This paper derives upper and lower bounds for the -condition number of the stiffness matrix resulting from the finite element approximation of a linear, abstract model problem. Sharp estimates in terms of the meshsize are obtained. The theoretical results are applied to finite element approximations of elliptic PDE’s in variational and in mixed form, and to first-order PDE’s approximated using the Galerkin-Least Squares technique or by means of a non-standard Galerkin technique in . Numerical simulations are presented to illustrate the theoretical results.
Mots-clés : finite elements, condition number, partial differential equations, linear algebra
@article{M2AN_2006__40_1_29_0, author = {Ern, Alexandre and Guermond, Jean-Luc}, title = {Evaluation of the condition number in linear systems arising in finite element approximations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {29--48}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/m2an:2006006}, mrnumber = {2223503}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2006006/} }
TY - JOUR AU - Ern, Alexandre AU - Guermond, Jean-Luc TI - Evaluation of the condition number in linear systems arising in finite element approximations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 29 EP - 48 VL - 40 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2006006/ DO - 10.1051/m2an:2006006 LA - en ID - M2AN_2006__40_1_29_0 ER -
%0 Journal Article %A Ern, Alexandre %A Guermond, Jean-Luc %T Evaluation of the condition number in linear systems arising in finite element approximations %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 29-48 %V 40 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2006006/ %R 10.1051/m2an:2006006 %G en %F M2AN_2006__40_1_29_0
Ern, Alexandre; Guermond, Jean-Luc. Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 1, pp. 29-48. doi : 10.1051/m2an:2006006. http://www.numdam.org/articles/10.1051/m2an:2006006/
[1] The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901-1932. | Zbl
, and ,[2] Survey lectures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, MD, 1972). Academic Press, New York (1972) 1-359. | Zbl
and ,[3] On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26 (1989) 1383-1384. | Zbl
and ,[4] The Mathematical Theory of Finite Element Methods. Springer, New York, Texts Appl. Math. 15 (1994). | MR | Zbl
and ,[5] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR | Zbl
,[6] Finite volume box schemes and mixed methods. ESAIM: M2AN 34 (2000) 1087-1106. | Numdam | Zbl
,[7] Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 18 (2002) 355-373. | Zbl
and ,[8] Theory and Practice of Finite Elements, Springer-Verlag, New York. Appl. Math. Ser. 159 (2004) | MR | Zbl
and ,[9] Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. (2005) (in press). | Zbl
and ,[10] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[11] Matrix Computations. John Hopkins University Press, Baltimore, second edition (1989). | MR | Zbl
and ,[12] Finite element methods for linear hyperbolic equations. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. | Zbl
, and ,[13] Sur une méthode pour résoudre les équations aux dérivées partielles de type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa 16 (1962) 305-326. | Numdam | Zbl
,[14] Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996). | Zbl
,[15] Functional Analysis, Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the sixth edition (1980). | MR
,Cité par Sources :