We present a novel application of best -term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions near electron-electron and electron-nuclear cusps. Based on Nitsche’s characterization of best -term approximation spaces , we prove that for and with respect to a certain class of anisotropic wavelet tensor product bases. Computational arguments are given in favour of this specific class compared to other possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with standard gaussian-type basis sets frequently used in quantum chemistry.
Mots clés : best N-term approximation, wavelets, electron correlations, Jastrow factor
@article{M2AN_2007__41_2_261_0, author = {Flad, Heinz-J\"urgen and Hackbusch, Wolfgang and Schneider, Reinhold}, title = {Best $N$-term approximation in electronic structure calculations. {II.} {Jastrow} factors}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {261--279}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007016}, mrnumber = {2339628}, zbl = {1135.81029}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007016/} }
TY - JOUR AU - Flad, Heinz-Jürgen AU - Hackbusch, Wolfgang AU - Schneider, Reinhold TI - Best $N$-term approximation in electronic structure calculations. II. Jastrow factors JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 261 EP - 279 VL - 41 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007016/ DO - 10.1051/m2an:2007016 LA - en ID - M2AN_2007__41_2_261_0 ER -
%0 Journal Article %A Flad, Heinz-Jürgen %A Hackbusch, Wolfgang %A Schneider, Reinhold %T Best $N$-term approximation in electronic structure calculations. II. Jastrow factors %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 261-279 %V 41 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007016/ %R 10.1051/m2an:2007016 %G en %F M2AN_2007__41_2_261_0
Flad, Heinz-Jürgen; Hackbusch, Wolfgang; Schneider, Reinhold. Best $N$-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 2, pp. 261-279. doi : 10.1051/m2an:2007016. http://www.numdam.org/articles/10.1051/m2an:2007016/
[1] Lectures on exponential decay of solutions of second-order elliptic equations: Bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes 29. Princeton University Press (1982). | MR | Zbl
,[2] Sparse grids. Acta Numer. 13 (2004) 147-269. | Zbl
and ,[3] Electron correlations in atomic systems. Phys. Rep. 223 (1992) 1-42.
, and ,[4] Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. B 18 (1978) 3126-3138.
,[5] Variational theory of nuclear matter, in Progress in Nuclear and Particle Physics, Vol. 2, D.H. Wilkinson Ed., Pergamon, Oxford (1979) 89-199.
,[6] Asymptotic Expansions. Cambridge University Press, Cambridge (1967). | MR | Zbl
,[7] Wavelet approximation methods for pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comp. Maths. 1 (1993) 259-335. | Zbl
, and ,[8] Wavelet approximation methods for pseudodifferential equations. I: Stability and convergence. Math. Z. 215 (1994) 583-620. | Zbl
, and ,[9] Nonlinear approximation. Acta Numer. 7 (1998) 51-150. | Zbl
,[10] Compression of wavelet decompositions. Amer. J. Math. 114 (1992) 737-785. | Zbl
, and ,[11] Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | Zbl
, and ,[12] Jastrow correlation factor for atoms, molecules, and solids. Phys. Rev. B 70 (2004) 235119.
, and ,[13] Transfer of electron correlation from the electron gas to inhomogeneous systems via Jastrow factors. Phys. Rev. A. 50 (1994) 3742-3746.
and ,[14] A new Jastrow factor for atoms and molecules, using two-electron systems as a guiding principle. J. Chem. Phys. 103 (1995) 691-697.
and ,[15] Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys. 116 (2002) 9641-9657.
, , and ,[16] Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B 71 (2005) 125115.
, , and ,[17] Best -term approximation in electronic structure calculations. I. One-electron reduced density matrix. ESAIM: M2AN 40 (2006) 49-61. | Numdam | Zbl
, and ,[18] Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183-227. | Zbl
, , and ,[19] Variational calculations on the helium isoelectronic sequence. Phys. Rev. A 29 (1984) 980-982.
, and ,[20] Electron Correlations in Molecules and Solids, 2nd edition. Springer, Berlin (1993).
,[21] Ground-state wave functions and energies of solids. Int. J. Quant. Chem. 76 (2000) 385-395.
,[22] On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comp. Phys. 165 (2000) 694-716. | Zbl
and ,[23] Inhomogeneous random-phase approximation and many-electron trial wave functions. Phys. Rev. B 63 (2001) 115115.
, , , and ,[24] Hierarchical Kronecker tensor-product approximation. J. Numer. Math. 13 (2005) 119-156. | Zbl
, and ,[25] Basis-set convergence in correlated calculations on Ne 286 (1998) 243-252.
, , , , , and ,[26] Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106 (1997) 9639-9646.
, , and ,[27] Molecular Electronic-Structure Theory. Wiley, New York (1999).
, and ,[28] Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys. 83 (1985) 1173-1196.
,[29] Cusp conditions for eigenfunctions of n-electron systems. Phys. Rev. A 23 (1981) 21-23.
and ,[30] Local properties of Coulombic wave functions. Commun. Math. Phys. 163 (1994) 185-215. | Zbl
, and ,[31] Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations. J. Chem. Phys. 107 (1997) 3007-3013.
, and ,[32] On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151-177. | Zbl
,[33] Variations on the electron gas. Ann. Phys. (N.Y.) 155 (1984) 1-55.
,[34] Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids. Phys. Rev. B 31 (1985) 4267-4278.
,[35] Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. Phys. Rev. B 32 (1985) 5693-5712.
, and ,[36] -Dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theoret. Chim. Acta 68 (1985) 445-469.
,[37] Rates of convergence of the partial-wave expansions of atomic correlation energies. J. Chem. Phys. 96 (1992) 4484-4508.
and ,[38] Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117 (2002) 3625-3638.
, , , and ,[39] Perturbative calculation of Jastrow factors. Phys. Rev. B. 75 (2007) 125111.
, , and ,[40] Sparse approximation of singularity functions. Constr. Approx. 21 (2005) 63-81. | Zbl
,[41] Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx. 24 (2006) 49-70. | Zbl
,[42] Local structure of electron correlations in atomic systems. Chem. Phys. Lett. 163 (1989) 537-541.
, and ,[43] Correlated Monte Carlo wave functions for the atoms He through Ne. J. Chem. Phys. 93 (1990) 4172-4178.
and ,[44] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993). | MR | Zbl
,[45] The local ansatz extended. J. Chem. Phys. 105 (1996) 227-234.
,[46] On the computation of electronic correlation energies within the local approach. J. Chem. Phys. 73 (1980) 4548-4561.
and ,[47] Linked-cluster expansion for Jastrow-type wave functions and its application to the electron-gas problem. Phys. Rev. A 10 (1974) 1333-1344.
,[48] Variational calculation for the electron gas at intermediate densities. Phys. Rev. A 13 (1976) 1200-1208.
,[49] Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett. 60 (1988) 1719-1722.
, and ,[50] Optimized wavefunctions for quantum Monte Carlo studies of atoms and solids. Phys. Rev. B 53 (1996) 9640-9648.
, , , , , , and ,[51] On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731-759. | Zbl
,[52] Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101 (2005) 381-389. | Zbl
,Cité par Sources :