In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
Mots-clés : quasi-neutral plasmas, semi-classical limit, modulated energy
@article{M2AN_2002__36_6_1071_0, author = {Puel, Marjolaine}, title = {Convergence of the {Schr\"odinger-Poisson} system to the {Euler} equations under the influence of a large magnetic field}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1071--1090}, publisher = {EDP-Sciences}, volume = {36}, number = {6}, year = {2002}, doi = {10.1051/m2an:2003006}, mrnumber = {1958659}, zbl = {1137.76836}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003006/} }
TY - JOUR AU - Puel, Marjolaine TI - Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 1071 EP - 1090 VL - 36 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003006/ DO - 10.1051/m2an:2003006 LA - en ID - M2AN_2002__36_6_1071_0 ER -
%0 Journal Article %A Puel, Marjolaine %T Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 1071-1090 %V 36 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003006/ %R 10.1051/m2an:2003006 %G en %F M2AN_2002__36_6_1071_0
Puel, Marjolaine. Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1071-1090. doi : 10.1051/m2an:2003006. http://www.numdam.org/articles/10.1051/m2an:2003006/
[1] The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case. Math. Methods Appl. Sci. 14 (1991) 595-613. | Zbl
and ,[2] Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737-754. | Zbl
,[3] An introduction to nonlinear Schrödinger equations, in: Textos de méthodos Mathemàticas 26. Universidad Federal do Rio de Janeiro (1993).
,[4] Mécanique quantique. Hermann (1973).
, and ,[5] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | Zbl
, , and ,[6] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthiers-Villars, Paris (1969). | MR | Zbl
,[7] Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford Lecture in Mathematics and its Applications. Oxford University Press, New York (1996). | MR | Zbl
,[8] Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | Zbl
and ,[9] The classical limit of a self-consistent quantum-Vlasov equation in D. Math. Models Methods Appl. Sci. 3 (1993) 109-124. | Zbl
and ,[10] Convergence of the Schrödinger-Poisson system to the incompressible Euler equations. Preprint LAN, Université Paris VI (2001). | MR | Zbl
,[11] Études variationnelle et asymptotique de problèmes en mécanique des fluides et des plasmas. Ph.D. thesis, Université Paris VI (2001).
,Cité par Sources :