A continuous finite element method with face penalty to approximate Friedrichs' systems
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 55-76.

A continuous finite element method to approximate Friedrichs’ systems is proposed and analyzed. Stability is achieved by penalizing the jumps across mesh interfaces of the normal derivative of some components of the discrete solution. The convergence analysis leads to optimal convergence rates in the graph norm and suboptimal of order 1 2 convergence rates in the L 2 -norm. A variant of the method specialized to Friedrichs’ systems associated with elliptic PDE’s in mixed form and reducing the number of nonzero entries in the stiffness matrix is also proposed and analyzed. Finally, numerical results are presented to illustrate the theoretical analysis.

DOI : 10.1051/m2an:2007007
Classification : 65N30, 65N12, 74S05, 78M10, 76R99, 35F15
Mots-clés : finite elements, interior penalty, stabilization methods, Friedrichs' systems, first-order PDE's
Burman, Erik 1 ; Ern, Alexandre 

1 Ecole Polytechnique Federale Institute of Analysis and Scientific Computing CH-1015 Lausanne Switzerland
@article{M2AN_2007__41_1_55_0,
     author = {Burman, Erik and Ern, Alexandre},
     title = {A continuous finite element method with face penalty to approximate {Friedrichs'} systems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {55--76},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {1},
     year = {2007},
     doi = {10.1051/m2an:2007007},
     zbl = {1129.65083},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2007007/}
}
TY  - JOUR
AU  - Burman, Erik
AU  - Ern, Alexandre
TI  - A continuous finite element method with face penalty to approximate Friedrichs' systems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 55
EP  - 76
VL  - 41
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2007007/
DO  - 10.1051/m2an:2007007
LA  - en
ID  - M2AN_2007__41_1_55_0
ER  - 
%0 Journal Article
%A Burman, Erik
%A Ern, Alexandre
%T A continuous finite element method with face penalty to approximate Friedrichs' systems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 55-76
%V 41
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2007007/
%R 10.1051/m2an:2007007
%G en
%F M2AN_2007__41_1_55_0
Burman, Erik; Ern, Alexandre. A continuous finite element method with face penalty to approximate Friedrichs' systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 55-76. doi : 10.1051/m2an:2007007. http://www.numdam.org/articles/10.1051/m2an:2007007/

[1] I. Babuška, The finite element method with penalty. Math. Comp. 27 (1973) 221-228. | Zbl

[2] I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863-875. | Zbl

[3] G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45-59. | Zbl

[4] A. Bonito and E. Burman, A face penalty method for the three fields Stokes equation arising from Oldroyd-B viscoelastic flows, in Numerical Mathematics and Advanced Applications, ENUMATH Conf. Proc., Springer (2006). | MR | Zbl

[5] E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012-2033. | Zbl

[6] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437-1453. | Zbl

[7] E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2393-2410. | Zbl

[8] E. Burman and B. Stamm, Discontinuous and continuous finite element methods with interior penalty for hyperbolic problems. J. Numer. Math (2005) Submitted (EPFL-IACS report 17.2005).

[9] Z. Cai, T.A. Manteuffel, S.F. Mccormick and S.V. Parter. First-order system least squares (FOSLS) for planar linear elasticity: Pure traction problem. SIAM J. Numer. Anal. 35 (1998) 320-335. | Zbl

[10] J. Douglas, Jr., and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lect. Notes Phys. 58, Springer-Verlag, Berlin (1976). | MR

[11] L. El Alaoui and A. Ern, Residual and hierarchical a posteriori estimates for nonconforming mixed finite element methods. ESAIM: M2AN 38 (2004) 903-929. | Numdam | Zbl

[12] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Appl. Math. Sci. 159, Springer-Verlag, New York, NY (2004). | MR | Zbl

[13] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753-778. | Zbl

[14] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order PDEs. SIAM J. Numer. Anal. 44 (2006) 2363-2388. | Zbl

[15] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multi-field theories with partial coercivity. SIAM J. Numer. Anal. (2006) Submitted (CERMICS report 2006-320). | Zbl

[16] A. Ern and J.-L. Guermond, Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM: M2AN 40 (2006) 29-48. | Numdam

[17] R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1999) 935-952. | Zbl

[18] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418. | Zbl

[19] F. Hecht and O. Pironneau, FreeFEM++ Manual. Laboratoire Jacques-Louis Lions, University Paris VI (2005).

[20] R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Math. Model. Anal. Numer. 30 (1996) 237-263. | Numdam | Zbl

[21] M. Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis, University of Oxford (2004).

[22] C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1-26. | Zbl

[23] O. Karakashian and F. Pascal, A-posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl

[24] P. Lesaint, Finite element methods for symmetric hyperbolic equations. Numer. Math. 21 (1973/74) 244-255. | Zbl

[25] P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, University of Paris VI, France (1975).

[26] P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boors Ed., Academic Press (1974) 89-123. | Zbl

Cité par Sources :