We present an interacting particle system methodology for the numerical solving of the Lyapunov exponent of Feynman-Kac semigroups and for estimating the principal eigenvalue of Schrödinger generators. The continuous or discrete time models studied in this work consists of
Mots-clés : Feynman-Kac formula, Schrödinger operator, spectral radius, Lyapunov exponent, spectral decomposition, semigroups on a Banach space, interacting particle systems, genetic algorithms, asymptotic stability, central limit theorems
@article{PS_2003__7__171_0, author = {Del Moral, Pierre and Miclo, L.}, title = {Particle approximations of {Lyapunov} exponents connected to {Schr\"odinger} operators and {Feynman-Kac} semigroups}, journal = {ESAIM: Probability and Statistics}, pages = {171--208}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003001}, zbl = {1040.81009}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2003001/} }
TY - JOUR AU - Del Moral, Pierre AU - Miclo, L. TI - Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups JO - ESAIM: Probability and Statistics PY - 2003 SP - 171 EP - 208 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2003001/ DO - 10.1051/ps:2003001 LA - en ID - PS_2003__7__171_0 ER -
%0 Journal Article %A Del Moral, Pierre %A Miclo, L. %T Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups %J ESAIM: Probability and Statistics %D 2003 %P 171-208 %V 7 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2003001/ %R 10.1051/ps:2003001 %G en %F PS_2003__7__171_0
Del Moral, Pierre; Miclo, L. Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 171-208. doi : 10.1051/ps:2003001. http://www.numdam.org/articles/10.1051/ps:2003001/
[1] Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A 29 (1996) 2633-2642. | Zbl
, , and ,[2] A Fleming-Viot particle representation of Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679-703. | Zbl
, and ,[3] On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré 37 (2001) 155-194. | Numdam | MR | Zbl
and ,[4] Branching and interacting particle system approximations of Feynman-Kac formulae with applications to nonlinear filtering, in Séminaire de Probabilités XXXIV, edited by J. Azéma, M. Emery, M. Ledoux and M. Yor. Springer, Lecture Notes in Math. 1729 (2000) 1-145. Asymptotic stability of non linear semigroups of Feynman-Kac type. Ann. Fac. Sci. Toulouse (to be published). | Numdam | Zbl
and ,[5] Asymptotic stability of nonlinear semigroup of Feynman-Kac type. Publications du Laboratoire de Statistique et Probabilités, No. 04-99 (1999).
and ,[6] A Moran particle approximation of Feynman-Kac formulae. Stochastic Process. Appl. 86 (2000) 193-216. | Zbl
and ,[7] About the strong propagation of chaos for interacting particle approximations of Feynman-Kac formulae. Publications du Laboratoire de Statistiques et Probabilités, Toulouse III, No 08-00 (2000).
and ,[8] Genealogies and increasing propagation of chaos for Feynman-Kac and genetic models. Ann. Appl. Probab. 11 (2001) 1166-1198. | Zbl
and ,[9] Asymptotic evaluation of certain Wiener integrals for large time in Functional Integration and its Applications, edited by A.M. Arthur. Oxford Universtity Press (1975) 15-33. | MR | Zbl
and ,[10] Large deviations for stochastic processes. http://www.math.umass.edu/ feng/Research.html | MR
and ,[11] Limit theorems for stochastic processes. Springer-Verlag, A Series of Comprehensive Studies in Math. 288 (1987). | MR | Zbl
and ,[12] Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York (1980). | MR | Zbl
,[13] Methods of modern mathematical physics, II, Fourier analysis, self adjointness. Academic Press, New York (1975). | MR | Zbl
and ,[14] Brownian motion, obstacles and random media. Springer, Springer Monogr. in Math. (1998). | MR | Zbl
,Cité par Sources :