The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove the convergence of the method for a fixed number of reconfigurations when the number of walkers tends to while the timestep tends to . We confirm our theoretical rates of convergence by numerical experiments. Various resampling algorithms are investigated, both theoretically and numerically.
Mots clés : diffusion Monte Carlo method, interacting particle systems, ground state, Schrödinger operator, Feynman-Kac formula
@article{M2AN_2007__41_2_189_0, author = {Makrini, Mohamed El and Jourdain, Benjamin and Leli\`evre, Tony}, title = {Diffusion {Monte} {Carlo} method : numerical analysis in a simple case}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {189--213}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007017}, mrnumber = {2339625}, zbl = {1135.81379}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007017/} }
TY - JOUR AU - Makrini, Mohamed El AU - Jourdain, Benjamin AU - Lelièvre, Tony TI - Diffusion Monte Carlo method : numerical analysis in a simple case JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 189 EP - 213 VL - 41 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007017/ DO - 10.1051/m2an:2007017 LA - en ID - M2AN_2007__41_2_189_0 ER -
%0 Journal Article %A Makrini, Mohamed El %A Jourdain, Benjamin %A Lelièvre, Tony %T Diffusion Monte Carlo method : numerical analysis in a simple case %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 189-213 %V 41 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007017/ %R 10.1051/m2an:2007017 %G en %F M2AN_2007__41_2_189_0
Makrini, Mohamed El; Jourdain, Benjamin; Lelièvre, Tony. Diffusion Monte Carlo method : numerical analysis in a simple case. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 2, pp. 189-213. doi : 10.1051/m2an:2007017. http://www.numdam.org/articles/10.1051/m2an:2007017/
[1] On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | Zbl
,[2] Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566-4575.
, and ,[3] Computational Quantum Chemistry: a Primer, in Handbook of Numerical Analysis, Special volume, Computational Chemistry, volume X, Ph.G. Ciarlet and C. Le Bris Eds., North-Holland (2003) 3-270. | Zbl
, , , and ,[4] Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Methods Appl. Sci. 16 (2006) 1403-1440. | Zbl
, and ,[5] Comparison of Resampling Schemes for Particle Filtering, in 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia (2005).
, and ,[6] Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385-2411. | Zbl
,[7] Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). | MR | Zbl
,[8] Particle motions in absorbing medium with hard and soft obstacles. Stochastic Anal. Appl. 22 (2004) 1175-1207. | Zbl
and ,[9] Branching and Interacting Particle Systems. Approximation of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics 1729, Springer-Verlag (2000) 1-145. | Numdam | Zbl
and ,[10] Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171-208. | Numdam | Zbl
and ,[11] Monte Carlo methods in financial engineering. Springer-Verlag (2004). | MR | Zbl
,[12] Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713-2719.
,[13] Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77 (1982) 5593-5603.
, , and ,[14] On the control of an interacting particle approximation of Schrödinger groundstates. SIAM J. Math. Anal. 38 (2006) 824-844.
,[15] Green Function Monte Carlo with Stochastic Reconfiguration. Phys. Rev. Lett. 80 (1998) 4558-4561.
,[16] Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 94-120. | Zbl
and ,[17] A Diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99 (1993) 2865-2890.
, and ,Cité par Sources :