.arxiv.org/pdf/0710.5485 | MR | Zbl

[24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). | MR | Zbl

[25] S. Tindel, C.A. Tudor, and F. Viens, Stochastic evolution equations with fractional Brownian motion. Probab. Th. Rel. Fields 127 (2003) 186-204. | MR | Zbl

[26] J.B. Walsh, An introduction to stochastic partial differential equations. École d'Été de Probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 (1986) 265-439. Springer, Berlin. | MR | Zbl

[27] M. Zähle, Integration with respect to fractal functions and stochastic calculus I. Probab. Th. Rel. Fields 111 (1998) 333-374. | MR | Zbl

Cité par Sources :