In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large are large nonlinear exponents . In a second part, we compute solitons for a nonlinear system governing the propagation of two coupled waves in a quadratic media in any spatial dimension, starting from one-dimensional states obtained with a shooting method and considering the dimension as a continuation parameter. Finally, we investigate the case of three wave mixing, for which the shooting method is not relevant.
Mots clés : nonlinear optics, elliptic problems, stationary states, shooting method, continuation method
@article{M2AN_2009__43_1_173_0, author = {Menza, Laurent Di}, title = {Numerical computation of solitons for optical systems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {173--208}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an:2008044}, mrnumber = {2494799}, zbl = {1159.65070}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2008044/} }
TY - JOUR AU - Menza, Laurent Di TI - Numerical computation of solitons for optical systems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 173 EP - 208 VL - 43 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2008044/ DO - 10.1051/m2an:2008044 LA - en ID - M2AN_2009__43_1_173_0 ER -
%0 Journal Article %A Menza, Laurent Di %T Numerical computation of solitons for optical systems %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 173-208 %V 43 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2008044/ %R 10.1051/m2an:2008044 %G en %F M2AN_2009__43_1_173_0
Menza, Laurent Di. Numerical computation of solitons for optical systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 173-208. doi : 10.1051/m2an:2008044. http://www.numdam.org/articles/10.1051/m2an:2008044/
[1] Nodal solutions for a sublinear elliptic equation. Nonlinear Anal. 52 (2003) 219-237. | MR | Zbl
, and ,[2] Self-trapping of light beams and parametric solitons in diffractive quadratic media. Phys. Rev. A 52 (1995) 1670-1674.
, and ,[3] Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370 (2002) 62-235. | MR | Zbl
, , and ,[4] Transparent and absorbing conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim. 18 (1997) 759-775. | MR | Zbl
,[5] Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Physica D 18 (2007) 55-86. | MR | Zbl
, and ,[6] Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79 (1997) 2450-2453.
and ,[7] Simultaneous solitary-wave solutions in a nonlinear parametric waveguide. Phys. Rev. E 54 (1996) 896-911.
, and ,[8] Nonradial solutions of a semilinear elliptic equation in two dimensions. J. Diff. Equ. 119 (1995) 533-558. | MR | Zbl
and ,[9] Norm estimates for radially symmetric solutions of semilinear elliptic equations. Trans. Amer. Math. Soc. 347 (1995) 1163-1199. | MR | Zbl
,[10] Uniqueness of positive solutions of in . Arch. Rat. Mech. Anal. 105 (1989) 243-266. | MR | Zbl
,[11] Efficient numerical continuation and stability analysis of spatiotemporal quadratic optical solitons. SIAM J. Sci. Comput. 27 (2005) 759-773. | MR | Zbl
and ,[12] Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56 (1997) 4725-4735.
, , , , and ,[13] Radial solutions of with prescribed number of zeros. J. Diff. Equ. 83 (1990) 368-378. | MR | Zbl
, and ,[14] Vortex solitons for 2D focusing nonlinear Schrödinger equation. Diff. Int. Equ. 18 (2005) 431-450. | MR
,[15] Spherically-symmetric solutions of the Schrödinger-Newton equation. Class. Quant. Grav. 15 (1998) 2733-2742. | MR | Zbl
, and ,[16] Self-guided beams in diffractive medium: variational approach. Optics Comm. 118 (1995) 345-352.
, , and ,[17] The nonlinear Schrödinger equation, Self-focusing and wave collapse. AMS, Springer-Verlag (1999). | MR | Zbl
and ,[18] Light bullets in quadratic media with normal dispersion at the second harmonic. Phys. Rev. Lett. 90 (2003) 123902.
, and ,[19] Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576. | MR | Zbl
,Cité par Sources :